Bacillus coagulant HYI (BC-HYI) Alleviates LPS-Elicited Oxidative Stress by Engaging the Nrf2/HO-1 Signaling Pathway and Regulates Gut Macrobiotics in Laying Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Strains and Cultivation
2.2. Animals and Sample Collection
2.3. Histological Analysis
2.4. High-Throughput Sequencing Was Performed on the 16S rRNA Genes
2.5. ABTS Free Radical Scavenging Ability
2.6. Cell Lines and Culture Conditions
2.7. Cell Treatments
2.8. Reactive Oxygen Species (ROS) Assay
2.9. Antioxidant Enzyme Activity and MDA Content in Jejunum Samples, Serum, and Cultured Cells
2.10. Measurement of Cell Apoptosis
2.11. Real-Time Quantitative Polymerase Chain Reaction
2.12. Western Immunoblot Analysis
2.13. Statistical Analyses
3. Result
3.1. Effects of BC-HYI on Intestinal Integrity and Antioxidant Enzyme Activity
3.2. BC-HYI Reduces Oxidative Stress in Laying Chickens through the Nrf2/HO-1 Signaling Pathway
3.3. BC-HYI Regulated the Gut Microbiota in Laying Chickens
3.4. Effect of BC-HYI on OS Survival and Antioxidant Enzyme Levels
3.5. Effect of BC-HYI on LPS-Induced ROS Generation and Apoptosis in DF-1 Cells Associated with Nrf2 Signaling
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic residues in food: Extraction, analysis, and human health concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, S.; Jiang, X.; Feng, C.; Gong, S.; Ma, J.; Yin, Y. Gut microbiota and diarrhea: An updated review. Front. Cell. Infect. Microbiol. 2021, 301, 625210. [Google Scholar] [CrossRef] [PubMed]
- Taherian, M.; Samadi, P.M.; Rastegar, H.; Faramarzi, M.A.; Rostami-Nejad, M.; Yazdi, M.H.; Yazdi, Z. An overview on probiotics as an alternative strategy for prevention and treatment of human diseases. Iran. J. Pharm. Res. IJPR 2019, 18 (Suppl. 1), 31. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Loyola, M.A.; Enciso-Moreno, J.A.; López-Ramos, J.E.; García-Marín, G.; Álvarez, M.Y.O.; Vega-García, A.M.; Pérez-Ramírez, I.F. Bacillus coagulans GBI-30, 6068 decreases upper respiratory and gastrointestinal tract symptoms in healthy Mexican scholar-aged children by modulating immune-related proteins. Food Res. Int. 2019, 125, 108567. [Google Scholar] [CrossRef]
- Chen, J.; Cai, J.; Lin, J.; Cheng, Z.; Long, M. Inhibitory Effects of Bacillus coagulans TL3 on the Ileal Oxidative Stress and Inflammation Induced by Lipopolysaccharide in Rats. Curr. Microbiol. 2023, 80, 84. [Google Scholar] [CrossRef]
- Ting, H.; Hua, Z.; Qiong, W.; Bo, Z.; Tianhang, L.; Yonghong, Z. Effect of Bacillus coagulans BC-HYI on intestinal tract of chicks damaged by lipopolysaccharide (in Chinese). Chin. J. Anim. Nutr. 2022, 34, 951–960. [Google Scholar] [CrossRef]
- Kruk, J.; Y Aboul-Enein, H. Reactive oxygen and nitrogen species in carcinogenesis: Implications of oxidative stress on the progression and development of several cancer types. Mini Rev. Med. Chem. 2017, 17, 904–919. [Google Scholar] [CrossRef]
- Hao, J.; Song, Y.; Tian, B.; Qi, C.; Li, L.; Wang, L.; Liu, J. Platycodon grandifloras polysaccharides inhibit mitophagy injury induced by Cr (VI) in DF-1ácells. Ecotoxicol. Environ. Saf. 2020, 202, 110901. [Google Scholar] [CrossRef]
