Antibiotic-Resistant Bacteria across a Wastewater Treatment Plant
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling and Processing
2.2. Antibiotic Susceptibility Assays
2.3. Phylogenetic Determination with 16S rRNA Sequencing
2.4. Detection of Antibiotic Resistance Genes and Class 1 Integrons
3. Results and Discussion
3.1. Isolation Results and Identification
3.2. Antibiotic Susceptibility Testing
3.3. Presence of Mobile Genetic Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina, E.; Pieper, D.H. Tackling threats and future problems of multidrug-resistant bacteria. In How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives; Stadler, M., Dersch, P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–33. [Google Scholar]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Rev. Antimicrob. Resist. 2014, 1–16. [Google Scholar]
- Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- OECD. Embracing a One Health Framework to Fight Antimicrobial Resistance; OECD: Paris, France, 2023. [Google Scholar]
- Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control 2018, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 521–547. [Google Scholar] [CrossRef]
- Bhatia, R. Implementation framework for One Health approach. Indian J. Med. Res. 2019, 149, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Jeggo, M. The One Health Approach-Why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Report of a Joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance, Seoul, Republic of Korea, 13–16 June 2006; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- WHO (World Health Organization). WHO, FAO, and OIE Unite in the Fight against Antimicrobial Resistance; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- WHO (World Health Organization). The Quadripartite Organizations Established the Technical Group on Integrated Surveillance on Antimicrobial Use and Resistance, 26 January 2023; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef]
- Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res. 2019, 162, 320–330. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Parnanen, K.M.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef]
- Milobedzka, A.; Ferreira, C.; Vaz-Moreira, I.; Calderon-Franco, D.; Gorecki, A.; Purkrtova, S.; Jan, B.; Dziewit, L.; Singleton, C.M.; Nielsen, P.H.; et al. Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the One-Health cycle. J. Hazard. Mater. 2022, 424, 127407. [Google Scholar] [CrossRef]
- Diogo, B.S.; Rodrigues, S.; Lage, O.M.; Antunes, S.C. Are the ecotoxicological tools viable to evaluate the effectiveness of wastewater treatment plant effluents? Int. J. Environ. Sci. Technol. 2023, 20, 11943–11962. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Supplement M100; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- EUCAST (European Committee on Antimicrobial Susceptibility Testing). Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 13.0; EUCAST: Basel, Switzerland, 2023. [Google Scholar]
- Lane, D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Almeida, E.; Dias, T.V.; Ferraz, G.; Carvalho, M.F.; Lage, O.M. Culturable bacteria from two Portuguese salterns: Diversity and bioactive potential. Antonie Van Leeuwenhoek 2020, 113, 459–475. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Levesque, C.; Piche, L.; Larose, C.; Roy, P.H. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 1995, 39, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Warsa, U.C.; Nonoyama, M.; Ida, T.; Okamoto, R.; Okubo, T.; Shimauchi, C.; Kuga, A.; Inoue, M. Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by the polymerase chain reaction. J. Antibiot. 1996, 49, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Machado, E.; Canton, R.; Baquero, F.; Galan, J.C.; Rollan, A.; Peixe, L.; Coque, T.M. Integron content of extended-spectrum-beta-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob. Agents Chemother. 2005, 49, 1823–1829. [Google Scholar] [CrossRef]
