The Impact of In-Water vs. In-Feed Chlortetracycline and Tiamulin Administration in Piglets on the Fecal Prevalence and Antimicrobial Resistance of Salmonella
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Fecal Sample Collection
2.3. Isolation of Salmonella
2.4. PCR Identification of Salmonella enterica
2.5. Antimicrobial Susceptibility Testing
2.6. PCR Detection of Tetracycline Resistance Genes
2.7. Whole Genome Sequencing and Bioinformatics
2.8. GenBank Accession Numbers
2.9. Statistical Analysis
3. Results
3.1. Fecal Prevalence of Salmonella
3.2. Prevalence of Tetracycline Resistance Genes
3.3. Antimicrobial Susceptibility Phenotypes
3.4. Whole Genome Sequence Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Urgent Health Challenges for the Next Decade. 2020. Available online: https://www.who.int/news-room/photo-story/photo-story-detail/urgent-health-challenges-for-the-next-decade (accessed on 23 January 2024).
- CDC. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019; p. 114. [Google Scholar]
- Aarestrup, F.M. The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Phil. Trans. R. Soc. B 2015, 370, 20140085. [Google Scholar] [CrossRef]
- Davies, P.R.; Singer, R.S. Antimicrobial use in wean to market pigs in the United States assessed via voluntary sharing of proprietary data. Zoonoses Public Health 2020, 67, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Vet. Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef] [PubMed]
- Bronzwaer, S.L.A.M.; Cars, O.; Buchholz, U.; Mölstad, S.; Goettsch, W.; Veldhuijzen, I.K.; Kool, J.L.; Sprenger, M.J.W. The Relationship between Antimicrobial Use and Antimicrobial Resistance in Europe. Emerg. Infect. Dis. 2002, 8, 278. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.B.; Chénier, M.R. Impact of subtherapeutic administration of tylosin and chlortetracycline on antimicrobial resistance in farrow-to-finish swine. FEMS Microbiol. Ecol. 2013, 85, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Apley, M.D.; Bush, E.J.; Morrison, R.B.; Singer, R.S.; Snelson, H. Use estimates of in-feed antimicrobials in swine production in the United States. Foodborne Pathog. Dis. 2012, 9, 272–279. [Google Scholar] [CrossRef] [PubMed]
- NAHMS Swine Study. Antimicrobial Use and Stewardship on U.S. Swine Operations. 2017. Available online: https://www.aphis.usda.gov/animal_health/nahms/downloads/amu-feedlots.pdf (accessed on 15 November 2023).
- Phillips, I.; Casewell, M.; Cox, T.; De Groot, B.; Friss, C.; Jones, R.; Nightingale, C.; Preston, R.; Waddell, J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 2004, 53, 28–52. [Google Scholar] [CrossRef]
- CDC. Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 19 November 2023).
- CDC. 2021. Available online: https://www.cdc.gov/salmonella/index.html (accessed on 24 January 2024).
- USDA ERS. Available online: https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses/ (accessed on 19 November 2023).
