The Dose Response Effects of Partially Hydrolyzed Guar Gum on Gut Microbiome of Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- History of a gastrointestinal disorder;
- Lactose intolerant;
- High fiber consumer (≥15 g per day);
- Use of pre-and probiotics in the past 90 days;
- High protein consumer (i.e., vegetarians or those who follow diets high in protein such as paleo);
- History of psychological illness or conditions that may interfere with the subject’s ability to understand the study directions;
- Use of antibiotics or signs of active systemic infection in the last 6 months. Subjects who are on hypo/hypercaloric diet aiming for weight loss or weight gain;
- History or presence of cancer in the prior 2 years (except for non-melanoma skin cancer);
- Currently pregnant, lactating, or planning to be pregnant during the study period;
- Regular use of dietary supplements (ex: fish oil, riboflavin, etc.), 90 days prior to study inclusion;
- Exposure to any non-registered drug product within the last 30 days prior to screening visit;
- History of or strong potential for alcohol or substance abuse (within 12 months of screening visit). Alcohol abuse is defined as >60 g (men)/40 g (women) pure alcohol per day (1.5 L/1 L beer, resp. 0.75 L/0.5 L wine);
- Current smoker or use of tobacco products in the past 90 days;
- Concurrent or recent participation (30 days) in a dietary intervention trial.
2.2. Material and Characteristics
2.3. Supplementation and Dosages
2.4. Study Design and Protocol
2.5. 16S rRNA Sequencing
2.6. Salivary Cortisol
2.7. Bristol Stool Form Scale
2.8. Statistical Analysis
3. Results
3.1. Microbiome Composition
3.2. Salivary Cortisol
3.3. Stool Consistency
3.4. Safety Aspects
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef]
- Slavin, J.L.; Greenberg, N.A. Partially hydrolyzed guar gum: Clinical nutrition uses. Nutrition 2003, 19, 549–552. [Google Scholar] [CrossRef]
- Setayesh, L.; Pourreza, S.; Khosroshahi, M.Z.; Asbaghi, O.; Bagheri, R.; Kelishadi, M.R.; Wong, A.; Clark, C.C.; Larky, D.A.; Suzuki, K.; et al. The effects of guar gum supplementation on lipid profile in adults: A GRADE-assessed systematic review, meta-regression and dose–response meta-analysis of randomised placebo-controlled trials. Br. J. Nutr. 2022, 129, 1703–1713. [Google Scholar] [CrossRef]
- Alaeian, M.J.; Pourreza, S.; Yousefi, M.; Golalipour, E.; Setayesh, L.; Khosroshahi, M.Z.; Bagheri, R.; Ashtary-Larky, D.; Wong, A.; Zamani, M.; et al. The effects of guar gum supplementation on glycemic control, body mass and blood pressure in adults: A GRADE-assessed systematic review and meta-analysis of randomized clinical trials. Diabetes Res. Clin. Pract. 2023, 199, 110604. [Google Scholar] [CrossRef]
- Giannini, E.G.; Mansi, C.; Dulbecco, P.; Savarino, V. Role of partially hydrolyzed guar gum in the treatment of irritable bowel syndrome. Nutrition 2006, 22, 334–342. [Google Scholar] [CrossRef]
- Cuomo, R.; Russo, L.; Sarnelli, G.; Savino, I.; Vozzella, L.; Zito, F.; Andreozzi, P. Partially hydrolyzed guar gum in the treatment of irritable bowel syndrome with constipation: Effects of gender, age, and body mass index. Saudi J. Gastroenterol. 2015, 21, 104. [Google Scholar] [CrossRef]
- Niv, E.; Halak, A.; Tiommny, E.; Yanai, H.; Strul, H.; Naftali, T.; Vaisman, N. Randomized clinical study: Partially hydrolyzed guar gum (PHGG) versus placebo in the treatment of patients with irritable bowel syndrome. Nutr. Metab. 2016, 13, 10. [Google Scholar] [CrossRef]