- Rasheed, J.K.; Jay, C.; Metchock, B.; Berkowitz, F.; Weigel, L.; Crellin, J.; Steward, C.; Hill, B.; Medeiros, A.A.; Tenover, F.C. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob. Agents Chemother. 1997, 41, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Gold, H.S.; Schwaber, M.J.; Venkataraman, L.; Qi, Y.; De Girolami, P.C.; Samore, M.H.; Anderson, G.; Rasheed, J.K.; Tenover, F.C. Variety of beta-lactamases produced by amoxicillin-clavulanate-resistant Escherichia coli isolated in the northeastern United States. Antimicrob. Agents Chemother. 2004, 48, 1520–1525. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, M.; Pimkin, M.; Palagin, I.; Edelstein, I.; Stratchounski, L. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother. 2003, 47, 3724–3732. [Google Scholar] [CrossRef] [PubMed]
- Grehs, B.W.N.; Linton, M.A.O.; Clasen, B.; de Oliveira Silveira, A.; Carissimi, E. Antibiotic resistance in wastewater treatment plants: Understanding the problem and future perspectives. Arch. Microbiol. 2021, 203, 1009–1020. [Google Scholar] [CrossRef]
- Han, Y.; Yang, T.; Xu, G.; Li, L.; Liu, J. Characteristics and interactions of bioaerosol microorganisms from wastewater treatment plants. J. Hazard. Mater. 2020, 391, 122256. [Google Scholar] [CrossRef]
- Zieliński, W.; Korzeniewska, E.; Harnisz, M.; Drzymała, J.; Felis, E.; Bajkacz, S. Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes—An epidemiological threat to workers and environment. Environ. Int. 2021, 156, 106641. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Samonis, G.; Karageorgopoulos, D.E.; Kofteridis, D.P.; Matthaiou, D.K.; Sidiropoulou, V.; Maraki, S.; Falagas, M.E. Citrobacter infections in a general hospital: Characteristics and outcomes. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 61–68. [Google Scholar] [CrossRef]
- Lee, R.; Choi, S.M.; Jo, S.J.; Lee, J.; Cho, S.Y.; Kim, S.H.; Lee, D.G.; Jeong, H.S. Clinical characteristics and antimicrobial susceptibility trends in Citrobacter bacteremia: An 11-year single-center experience. Infect. Chemother. 2019, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shad, A.A.; Shad, W.A. Shigella sonnei: Virulence and antibiotic resistance. Arch. Microbiol. 2021, 203, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Long, S.W.; Linson, S.E.; Ojeda Saavedra, M.; Cantu, C.; Davis, J.J.; Brettin, T.; Olsen, R.J. Whole-genome sequencing of human clinical Klebsiella pneumoniae isolates reveals misidentification and misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. mSphere 2017, 2, e00290-17. [Google Scholar] [CrossRef] [PubMed]
- Long, S.W.; Linson, S.E.; Ojeda Saavedra, M.; Cantu, C.; Davis, J.J.; Brettin, T.; Olsen, R.J. Whole-genome sequencing of a human clinical isolate of the novel species Klebsiella quasivariicola sp. nov. Genome Announc. 2017, 5, e01057-17. [Google Scholar] [CrossRef] [PubMed]
- Long, S.W.; Olsen, R.J.; Eagar, T.N.; Beres, S.B.; Zhao, P.; Davis, J.J.; Brettin, T.; Xia, F.; Musser, J.M. Population genomic analysis of 1777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: Unexpected abundance of clonal group 307. mBio 2017, 8, e00489-17. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jacome, L.E.; Fernandez-Rodriguez, D.; Franco-Cendejas, R.; Camacho-Ortiz, A.; Morfin-Otero, M.D.R.; Rodriguez-Noriega, E.; Ponce-de-Leon, A.; Ortiz-Brizuela, E.; Rojas-Larios, F.; Velazquez-Acosta, M.D.C.; et al. Increment antimicrobial resistance during the COVID-19 pandemic: Results from the Invifar Network. Microb. Drug Resist. 2022, 28, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Cauwerts, K.; Decostere, A.; De Graef, E.M.; Haesebrouck, F.; Pasmans, F. High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathol. 2007, 36, 395–399. [Google Scholar] [CrossRef]