- Shawn, M.D.B. Salmonella in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies. Annu. Rev. Anim. Biosci. 2022, 10, 373–393. [Google Scholar] [CrossRef]
- Bernad-Roche, M.; Casanova-Higes, A.; Marín-Alcalá, C.M.; Cebollada-Solanas, A.; Mainar-Jaime, R.C. Salmonella Infection in Nursery Piglets and Its Role in the Spread of Salmonellosis to Further Production Periods. Pathogens 2021, 10, 123. [Google Scholar] [CrossRef]
- Sjolund-Karlsson, M.; Howie, R.L.; Blickenstaff, K.; Boerlin, P.; Ball, T.; Chalmers, G.; Duval, B.; Haro, J.; Rickert, R.; Zhao, S.; et al. Occurrence of β-Lactamase Genes Among Non-Typhi Salmonella enterica Isolated from Humans, Food Animals, and Retail Meats in the United States and Canada. Microb. Drug Resistance 2013, 19, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Burow, E.; Simoneit, C.; Tenhagen, B.A.; Käsbohrer, A. Oral antimicrobials increase antimicrobial resistance in porcine E. coli—A systematic review. Prev. Vet. Med. 2014, 113, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, Y.; Zhou, Y.; Buckley, T.; Wang, H.H. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob. Agents Chemother. 2013, 57, 3659–3666. [Google Scholar] [CrossRef]
- Rafii, F.; Sutherland, J.B.; Cerniglia, C.E. Effects of treatment with antimicrobial agents on the human colonic microflora. Ther. Clin. Risk Manag. 2008, 4, 1343–1357. [Google Scholar] [CrossRef]
- Bai, J.; Trinetta, V.; Shi, X.; Noll, L.W.; Magossi, G.; Zheng, W.; Porter, E.P.; Cernicchiaro, N.; Renter, D.G.; Nagaraja, T.G. A multiplex real-time PCR assay, based on invA and pagC genes, for the detection and quantification of Salmonella enterica from cattle lymph nodes. J. Microbiol. Methods 2018, 148, 110–116. [Google Scholar] [CrossRef]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010, 141, 1–4. [Google Scholar] [CrossRef]
- Miranda, C.D.; Kehrenberg, C.; Ulep, C.; Schwarz, S.; Roberts, M.C. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob. Agents Chemother. 2003, 47, 883–888. [Google Scholar] [CrossRef]
- Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. In Proceedings of the 9th Annual Conference on Genomics of Energy & Environment Meeting, Walnut Creek, CA, USA, 17–20 March 2014; LBNL-7065E. Available online: https://escholarship.org/uc/item/1h3515gn (accessed on 21 January 2024).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Alessandra, C.; Ea, Z.; Aurora, G.F.; Mette, V.L.; Ole, L.; Laura, V.; Frank, M.A.; Henrik, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 7. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Hirji, K.F.; Tan, S.J.; Elashoff, R.M. A quasi-exact test for comparing two binomial proportions. Stat. Med. 1991, 10, 1137–1153. [Google Scholar] [CrossRef] [PubMed]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends 501 in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- FDA. 2019 Summary Report On Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Center for Veterinary Medicine-FDA. 2019. Available online: https://www.fda.gov/media/144427/download (accessed on 15 November 2023).
- Neuvonen, P.J. Interactions with the absorption of tetracyclines. Drugs 1976, 11, 45–54. [Google Scholar] [CrossRef]
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef]
- Nielsen, P.; Gyrd-Hansen, N. Bioavailability of enrofloxacin after oral administration to fed and fasted pigs. Pharmacol. Toxicol. 1997, 80, 246–250. [Google Scholar] [CrossRef]