- Parisi, G.C.; Zilli, M.; Miani, M.P.; Carrara, M.; Bottona, E.; Verdianelli, G.; Battaglia, G.; Desideri, S.; Faedo, A.; Marzolino, C.; et al. High-Fiber Diet Supplementation in Patients with Irritable Bowel Syndrome (IBS): A Multicenter, Randomized, Open Trial Comparison Between Wheat Bran Diet and Partially Hydrolyzed Guar Gum (PHGG). Dig. Dis. Sci. 2002, 47, 1697–1704. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Koido, M.; Kawaguchi, M.; Timm, D.; Ozeki, M.; Yamada, M.; Mitsuya, T.; Okubo, T. Lifestyle related changes with partially hydrolyzed guar gum dietary fiber in healthy athlete individuals—A randomized, double-blind, crossover, placebo-controlled gut microbiome clinical study. J. Funct. Foods 2020, 72, 104067. [Google Scholar] [CrossRef]
- Ohashi, Y.; Sumitani, K.; Tokunaga, M.; Ishihara, N.; Okubo, T.; Fujisawa, T. Consumption of partially hydrolysed guar gum stimulates Bifidobacteria and butyrate-producing bacteria in the human large intestine. Benef. Microbes 2015, 6, 451–455. [Google Scholar] [CrossRef]
- Okubo, T.; Ishihara, N.; Takahashi, H.; Fujisawa, T.; Kim, M.; Yamamoto, T.; Mitsuoka, T. Effects of Partially Hydrolyzed Guar Gum Intake on Human Intestinal Microflora and Its Metabolism. Biosci. Biotechnol. Biochem. 1994, 58, 1364–1369. [Google Scholar] [CrossRef]
- Yasukawa, Z.; Inoue, R.; Ozeki, M.; Okubo, T.; Takagi, T.; Honda, A.; Naito, Y. Effect of Repeated Consumption of Partially Hydrolyzed Guar Gum on Fecal Characteristics and Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Clinical Trial. Nutrients 2019, 11, 2170. [Google Scholar] [CrossRef]
- Pylkas, A.M.; Juneja, L.R.; Slavin, J.L. Comparison of Different Fibers for In Vitro Production of Short Chain Fatty Acids by Intestinal Microflora. J. Med. Food 2005, 8, 113–116. [Google Scholar] [CrossRef]
- Inoue, R.; Sakaue, Y.; Kawada, Y.; Tamaki, R.; Yasukawa, Z.; Ozeki, M.; Ueba, S.; Sawai, C.; Nonomura, K.; Tsukahara, T.; et al. Dietary supplementation with partially hydrolyzed guar gum helps improve constipation and gut dysbiosis symptoms and behavioral irritability in children with autism spectrum disorder. J. Clin. Biochem. Nutr. 2019, 64, 217–223. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Sugita, M.; Fukuzawa, Y.; Okubo, T. Impact of partially hydrolyzed guar gum (PHGG) on constipation prevention: A systematic review and meta-analysis. J. Funct. Foods 2017, 33, 52–66. [Google Scholar] [CrossRef]
- Polymeros, D.; Beintaris, I.; Gaglia, A.; Karamanolis, G.; Papanikolaou, I.S.; Dimitriadis, G.; Triantafyllou, K. Partially Hydrolyzed Guar Gum Accelerates Colonic Transit Time and Improves Symptoms in Adults with Chronic Constipation. Dig. Dis. Sci. 2014, 59, 2207–2214. [Google Scholar] [CrossRef]
- Ustundag, G.; Kuloglu, Z.; Kirbas, N.; Kansu, A. Can partially hydrolyzed guar gum be an alternative to lactulose in treatment of childhood constipation? Turk. J. Gastroenterol. 2010, 21, 360–364. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis RHJr Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Morishima, S.; Kapoor, M.P.; Inoue, R.; Tsukahara, T.; Naito, Y.; Ozeki, M. Partially hydrolyzed guar gum is associated with improvement in gut health, sleep, and motivation among healthy subjects. J. Clin. Biochem. Nutr. 2023, 72, 189–197. [Google Scholar] [CrossRef]
- Williams, L.; Slavin, J.L. Dietary Fiber and Other Alternative Therapies and Irritable Bowel Syndrome. Top. Clin. Nutr. 2009, 24, 262. [Google Scholar] [CrossRef]
- Kwa, W.T.; Sundarajoo, S.; Toh, K.Y.; Lee, J. Application of emerging technologies for gut microbiome research. Singap. Med. J. 2023, 64, 45–52. [Google Scholar]
- Swanson, K.S.; De Vos, W.M.; Martens, E.C.; Gilbert, J.A.; Menon, R.S.; Soto-Vaca, A.; Hautvast, J.; Meyer, P.D.; Borewicz, K.; Vaughan, E.E.; et al. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: A review. Benef. Microbes 2020, 11, 101–129. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Taylor, A.M.; Holscher, H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 2020, 23, 237–250. [Google Scholar] [CrossRef]