- Ahmadpoor, N.; Ahmadrajabi, R.; Esfahani, S.; Hojabri, Z.; Moshafi, M.H.; Saffari, F. High-level resistance to erythromycin and tetracycline and dissemination of resistance determinants among clinical Enterococci in Iran. Med. Princ. Pract. 2021, 30, 272–276. [Google Scholar] [CrossRef]
- Nawaz, M.; Khan, A.A.; Khan, S.; Sung, K.; Steele, R. Isolation and characterization of tetracycline-resistant Citrobacter spp. from catfish. Food Microbiol. 2008, 25, 85–91. [Google Scholar] [CrossRef]
- Di, H.; Liang, S.; Li, Q.; Shi, L.; Shima, A.; Meng, H.; Yan, H.; Yamasaki, S. Providencia in retail meats from Guangzhou, China and Osaka, Japan: Prevalence, antimicrobial resistance and characterization of classes 1, 2 and 3 integrons. J. Vet. Med. Sci. 2018, 80, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N.; Flonta, M.; Gurler, N.; Cepparulo, M.; Mendes, R.E.; Castanheira, M. Resistance surveillance program report for selected European nations (2011). Diagn. Microbiol. Infect. Dis. 2014, 78, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Pas, M.L.; Vanneste, K.; Bokma, J.; Van Driessche, L.; De Keersmaecker, S.C.J.; Roosens, N.H.; Haesebrouck, F.; Boyen, F.; Pardon, B. Case report: Multidrug resistant Raoultella ornithinolytica in a septicemic calf. Front. Vet. Sci. 2021, 8, 631716. [Google Scholar] [CrossRef] [PubMed]
- Leon-Sampedro, R.; Novais, C.; Peixe, L.; Baquero, F.; Coque, T.M. Diversity and evolution of the Tn5801-tet(M)-like integrative and conjugative elements among Enterococcus, Streptococcus, and Staphylococcus. Antimicrob. Agents Chemother. 2016, 60, 1736–1746. [Google Scholar] [CrossRef] [PubMed]
- Fatoba, D.O.; Amoako, D.G.; Akebe, A.L.K.; Ismail, A.; Essack, S.Y. Genomic analysis of antibiotic-resistant Enterococcus spp. reveals novel enterococci strains and the spread of plasmid-borne tet(M), tet(L) and erm(B) genes from chicken litter to agricultural soil in South Africa. J. Environ. Manag. 2022, 302, 114101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, H.H. Tetracycline resistance associated with commensal bacteria from representative ready-to-consume deli and restaurant foods. J. Food Prot. 2010, 73, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.P.; Pembroke, J.T. Brevundimonas spp: Emerging global opportunistic pathogens. Virulence 2018, 9, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Adelowo, O.O.; Fagade, O.E. The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. Lett. Appl. Microbiol. 2009, 48, 167–172. [Google Scholar] [CrossRef]
- Rehman, A.; Patrick, W.M.; Lamont, I.L. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: New approaches to an old problem. J. Med. Microbiol. 2019, 68, 1–10. [Google Scholar] [CrossRef]
- Skwor, T.; Shinko, J.; Augustyniak, A.; Gee, C.; Andraso, G. Aeromonas hydrophila and Aeromonas veronii predominate among potentially pathogenic ciprofloxacin- and tetracycline-resistant aeromonas isolates from Lake Erie. Appl. Environ. Microbiol. 2014, 80, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Sulayyim, H.J.A.; Ismail, R.; Hamid, A.A.; Ghafar, N.A. Antibiotic resistance during COVID-19: A systematic review. Int. J. Environ. Res. Public. Health 2022, 19, 11931. [Google Scholar] [CrossRef] [PubMed]
- Gaufin, T.; Blumenthal, J.; Ramirez-Sanchez, C.; Mehta, S.; Pride, D.T.; Fierer, J.; Jenks, J.D. Antimicrobial-resistant Shigella spp. in San Diego, California, USA, 2017–2020. Emerg. Infect. Dis. 2022, 28, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Ke, X.; Pan, S.; Cao, Y.; Zhuang, L.; Yu, R.; Qian, H.; Liu, G.; Tong, M. Prevalence and trends of aminoglycoside resistance in Shigella worldwide, 1999–2010. J. Biomed. Res. 2013, 27, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Amani, Z.; Allahyari, S.; Mousavi, S.; Mahmoudi, R.; Bruck, W.M.; Peymani, A. Genetic diversity and antibiotic resistance of Shigella spp. isolates from food products. Food Sci. Nutr. 2021, 9, 6362–6371. [Google Scholar] [CrossRef]