- Peeters, L.E.J.; Daeseleire, E.; Devreese, M.; Rasschaert, G.; Smet, A.; Dewulf, J.; Heyndrickx, M.; Imberechts, H.; Haesebrouck, F.; Butaye, P.; et al. Residues of chlortetracycline, doxycycline and sulfadiazine-trimethoprim in intestinal content and feces of pigs due to cross-contamination of feed. BMC Vet. Res. 2016, 12, 1–9. [Google Scholar] [CrossRef]
- Riond, J.L.; Schreiber, F.; Wanner, M. Influence of tiamulin concentration in feed on its bioavailability inpiglets. Vet. Res. 1993, 24, 494–502. [Google Scholar]
- Davies, P.R.; Bovee, F.G.; Funk, J.A.; Morrow, W.E.; Jones, F.T.; Deen, J. Isolation of Salmonella serotypes from feces of pigs raised in a multiple-site production system. J. Am. Vet. Med. Assoc. 1998, 212, 1925–1929. [Google Scholar] [CrossRef]
- Rodríguez-Buenfil, J.C.; Alvarez-Fleites, M.; Segura-Correa, J.C. Incidence of salmonellosis and identification of serogroups and serotypes in a pig commercial farm in Yucatan. Rev. Latinoam. Microbiol. 2006, 48, 10–13. [Google Scholar]
- Dorr, P.M.; Tadesse, D.A.; Zewde, B.M.; Fry, P.; Thakur, S.; Gebreyes, W.A. Longitudinal study of Salmonella dispersion and the role of environmental contamination in commercial swine production systems. Appl. Environ. Microbiol. 2009, 75, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, W.; Rajić, A.; Waldner, C.; McFall, M.; Chow, E.; Muckle, A.; Rosengren, L. Distribution of Salmonella serovars in breeding, nursery, and grow-to-finish pigs, and risk factors for shedding in ten farrow-to-finish swine farms in Alberta and Saskatchewan. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2010, 74, 81–90. [Google Scholar]
- Arguello, H.; Alvarez-Ordoñez, A.; Carvajal, A.; Rubio, P.; Prieto, M. Role of slaughtering in Salmonella spreading and control in pork production. J. Food Prot. 2013, 76, 899–911. [Google Scholar] [CrossRef] [PubMed]
- García-Feliz, C.; Ana, C.; Jesús Ángel, C.; Pedro, R. Herd-level risk factors for faecal shedding of Salmonella enterica in Spanish fattening pigs. Prev. Vet. Med. 2009, 91, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Gargano, V.; Sciortino, S.; Gambino, D.; Costa, A.; Agozzino, V.; Reale, S.; Alduina, R.; Vicari, D. Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Antibiotics 2021, 10, 809. [Google Scholar] [CrossRef]
- Mendez, B.; Tachibana, C.; Levy, S.B. Heterogeneity of tetracycline resistance determinants. Plasmid 1980, 3, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Pavelquesi, S.L.S.; de Oliveira Ferreira, A.C.A.; Rodrigues, A.R.M.; de Souza Silva, C.M.; Orsi, D.C.; da Silva, I.C.R. Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Antibiotics 2021, 10, 1314. [Google Scholar] [CrossRef]
- Wang, X.; Biswas, S.; Paudyal, N.; Pan, H.; Li, X.; Fang, W.; Yue, M. Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered From the Food Chain Through National Antimicrobial Resistance Monitoring System Between 1996 and 2016. Front. Microbiol. 2019, 10, 985. [Google Scholar] [CrossRef]
- Delsol, A.A.; Anjum, M.; Woodward, M.J.; Sunderland, J.; Roe, J.M. The effect of chlortetracycline treatment and its subsequent withdrawal on multi-resistant Salmonella enterica serovar Typhimurium DT104 and commensal Escherichia coli in the pig. J. Appl. Microbiol. 2003, 95, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Ebner, P.D.; Mathew, A.G. Effects of antibiotic regimens on the fecal shedding patterns of pigs infected with Salmonella Typhimurium. J. Food Prot. 2000, 63, 709–714. [Google Scholar] [CrossRef]
- Gebreyes, W.A.; Thakur, S.; Morrow, W.E.M. Comparison of prevalence, antimicrobial resistance, and occurrence of multidrug-resistant Salmonella in antimicrobial-free and conventional pig production. J. Food Prot. 2006, 69, 743–748. [Google Scholar] [CrossRef]