- Wei, X.; Zong, W.; Gao, Y.; Peng, S.; Liu, K.; Zheng, Y. Effects of the traditional chinese medicine tang luo ning on intestinal flora and oxidative stress in diabetic rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 3452625. [Google Scholar] [CrossRef]
- Liu, G.; Huang, Y.; Reis, F.S.; Song, D.; Ni, H. Impact of nutritional and environmental factors on inflammation, oxidative stress, and the microbiome 2019. BioMed Res. Int. 2019, 2019, 5716241. [Google Scholar] [CrossRef]
- Long, Y.; Wang, G.; Li, K.; Zhang, Z.; Zhang, P.; Zhang, J.; Wang, P. Oxidative stress and NF-κB signaling are involved in LPS induced pulmonary dysplasia in chick embryos. Cell Cycle 2018, 17, 1757–1771. [Google Scholar] [CrossRef]
- Xing, S.C.; Huang, C.B.; Mi, J.D.; Wu, Y.B.; Liao, X.D. Bacillus coagulans R11 maintained intestinal villus health and decreased intestinal injury in lead-exposed mice by regulating the intestinal microbiota and influenced the function of faecal microRNAs. Environ. Pollut. 2019, 255, 113139. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Z.; Zhang, Z.; Liu, T.; Fan, Y.; Liu, T.; Peng, N. Bacillus coagulans in combination with chitooligosaccharides regulates gut microbiota and ameliorates the Dss-induced colitis in mice. Microbiol. Spectr. 2022, 10, e00641-22. [Google Scholar] [CrossRef]
- Fu, R.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, J.; Yu, B. Effect of dietary supplementation of Bacillus coagulans or yeast hydrolysates on growth performance, antioxidant activity, cytokines and intestinal microflora of growing-finishing pigs. Anim. Nutr. 2019, 5, 366–372. [Google Scholar] [CrossRef]
- Xing, S.C.; Mi, J.D.; Chen, J.Y.; Hu, J.X.; Liao, X.D. Metabolic activity of Bacillus coagulans R11 and the health benefits of and potential pathogen inhibition by this species in the intestines of laying hens under lead exposure. Sci. Total Environ. 2020, 709, 134507. [Google Scholar] [CrossRef] [PubMed]
- Stenkamp-Strahm, C.; McConnel, C.; Magzamen, S.; Abdo, Z.; Reynolds, S. Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cows. J. Appl. Microbiol. 2018, 124, 881–898. [Google Scholar] [CrossRef] [PubMed]
- Wai, H.Y.; Min, W.W.; Gupta, S.D.; Wai, S.S.; Htun, L.L.; Latt, Z.M.; Henning, J. Discerning risk and uncertainty with “better insurance”–How animal health interventions for village chickens influence farmers’ perceptions on the prevention of poultry diseases. Prev. Vet. Med. 2022, 207, 105657. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.G.; Kim, M.J.; Moon, B.Y.; Cheong, S.H. Antioxidant and laxative effects of taurine-xylose, a synthetic taurine-carbohydrate derivative, in loperamide-induced constipation in Sprague-Dawley rats. J. Exerc. Nutr. Biochem. 2019, 23, 6. [Google Scholar] [CrossRef] [PubMed]