- Abebe, W.; Earsido, A.; Taye, S.; Assefa, M.; Eyasu, A.; Godebo, G. Prevalence and antibiotic susceptibility patterns of Shigella and Salmonella among children aged below five years with Diarrhoea attending Nigist Eleni Mohammed memorial hospital, South Ethiopia. BMC Pediatr. 2018, 18, 241. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, H.; Hu, J.; Yuan, Z.; Shi, W.; Yang, X.; Xu, X.; Meng, J. Antimicrobial resistance of Shigella spp. from humans in Shanghai, China, 2004–2011. Diagn. Microbiol. Infect. Dis. 2014, 78, 282–286. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Cassini, A.; Hogberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Shallal, A.; Zervos, M. Vancomycin-resistant Enterococci: Epidemiology, infection prevention, and control. Infect. Dis. Clin. N. Am. 2021, 35, 953–968. [Google Scholar] [CrossRef]
- Sarria, J.C.; Vidal, A.M.; Kimbrough, R.C., 3rd. Infections caused by Kluyvera species in humans. Clin. Infect. Dis. 2001, 33, E69–E74. [Google Scholar] [CrossRef]
- Zou, H.; Berglund, B.; Wang, S.; Zhou, Z.; Gu, C.; Zhao, L.; Meng, C.; Li, X. Emergence of bla(NDM-1), bla(NDM-5), bla(KPC-2) and bla(IMP-4) carrying plasmids in Raoultella spp. in the environment. Environ. Pollut. 2022, 306, 119437. [Google Scholar] [CrossRef]
- Tindall, B.J.; Sutton, G.; Garrity, G.M. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980). Int. J. Syst. Evol. Microbiol. 2017, 67, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.W.; Shlaes, D.M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J. Antimicrob. Chemother. 1991, 28, 499–504. [Google Scholar] [CrossRef] [PubMed]
- El Amin, N.; Lund, B.; Tjernlund, A.; Lundberg, C.; Jalakas, K.; Wretlind, B. Mechanisms of resistance to imipenem in imipenem-resistant, ampicillin-sensitive Enterococcus faecium. Apmis 2001, 109, 791–796. [Google Scholar] [CrossRef]
- Bornet, C.; Chollet, R.; Mallea, M.; Chevalier, J.; Davin-Regli, A.; Pages, J.M.; Bollet, C. Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 2003, 301, 985–990. [Google Scholar] [CrossRef]
- Lavigne, J.P.; Sotto, A.; Nicolas-Chanoine, M.H.; Bouziges, N.; Pages, J.M.; Davin-Regli, A. An adaptive response of Enterobacter aerogenes to imipenem: Regulation of porin balance in clinical isolates. Int. J. Antimicrob. Agents 2013, 41, 130–136. [Google Scholar] [CrossRef]
- Thaller, M.C.; Borgianni, L.; Di Lallo, G.; Chong, Y.; Lee, K.; Dajcs, J.; Stroman, D.; Rossolini, G.M. Metallo-beta-lactamase production by Pseudomonas otitidis: A species-related trait. Antimicrob. Agents Chemother. 2011, 55, 118–123. [Google Scholar] [CrossRef]
- Tristram, S.G. Novel bla(TEM)-positive ampicillin-susceptible strains of Haemophilus influenzae. J. Infect. Chemother. 2009, 15, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Leclercq, S.O.; Tian, J.; Wang, C.; Yahara, K.; Ai, G.; Liu, S.; Feng, J. A new subclass of intrinsic aminoglycoside nucleotidyltransferases, ANT(3″)-II, is horizontally transferred among Acinetobacter spp. by homologous recombination. PLoS Genet. 2017, 13, e1006602. [Google Scholar] [CrossRef] [PubMed]
- Naas, T.; Poirel, L.; Nordmann, P. Molecular characterisation of In51, a class 1 integron containing a novel aminoglycoside adenylyltransferase gene cassette, aadA6, in Pseudomonas aeruginosa. Biochim. Biophys. Acta 1999, 1489, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Agersø, Y.; Peirano, G.; Aarestrup, F.M. dfrA25, a novel trimethoprim resistance gene from Salmonella Agona isolated from a human urine sample in Brazil. J. Antimicrob. Chemother. 2006, 58, 1044–1047. [Google Scholar] [CrossRef]