- Bakkeren, E.; Huisman, J.S.; Fattinger, S.A.; Hausmann, A.; Furter, M.; Egli, A.; Slack, E.; Sellin, M.E.; Bonhoeffer, S.; Regoes, R.R.; et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature 2019, 573, 276–280. [Google Scholar] [CrossRef]
- Campioni, F.; Zoldan, M.M.; Falcão, J.P. Characterization of Salmonella Enteritidis strains isolated from poultry and farm environments in Brazil. Epidemiol. Infect. 2014, 142, 1403–1410. [Google Scholar] [CrossRef]
- Hoelzer, K.; Switt, A.I.M.; Wiedmann, M. Animal contact as a source of human non-typhoidal salmonellosis. Vet. Res. 2011, 42, 34. [Google Scholar] [CrossRef]
- Berbari, E.F.; Kanj, S.S.; Kowalski, T.J.; Darouiche, R.O.; Widmer, A.F.; Schmitt, S.K.; Hendershot, E.F.; Holtom, P.D.; Huddleston, P.M.; Petermann, G.W.; et al. 2015 Infectious Diseases Society of America (IDSA) Clinical Practice Guidelines for the Diagnosis and Treatment of Native Vertebral Osteomyelitis in Adults. Clin. Infect. Dis. 2015, 61, e26–e46. [Google Scholar] [CrossRef]
- Köser, C.U.; Ellington, M.J.; Peacock, S.J. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014, 30, 401–407. [Google Scholar] [CrossRef]
- Baloda, S.B.; Christensen, L.; Trajcevska, S. Persistence of a Salmonella enterica serovar typhimurium DT12 clone in a piggery and in agricultural soil amended with Salmonella-contaminated slurry. Appl. Environ. Microbiol. 2001, 67, 2859–2862. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.L.; Lynne, A.M. Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. J. Anim. Sci. 2008, 86, E173–E187. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Agent | Concentration, μg/mL | Breakpoint, μg/mL 1 | WHO Classification 2 |
---|---|---|---|
Amoxicillin/Clavulanic Acid | 1/0.5–32/16 | ≥16/8 | Critically important |
Ampicillin | 1–32 | ≥16 | Critically important |
Azithromycin 3 | 0.12–16 | N/A | Critically important |
Cefoxitin | 0.5–32 | ≥16 | Highly important |
Ceftiofur | 0.12–8 | ≥4 | Critically important |
Ceftriaxone | 0.25–64 | ≥2 | Critically important |
Chloramphenicol | 2–32 | ≥16 | Highly important |
Ciprofloxacin | 0.015–4 | ≥0.12 | Critically important |
Gentamicin | 0.25–16 | ≥8 | Critically important |
Nalidixic Acid | 0.5–32 | ≥32 | Critically important |
Streptomycin 4 | 2–64 | ≥64 | Critically important |
Sulfisoxazole | 16–256 | ≥256 | Highly important |
Tetracycline | 4–32 | ≥8 | Highly important |
Tiamulin 5 | 0.5–32 | ≥32 | Important |
Trimethoprim/Sulfamethoxazole | 0.12/2.38–4/76 | ≥4/76 | Highly important |
Target Gene | Primer Sequences (5′ to 3′) | Amplicon Size (bp) | Source |
---|---|---|---|
tet(A) | TET A1: CGA GCC ATT CGC GAG AGC | 2027 | [22] |
TET A2: CGA AGC AAG CAG GAC CAT G | |||
tet(B) | TET BF: CAG TGC TGT TGT TGT CAT TAA | 576 | [22] |
TET BR: GCT TGG AAT ACT GAG TGT AA | |||
tet(C) | TET C: TTG CAT GCA CCA TTC CTT GCG | 521 | [22] |
TET CR: TGG TCG TCA TCT ACC TGC C | |||
tet(D) | TET D FW2: GGA TAT CTC ACC GCA TCT GC | 436 | [22] |
TET D(RV1): CAT CCA TCC GGA AGT GAT AGC | |||
tet(E) | TET EF: TCC ATA CGC GAG ATG ATC TCC | 442 | [22] |
TET ER: CGA TTA CAG CTG TCA GGT GGG |
Treatment Group | Treatment Phases | ||||||
---|---|---|---|---|---|---|---|
Pre-Treatment | Treatment | Post-Treatment | Total (%) | ||||
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | ||
Control | 1 | 1 | 3 | 1 | 0 | 0 | 6 (2.5) |
In-feed CTC | 1 | 2 | 2 | 0 | 0 | 0 | 5 (2.1) |
In-water CTC | 0 | 3 | 4 | 1 | 0 | 1 | 9 (3.8) |
In-feed Tiamulin | 0 | 3 | 1 | 0 | 0 | 0 | 4 (1.7) |
In-water Tiamulin | 0 | 3 | 5 | 2 | 0 | 0 | 10(4.2) |
In-Feed CTC + Tiamulin | 0 | 3 | 3 | 2 | 0 | 1 | 9 (3.8) |