- Ghaeni Pasavei, A.; Mohebbati, R.; Jalili-Nik, M.; Mollazadeh, H.; Ghorbani, A.; Nosrati Tirkani, A.; Soukhtanloo, M. Effects of Rhus coriaria L. hydroalcoholic extract on the lipid and antioxidant profile in high fat diet-induced hepatic steatosis in rats. Drug Chem. Toxicol. 2021, 44, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Yang, Z.; Yang, W.; Huang, L.; Xu, C.; Jiang, S. Illicium verum extracts and probiotics with added glucose oxidase promote antioxidant capacity through upregulating hepatic and jejunal Nrf2/Keap1 of weaned piglets. J. Anim. Sci. 2020, 98, skaa077. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Adhikary, A.; Dingfelder, M.; Dizdaroglu, M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem. Soc. Rev. 2021, 50, 8355–8360. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.; Zhu, X.; Wu, D.; Ma, T.; Tuo, Y.; Jiang, S.; Qian, F.; Mu, G. In vitro assessment of probiotic and functional properties of Bacillus coagulans T242. Food Biosci. 2020, 36, 100675. [Google Scholar] [CrossRef]
- York-Duran, M.; Godoy-Gallardo, M.; Jansman, M. A dual-component carrier with both non-enzymatic and enzymatic antioxidant activity towards ROS depletion. Biomater Sci. 2019, 7, 4813–4826. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, A.; Kotnik, P.; Horvat, D.; Knez, Ž.; Antonič, M. Pharmacodynamics of malondialdehyde as indirect oxidative stress marker after arrested-heart cardiopulmonary bypass surgery. Biomed. Pharmacother. 2020, 132, 110877. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Yu, P.; Yin, Y.; Zhang, Y.; Lu, Y.; Mao, Q.; Li, Y. Effect of selenium-rich Bacillus subtilis against mercury-induced intestinal damage repair and oxidative stress in common carp. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108851. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Mu, G.; Xu, Y.; Wang, X.; Tuo, Y.; Qian, F. Protecting Effect of Bacillus coagulans T242 on HT-29 Cells Against AAPH-Induced Oxidative Damage. Probiotics Antimicrob. Proteins 2022, 14, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, T.; Li, P.; Chen, J.; Nepovimova, E.; Long, M.; Kuca, K. Bacillus amyloliquefaciens B10 can alleviate aflatoxin B1-induced kidney oxidative stress and apoptosis in mice. Ecotoxicol. Environ. Saf. 2021, 218, 112286. [Google Scholar] [CrossRef]
- Li, M.; Gu, M.M.; Lang, Y.; Shi, J.; Chen, B.P.; Guan, H.; Shang, Z.F. The vanillin derivative VND3207 protects intestine against radiation injury by modulating p53/NOXA signaling pathway and restoring the balance of gut microbiota. Free. Radic. Biol. Med. 2019, 145, 223–236. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Y.; Lv, Y.; Li, P.; Yi, D.; Wang, L.; Hou, Y. Beneficial impact and molecular mechanism of Bacillus coagulans on piglets’ intestine. Int. J. Mol. Sci. 2018, 19, 2084. [Google Scholar] [CrossRef]
- Qingyu, M.; Jingfang, W.; Yuxin, W.; Kai, Q.; Defeng, C.; Yonghong, Z. Establishment and determination of organic acids in Bacillus coagulans fermentation broth by reverse-phase high performance liquid chromatography (in Chinese). J. Beijing Coll. Agric. 2017, 32, 80–84+112. [Google Scholar] [CrossRef]