- Haarhuis, J.E.; Kardinaal, A.; Kortman, G.M. Probiotics, prebiotics and postbiotics for better sleep quality: A narrative review. Benef. Microbes 2022, 13, 169–182. [Google Scholar] [CrossRef]
- Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 2015, 232, 1793–1801. [Google Scholar] [CrossRef]
- Mysonhimer, A.R.; Cannavale, C.N.; Bailey, M.A.; Khan, N.A.; Holscher, H.D. Prebiotic Consumption Alters Microbiota but Not Biological Markers of Stress and Inflammation or Mental Health Symptoms in Healthy Adults: A Randomized, Controlled, Crossover Trial. J. Nutr. 2023, 153, 1283–1296. [Google Scholar] [CrossRef]
- Shokouhi, N.; Mohammadi, S.; Ghanbari, Z.; Montazeri, A. Development of a new version of the Bristol Stool Form Scale: Translation, content validity, face validity, and reliability of the Persian version. BMJ Open Gastroenterol. 2022, 9, e001017. [Google Scholar] [CrossRef]
- Peng, Z.; Yi, J.; Liu, X. A Low-FODMAP Diet Provides Benefits for Functional Gastrointestinal Symptoms but Not for Improving Stool Consistency and Mucosal Inflammation in IBD: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2072. [Google Scholar] [CrossRef]
- Walker, A.W.; Hoyles, L. Human Microbiome Myths and Misconceptions. Nat. Microbiol. 2023, 8, 1392–1396. [Google Scholar] [CrossRef]
- Carlson, J.L.; Erickson, J.M.; Lloyd, B.B.; Slavin, J.L. Health Effects and Sources of Prebiotic Dietary fiber. Curr. Dev. Nutr. 2018, 2, nzy005. [Google Scholar] [CrossRef] [PubMed]
- Reider, S.J.; Moosmang, S.; Tragust, J.; Trgovec-Greif, L.; Tragust, S.; Perschy, L.; Przysiecki, N.; Sturm, S.; Tilg, H.; Stuppner, H.; et al. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota—Results from the PAGODA Trial. Nutrients 2020, 12, 1257. [Google Scholar] [CrossRef] [PubMed]
- Geerlings, S.Y.; Kostopoulos, I.; de Vos, W.M.; Belzer, C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms 2018, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Belzer, C.; de Vos, W.M. Microbes inside—From diversity to function: The case of Akkermansia. ISME J. 2012, 6, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the gut microbiota of adults with obesity: A systematic review. Eur. J. Clin. Nutr. 2020, 74, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef] [PubMed]
- Rajilić-Stojanović, M.; Shanahan, F.; Guarner, F.; de Vos, W.M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel. Dis. 2013, 19, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Png, C.W.; Lindén, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.A.; Florin, T.H. Mucolytic Bacteria With Increased Prevalence in IBD Mucosa AugmentIn VitroUtilization of Mucin by Other Bacteria. Off. J. Am. Coll. Gastroenterol. ACG 2010, 105, 2420. [Google Scholar] [CrossRef] [PubMed]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- Crost, E.H.; Tailford, L.E.; Le Gall, G.; Fons, M.; Henrissat, B.; Juge, N. Utilisation of Mucin Glycans by the Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent. PLoS ONE 2013, 8, e76341. [Google Scholar] [CrossRef]
- Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Ter Horst, R.; Jansen, T.; Jacobs, L.; Bonder, M.J.; et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016, 167, 1897. [Google Scholar] [CrossRef]
- Kaakoush, N.O. Sutterella Species, IgA-degrading Bacteria in Ulcerative Colitis. Trends Microbiol. 2020, 28, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Kaakoush, N.O. Insights into the Role of Erysipelotrichaceae in the Human Host. Front. Cell Infect. Microbiol. 2015, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef] [PubMed]