Weekly Total (%) | 2 (0.8) | 15 (6.3) | 18 (7.5) | 6 (2.5) | 0 | 2 (0.8) | |
Total (%) | 17 (3.5) | 24 (5.0) | 2 (0.42) | 43 (3%) |
Antimicrobials | Resistant Breakpoint | % Resistant | 0.015 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amoxicillin/Clavulanic Acid | ≥16/8 | 20.9 | 2 | 32 | 2 | 7 | |||||||||||
Ampicillin | ≥16 | 100 | 43 | ||||||||||||||
Azithromycin | ≥32 | 0 | 31 | 3 | 9 | ||||||||||||
Cefoxitin | ≥16 | 0 | 30 | 11 | 2 | ||||||||||||
Ceftiofur | ≥4 | 7 | 3 | 1 | 34 | 2 | 1 | 2 | |||||||||
Ceftriaxone | ≥2 | 7 | 40 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | |||||||
Chloramphenicol | ≥16 | 2.3 | 7 | 35 | 1 | ||||||||||||
Ciprofloxacin | ≥0.12 | 95.4 | 1 | 1 | 0 | 0 | 21 | 20 | |||||||||
Gentamicin | ≥8 | 20.9 | 27 | 3 | 2 | 2 | 2 | 7 | |||||||||
Nalidixic Acid | ≥32 | 74.4 | 1 | 2 | 8 | 32 | |||||||||||
Streptomycin | ≥32 | 100 | 43 | ||||||||||||||
Sulfisoxazole | ≥256 | 100 | 43 | ||||||||||||||
Tetracycline | ≥8 | 100 | 43 | ||||||||||||||
Tiamulin | ≥32 | 100 | 43 | ||||||||||||||
Trimethoprim/sulphamethoxazole | ≥4/76 | 4.7 | 34 | 3 | 1 | 2 | 1 | 2 |
Number of Resistant Strains | ||||
---|---|---|---|---|
Antimicrobial | Phenotype +/ Genotype + | Phenotype +/ Genotype − | Phenotype −/ Genotype + | Phenotype −/ Genotype − |
Amoxicillin/Clavulanic Acid | 9 (20.9) | 34 (79.1) | ||
Ampicillin | 43 (100) | |||
Azithromycin | 43 (100) | |||
Cefoxitin | 43 (100) | |||
Ceftiofur | 3 (7) | 40 (93) | ||
Ceftriaxone | 3 (7) | 40 (93) | ||
Chloramphenicol | 1 (2.3) | 42 (97.7) | ||
Ciprofloxacin | 41 (95.3) | 2 (4.7) | ||
Gentamicin | 9 (20.9) | 34 (79.1) | ||
Nalidixic Acid | 32 (74.4) | 11 (25.6) | ||
Streptomycin | 43 (100) | |||
Sulfisoxazole | 43 (100) | |||
Tetracycline | 43 (100) | |||
Tiamulin | 43 (100) | |||
Trimethoprim/sulphamethoxazole | 2 (4.7) | 41 (95.3) |
Salmonella Strain | * Phenotypic Resistance Profiles | PCR Detection of Resistance Genes | Resistance Genes Detection by WGS |
---|---|---|---|
120 A_2019-5-Salmonella | amp_axo_cip_fis_gen_nal_str_sxt_tet_tia_xnl | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
157 A_2019-5-Salmonella | amp_fis_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
265 A_2019-5-Salmonella | amp_cip_fis_gen_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
268 A_2019-5-Salmonella | amp_axo_cip_fis_gen_nal_str_sxt_tet_tia_xnl | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
286 A_2019-5-Salmonella | amp_cip_fis_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
288 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
309 A_2019-5-Salmonella | amp_aug_axo_cip_fis_gen_str_tet_tia_xnl | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
315 B_2019-5-Salmonella | amp_cip_fis_gen_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
317 A_2019-5-Salmonella | amp_cip_fis_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
325 A_2019-5-Salmonella | amp_aug_cip_fis_nal_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
329 A_2019-5-Salmonella | amp_cip_fis_gen_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
333 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
337 A_2019-5-Salmonella | amp_aug_cip_fis_nal_str_tet_tia | tetA, tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
350 A_2019-5-Salmonella | amp_cip_fis_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
352 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
356 A_2019-5-Salmonella | amp_cip_fis_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
397 A_2019-5-Salmonella | amp_cip_fis_gen_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