- Sabri, A.; Rafiq, K.; Seqqat, R.; Kolpakov, M.A.; Dillon, R.; Dell’italia, L.J. Sympathetic activation causes focal adhesion signaling alteration in early compensated volume overload attributable to isolated mitral regurgitation in the dog. Circ. Res. 2008, 102, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, Q.; Zhang, Y.; Ma, W.; Ning, K.; Xiang, J.Y.; Xiang, H. Combination of probiotics with different functions alleviate DSS-induced colitis by regulating intestinal microbiota, IL-10, and barrier function. Appl. Microbiol. Biotechnol. 2020, 104, 335–349. [Google Scholar] [CrossRef] [PubMed]
Analyte | Control | LPS | B6 | B7 | B8 |
---|---|---|---|---|---|
Serum | |||||
T-SOD (U/mL) | 189.33 ± 9.97 Aa | 93.89 ± 5.49 Bb | 202.42 ± 8.01 Aa | 221.58 ± 10.08 Ab | 248.11 ± 6.62 Ab |
T-AOC (U/mL) | 35.88 ± 3.71 Aa | 11.25 ± 2.83 Bb | 12.31 ± 4.14 Bb | 23.24 ± 4.37 Ab | 27.31 ± 3.54 Aa |
MDA (nmol/mL) | 2.97 ± 0.44 Aa | 16.24 ± 0.07 Bb | 10.92 ± 2.25 Ba | 7.58 ± 0.76 Ab | 6.40 ± 0.19 Ab |
CAT (U/mL) | 4.19 ± 0.51 Aa | 1.82 ± 0.41 Ab | 5.05 ± 0.73 Aa | 7.35 ± 0.19 Bb | 7.80 ± 0.79 Bb |
GSH-Px (U/mL) | 519.72 ± 57.98 | 461.97 ± 8.29 | 650.52 ± 19.65 | 653.90 ± 8.78 | 665.16 ± 9.92 |
Jejunum | |||||
T-SOD (U/mg prot) | 54.98 ± 5.16 | 32.74 ± 3.27 | 42.80 ± 2.5 | 43.14 ± 3.11 | 45.82 ± 5.48 |
T-AOC (U/mg prot) | 2.59 ± 0.16 Aa | 0.97 ± 0.39 Ab | 2.76 ± 0.44 Ab | 5.08 ± 0.25 Bb | 5.12 ± 0.02 Bb |
MDA (nmol/mg prot) | 0.69 ± 0.20 Aa | 9.16 ± 0.85 Bb | 6.42 ± 0.39 Ba | 3.16 ± 0.22 Ab | 1.52 ± 0.28 Ab |
CAT (U/mg prot) | 5.37 ± 0.22 Aa | 0.81 ± 0.10 Bb | 2.33 ± 0.13 Ab | 3.91 ± 0.53 Ab | 4.09 ± 0.11 Ab |
GSH-Px (U/mg prot) | 20.16 ± 3.03 Aa | 18.36 ± 1.90 Aa | 24.66 ± 1.47 Ab | 32.44 ± 2.05 Ab | 36.26 ± 0.94 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Wang, L.; Wu, Q.; Zhang, H.; Cui, D.; Liu, B.; Tong, J.; Zhang, Y. Bacillus coagulant HYI (BC-HYI) Alleviates LPS-Elicited Oxidative Stress by Engaging the Nrf2/HO-1 Signaling Pathway and Regulates Gut Macrobiotics in Laying Chickens. Appl. Microbiol. 2023, 3, 1178-1194. https://doi.org/10.3390/applmicrobiol3040081
Lu T, Wang L, Wu Q, Zhang H, Cui D, Liu B, Tong J, Zhang Y. Bacillus coagulant HYI (BC-HYI) Alleviates LPS-Elicited Oxidative Stress by Engaging the Nrf2/HO-1 Signaling Pathway and Regulates Gut Macrobiotics in Laying Chickens. Applied Microbiology. 2023; 3(4):1178-1194. https://doi.org/10.3390/applmicrobiol3040081
Chicago/Turabian StyleLu, Tianhang, Le Wang, Qiong Wu, Hua Zhang, Defeng Cui, Bowen Liu, Jinjin Tong, and Yonghong Zhang. 2023. "Bacillus coagulant HYI (BC-HYI) Alleviates LPS-Elicited Oxidative Stress by Engaging the Nrf2/HO-1 Signaling Pathway and Regulates Gut Macrobiotics in Laying Chickens" Applied Microbiology 3, no. 4: 1178-1194. https://doi.org/10.3390/applmicrobiol3040081
APA StyleLu, T., Wang, L., Wu, Q., Zhang, H., Cui, D., Liu, B., Tong, J., & Zhang, Y. (2023). Bacillus coagulant HYI (BC-HYI) Alleviates LPS-Elicited Oxidative Stress by Engaging the Nrf2/HO-1 Signaling Pathway and Regulates Gut Macrobiotics in Laying Chickens. Applied Microbiology, 3(4), 1178-1194. https://doi.org/10.3390/applmicrobiol3040081