- Laursen, M.F.; Laursen, R.P.; Larnkjær, A.; Mølgaard, C.; Michaelsen, K.F.; Frøkiær, H.; Bahl, M.I.; Licht, T.R. Faecalibacterium Gut Colonization Is Accelerated by Presence of Older Siblings. mSphere 2017, 2, e00448-17. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.I.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Moayyedi, P.; Quigley, E.M.M.; Lacy, B.E.; Lembo, A.J.; Saito, Y.A.; Schiller, L.R.; Soffer, E.; Spiegel, B.M.R.; Ford, A.C. The Effect of Fiber Supplementation on Irritable Bowel Syndrome: A Systematic Review and Meta-analysis. Off. J. Am. Coll. Gastroenterol. ACG 2014, 109, 1367. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, N.; Morden, A.; Bischof, D.; King, E.A.; Kosztowski, M.; Wick, E.C.; Stein, E.M. The Role of Fiber Supplementation in the Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-analysis. Eur. J. Gastroenterol. Hepatol. 2015, 27, 1002. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Gibson, P.R.; Muir, J.G.; Yao, C.K. Dietary fibres and IBS: Translating Functional Characteristics to cCinical Value in the Era of Personalised Medicine. Gut 2021, 70, 2383–2394. [Google Scholar] [CrossRef]
- Jackson, P.P.J.; Wifeyesekera, A.; Williams, C.M.; Theis, S.; van Harsselaar, J.; Rastall, R.A. Inulin-type Fructans and 2-Fucosyllactose Alter Both Microbial Composition and Appear To Alleviate Stress-induced Mood State in a Working Population Compared to Placebo (maltodextrin): The EFFICAD Trial, A Randomized, Controlled Trial. Am. J. Clin. Nutr. 2023, 118, 938–955. [Google Scholar] [CrossRef]
Mean Change (Day 0–Day 14) | p-Value | |||||
---|---|---|---|---|---|---|
Treatment 1 (6 g PHGG) | Treatment 2 (3 g PHGG) | Treatment 3 (Control) | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | |
Phylum Relative | ||||||
Verrucomicrobia | 0.0089 ± 0.0324 | 0.0015 ± 0.0258 | −0.0082 ± 0.0318 | 0.0102 | ||
Class Relative | ||||||
Verrucomicrobiae | 0.0092 ± 0.0328 | 0.0011 ± 0.0256 | −0.0082 ± 0.0322 | 0.0092 | ||
Order Relative | ||||||
Verrucomicrobiales | 0.0094 ± 0.0335 | 0.0012 ± 0.0262 | −0.0083 ± 0.0328 | 0.0093 | ||
Family Relative | ||||||
Verrucomicrobiaceae | 0.0099 ± 0.0357 | 0.0012 ± 0.0278 | −0.0087 ± 0.0347 | 0.0108 | ||
Genus Relative | ||||||
Faecalibacterium | −0.0166 ± 0.0529 | −0.0371 ± 0.0458 | −0.0014 ± 0.0541 | 0.0054 | ||
Oscillospira | −0.0102 ± 0.0345 | 0.0059 ± 0.0247 | −0.0128 ± 0.0340 | 0.0374 | 0.0156 | |
Akkermansia | 0.0094 ± 0.0342 | 0.0015 ± 0.0275 | −0.0083 ± 0.0333 | 0.0116 |
Mean Change (Day 0–Day 14) | p-Value | |||||
---|---|---|---|---|---|---|
Treatment 1 (6 g PHGG) | Treatment 2 (3 g PHGG) | Treatment 3 (Control) | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | |
Class Counts | ||||||
Erysipelotrichi | −92.5 ± 429.2 | 9.8 ± 134.0 | 143.3 ± 463.1 | 0.0092 | ||
Order Counts | ||||||
Erysipelotrichales | −92.5 ± 429.2 | 9.8 ± 134.0 | 143.3 ± 463.1 | 0.0092 | ||
Genus Counts | ||||||
Faecalibacterium | −799.2 ± 1831.6 | −1586.5 ± 2504.4 | −37.1 ± 2864.3 | 0.0090 |
Type 1–2 (Constipation) | Type 3–4 (Normal) | Type 5–7 (Loose Stool) | |
---|---|---|---|
Placebo | 21.2% | 39.4% | 39.4% |
3 g PHGG | 21.2% | 36.4% | 42.4% |
6 g PHGG | 25% | 50% | 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edelman, M.; Wang, Q.; Ahnen, R.; Slavin, J. The Dose Response Effects of Partially Hydrolyzed Guar Gum on Gut Microbiome of Healthy Adults. Appl. Microbiol. 2024, 4, 720-730. https://doi.org/10.3390/applmicrobiol4020049
Edelman M, Wang Q, Ahnen R, Slavin J. The Dose Response Effects of Partially Hydrolyzed Guar Gum on Gut Microbiome of Healthy Adults. Applied Microbiology. 2024; 4(2):720-730. https://doi.org/10.3390/applmicrobiol4020049
Chicago/Turabian StyleEdelman, Megan, Qi Wang, Rylee Ahnen, and Joanne Slavin. 2024. "The Dose Response Effects of Partially Hydrolyzed Guar Gum on Gut Microbiome of Healthy Adults" Applied Microbiology 4, no. 2: 720-730. https://doi.org/10.3390/applmicrobiol4020049
APA StyleEdelman, M., Wang, Q., Ahnen, R., & Slavin, J. (2024). The Dose Response Effects of Partially Hydrolyzed Guar Gum on Gut Microbiome of Healthy Adults. Applied Microbiology, 4(2), 720-730. https://doi.org/10.3390/applmicrobiol4020049