502 A_2019-5-Salmonella | amp_aug_cip_fis_nal_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
503 B_2019-5-Salmonella | amp_chl_fis_gen_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
541 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
565 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
569 A_2019-5-Salmonella | amp_cip_fis_gen_nal_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
602 A_2019-5-Salmonella | amp_aug_cip_fis_nal_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
612 A_2019-5-Salmonella | amp_aug_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
624 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetA, tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
633 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
637 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
642 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetA, tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
643 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
647 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
648 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB, tetD | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
669 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
685 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
693 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
720 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
815 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
867 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
884 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
888 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
900 A_2019-5-Salmonella | amp_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
931 A_2019-5-Salmonella | amp_aug_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
1387 A_2019-5-Salmonella | amp_aug_cip_fis_nal_str_tet_tia | tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
1399 A_2019-5-Salmonella | amp_aug_cip_fis_nal_str_tet_tia | tetA, tetB | aac(6′)-Iaa, strA, strB, blaTEM-1B, qnrB19,sul2, tetB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishengoma, V.L.; Amachawadi, R.G.; Tokach, M.D.; Kang, Q.; Goodband, R.D.; DeRouchey, J.; Woodworth, J.; Nagaraja, T.G. The Impact of In-Water vs. In-Feed Chlortetracycline and Tiamulin Administration in Piglets on the Fecal Prevalence and Antimicrobial Resistance of Salmonella. Appl. Microbiol. 2024, 4, 297-311. https://doi.org/10.3390/applmicrobiol4010020
Ishengoma VL, Amachawadi RG, Tokach MD, Kang Q, Goodband RD, DeRouchey J, Woodworth J, Nagaraja TG. The Impact of In-Water vs. In-Feed Chlortetracycline and Tiamulin Administration in Piglets on the Fecal Prevalence and Antimicrobial Resistance of Salmonella. Applied Microbiology. 2024; 4(1):297-311. https://doi.org/10.3390/applmicrobiol4010020
Chicago/Turabian StyleIshengoma, Victor L., Raghavendra G. Amachawadi, Mike D. Tokach, Qing Kang, Robert D. Goodband, Joel DeRouchey, Jason Woodworth, and Tiruvoor G. Nagaraja. 2024. "The Impact of In-Water vs. In-Feed Chlortetracycline and Tiamulin Administration in Piglets on the Fecal Prevalence and Antimicrobial Resistance of Salmonella" Applied Microbiology 4, no. 1: 297-311. https://doi.org/10.3390/applmicrobiol4010020
APA StyleIshengoma, V. L., Amachawadi, R. G., Tokach, M. D., Kang, Q., Goodband, R. D., DeRouchey, J., Woodworth, J., & Nagaraja, T. G. (2024). The Impact of In-Water vs. In-Feed Chlortetracycline and Tiamulin Administration in Piglets on the Fecal Prevalence and Antimicrobial Resistance of Salmonella. Applied Microbiology, 4(1), 297-311. https://doi.org/10.3390/applmicrobiol4010020