Target | Primer Sequence | Amplicon Expected Size (bp) | Annealing Temperature | Program | Reference |
---|---|---|---|---|---|
16S rRNA | 27F—AGA GTT TGA TCM TGG CTC AG | ~1400 | 56 °C | 95 °C—5 min (1×) 95 °C—1 min, 56 °C—1 min, 72 °C—1.5 min, (30×) 72 °C—10 min (1×) | [22] |
1492R—TAC GGY TAC CTT GTT ACG ACT T | |||||
Class 1 integron | Int 5′CS—GGC ATC CAA GCA GCA AG | Variable | 55 °C | 94 °C—5 min (1×) 94 °C—30 s, 55 °C—30 s, 72 °C—6 min, (35×) 72 °C—16 min (1×) | [28] |
Int 3′CS—AAG CAG ACT TGA CCT GA | |||||
Tet(M) | tetMF—GTG GAC AAA GGT ACA ACG AG | 406 | 55 °C | 95 °C—3 min (1×) 95 °C—30 s, 55 °C—30 s, 72 °C—30 s, (35×) 72 °C—10 min (1×) | [29] |
tetMR—CGG TAA AGT TCG TCA CAC AC | |||||
blaSHV | SHV-F—GGG TTA TTC TTA TTT GTC GC | 930 | 56 °C | 94 °C—10 min (1×) 94 °C—30 s, 56 °C—30 s, 72 °C—30 s, (35×) 72 °C—10 min (1×) | [30,31] |
SHV-R—TTA GCG TTG CCA GTG CTC | |||||
blaTEM | TEM-F—ATG AGT ATT CAA CAT TTC CG | 847 | 58 °C | 94 °C—3 min (1×) 94 °C—30 s, 58 °C—30 s, 72 °C—30 s, (35×) 72 °C—10 min (1×) | [32] |
TEM-R—CTG ACA GTT ACC AAT GCT TA | |||||
blaCTX-M | CTX-M-F′—TTT GCG ATG TGC AGT ACC AGT AA | 590 | 51 °C | 94 °C—10 min (1×) 94 °C—30 s, 51 °C—30 s, 72 °C—30 s, (35×) 72 °C—10 min (1×) | [33] |
CTX-M-R′—CGA TAT CGT TGG TGG TGC CAT A |
Phenotype (n.) | |||
---|---|---|---|
Antibiotic | Resistant | Intermediate | Susceptible |
Ampicillin | 9 | 2 | 25 |
Cefotaxime | 0 | 3 | 11 |
Imipenem | 3 | 0 | 19 |
Tetracycline | 13 | 0 | 27 |
Vancomycin | 0 | 6 | 19 |
Gentamicin | 2 | 9 | 6 |
Ciprofloxacin | 5 | 15 | 27 |
Isolate ID | Resistance Phenotype | Intermediate Phenotype | Affiliation | Antibiotic Resistance Genes | Integron Content |
---|---|---|---|---|---|
E73 | AMP; TE; CIP | CTX; CN | Citrobacter sp. | blaTEM * | ANT(3″ )-IIa * |
E79 | AMP | CN; CIP | Kluyvera sp. | blaCTX-M * | |
E82 | TE | VA | Enterococcus sp. | tet(M) * | ANT(3″ )-IIa * |
E84 | TE | Enterococcus sp. | tet(M) | ||
E112 | Brevudimonas sp. | tet(M) * | |||
E113 | AMP; CN; CIP | Shigella sp. | blaTEM * | ||
E126 | Stenotrophomonas sp. | tet(M) * | |||
E127 | IMP | CIP | Pseudomonas sp. | ND | dfrA25 * |
E142 | AMP; TE; CIP | CN | Klebsiella sp. | blaSHV * | |
E145 | CN | Pseudomonas sp. | ND | aadA6 * | |
E148 | AMP; TE | CIP | Raoultella sp. | blaSHV * | dfrA25 * |
E154 | TE | Enterococcus sp. | tet(M) * | ||
E159 | TE; CIP | Enterococcus sp. | blaSHV | dfrA25 * | |
E160 | TE | CIP | Enterococcus sp. | tet(M) * | |
E161 | TE | Enterococcus sp. | tet(M) | ||
E164 | TE | CIP | Enterococcus sp. | tet(M) * | |
E170 | TE | Enterococcus sp. | tet(M) * | ||
E171 | TE | VA | Enterococcus sp. | tet(M) | |
E179 | TE | VA | Enterococcus sp. | tet(M) * | |
E183 | Enterococcus sp. | tet(M) * | |||
E188 | Enterococcus sp. | tet(M) | |||
E195 | Enterococcus sp. | tet(M) * | |||
E208 | TE | Enterococcus sp. | tet(M) * | ||
E209 | Enterococcus sp. | blaSHV * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godinho, O.; Lage, O.M.; Quinteira, S. Antibiotic-Resistant Bacteria across a Wastewater Treatment Plant. Appl. Microbiol. 2024, 4, 364-375. https://doi.org/10.3390/applmicrobiol4010025
Godinho O, Lage OM, Quinteira S. Antibiotic-Resistant Bacteria across a Wastewater Treatment Plant. Applied Microbiology. 2024; 4(1):364-375. https://doi.org/10.3390/applmicrobiol4010025
Chicago/Turabian StyleGodinho, Ofélia, Olga Maria Lage, and Sandra Quinteira. 2024. "Antibiotic-Resistant Bacteria across a Wastewater Treatment Plant" Applied Microbiology 4, no. 1: 364-375. https://doi.org/10.3390/applmicrobiol4010025
APA StyleGodinho, O., Lage, O. M., & Quinteira, S. (2024). Antibiotic-Resistant Bacteria across a Wastewater Treatment Plant. Applied Microbiology, 4(1), 364-375. https://doi.org/10.3390/applmicrobiol4010025