Melibiose–X-Gal–MacConkey Agar for Presumptive Differentiation of Escherichia albertii from E. coli and Salmonella from Poultry Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture Preparation
2.2. Melibiose–X-Gal–MacConkey (MXgMac) Agar Formulation
2.3. Preparation of Microorganisms for Inoculated Chicken Meat Experiments
2.4. Preparation of Ground Chicken Meat Samples and Inoculation with Pathogens
2.5. Evaluation of MXgMac Agar to Assist Identification of E. albertii from Chicken Fecal/Litter Sample
2.6. Identification of E. albertii-typical colonies picked by 16S rRNA sequence typing
2.6.1. DNA Extraction
2.6.2. PCR, Sequencing, and Organism Identification
2.7. Experimental Design and Statistical Analysis of Data
3. Results
3.1. Differential Identification of E. albertii from E. coli and Salmonella enterica on MXgMac Agar Surfaces
3.2. Comparisons of Recoveries of Inoculated Pathogens on MXgMac and XRM-Mac from Ground Chicken
3.3. 16S rRNA Identification of E. albertii-Typical Colonies from Chicken Feces/Litter Samples
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Taxonomic ID (RDP 11 > 70% Confidence | Sequence ID | NCBI Accession |
---|---|---|
Cronobacter sp. | 27 | OQ283624 |
Escherichia sp. | 30 | OQ283625 |
Cronobacter sp. | 28 | OQ283626 |
Salmonella sp. | 26 | OQ283627 |
Citrobacter sp. | 24 | OQ283628 |
Escherichia sp. | 23 | OQ283629 |
Enterobacter sp. | 22 | OQ283630 |
Escherichia sp. | 21 | OQ283631 |
Salmonella sp. | 20 | OQ283632 |
Escherichia sp. | 19 | OQ283633 |
Escherichia sp. | 18 | OQ283634 |
Enterobacter sp. | 16 | OQ283635 |
Empedobacter sp. | 15 | OQ283636 |
Myroides sp. | 14 | OQ283637 |
Acinetobacter sp. | 13 | OQ283638 |
Myroides sp. | 7 | OQ283639 |
Enterococcus sp. | 5 | OQ283640 |
Acinetobacter sp. | 4 | OQ283641 |
Gammaproteobacteria bacterium | 3r | OQ283642 |
Gammaproteobacteria bacterium | 3f | OQ283643 |
Acinetobacter sp. | 2r | OQ283644 |
Acinetobacter sp. | 2f | OQ283645 |
References
- Konno, T.; Yatsuyanagi, J.; Takahashi, S.; Kumagai, Y.; Wada, E.; Chiba, M.; Saito, S. Isolation and identification of Escherichia albertii from a patient in an outbreak of gastroenteritis. Jpn. J. Infect. Dis. 2012, 65, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooka, T.; Seto, K.; Kawano, K.; Kobayashi, H.; Etoh, Y.; Ichihara, S.; Kaneko, A.; Isobe, J.; Yamaguchi, K.; Horiwaka, K.; et al. Clinical significance of Escherichia albertii. Emerg. Infect. Dis. 2012, 18, 488–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asoshima, N.; Matsuda, M.; Shigemura, K.; Honda, M.; Yoshida, H.; Hiwaki, H.; Ogata, K.; Oda, T. Identification of Escherichia albertii as a causative agent of a food-borne outbreak occurred in 2003. Jpn. J. Infect. Dis. 2014, 67, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Muchaamba, F.; Barmettler, K.; Treier, A.; Houf, K.; Stephan, R. Microbiology and epidemiology of Escherichia albertii-an emerging elusive foodborne pathogen. Microorganisms 2022, 10, 875. [Google Scholar] [CrossRef] [PubMed]
- Abbott, S.L.; O’Connor, J.; Robin, T.; Zimmer, B.L.; Janda, J.M. Biochemical properties of a newly described Escherichia species, Escherichia albertii. J. Clin. Microbiol. 2003, 41, 4852–4854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huys, G.; Cnockaert, M.; Janda, J.M.; Swings, J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int. J. Syst. Evol. Microbiol. 2003, 53, 807–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinenoya, A.; Nagano, K.; Okuno, K.; Nagita, A.; Hatanaka, N.; Awasthi, S.P.; Yamasaki, S. Development of XRM-MacConkey agar selective medium for the isolation of Escherichia albertii. Diagn. Microbiol. Infect. Dis. 2020, 7, 115006. [Google Scholar] [CrossRef]
- Inglis, T.J.J.; Merritt, A.J.; Bzdyl, N.; Lansley, S.; Urosevic, M.N. First bacteraemic human infection with Escherichia albertii. New Microbe New Infect. 2015, 8, 171–173. [Google Scholar] [CrossRef] [Green Version]
- Maheux, A.F.; Boudreau, D.K.; Bergeron, M.G.; Rodriguez, M.J. Characterization of Escherichia fergusonii and Escherichia albertii isolated from water. J. Appl. Microbiol. 2014, 117, 597–609. [Google Scholar] [CrossRef]
- Oaks, J.L.; Besser, T.E.; Walk, S.T.; Gordon, D.M.; Beckmen, K.B.; Burek, K.A.; Haldorson, G.J.; Bradway, D.S.; Ouellette, L.; Rurangirwa, F.R.; et al. Escherichia albertii in wild and domestic birds. Emerg. Infect. Dis. 2010, 16, 638–646. [Google Scholar] [CrossRef]
- Hinenoya, A.; Li, X.-P.; Zeng, X.; Sahin, O.; Moxley, R.A.; Logue, C.M.; Gillespie, B.; Yamasaki, S.; Lin, J. Isolation and characterization of Escherichia albertii in poultry at the pre-harvest level. Zoonoses Public Hlth. 2021, 68, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, R.L.; Fedorka-Cray, P.J.; Abley, M.; Turpin, J.B.; Meinersmann, R.J. Evaluating the occurrence of Escherichia albertii in chicken carcass rinses by PCR, Vitek analysis, and sequencing of the rpoB gene. Appl. Environ. Microbiol. 2015, 81, 1727–1734. [Google Scholar] [CrossRef] [Green Version]
- Lacher, D.W.; Steinsland, H.; Whittam, T.S. Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP. FEMS Microbiol. Lett. 2006, 261, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandal, L.T.; Tunsjø, H.S.; Ranheim, T.E.; Løbersli, I.; Lange, H.; Wester, A.L. Shiga toxin 2a in Escherichia albertii. J. Clin. Microbiol. 2015, 53, 1454–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyma, K.E.; Lacher, D.W.; Nelson, A.M.; Bumbaugh, A.C.; Janda, J.M.; Strockbine, N.A.; Young, V.B.; Whittam, T.S. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J. Bacteriol. 2005, 187, 619–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Etoh, Y.; Tanaka, E.; Ichihara, S.; Horikawa, K.; Kawano, K.; Ooka, T.; Kawamura, Y.; Ito, K. Shiga toxin 2f-producing Escherichia albertii from a symptomatic human. Jpn. J. Infect. Dis. 2014, 67, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, Q.; Bai, X.; Xu, Y.; Zhao, A.; Sun, H.; Deng, J.; Xiao, B.; Liu, X.; Sun, S.; et al. Prevalence of eae-positive, lactose non-fermenting Escherichia albertii from retail raw meat in China. Epidemiol. Infect. 2016, 144, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Maheux, A.F.; Brodeur, S.; Bérubé, È.; Boudreau, D.K.; Abed, J.Y.; Boissinot, M.; Bissonnette, L.; Bergeron, M.G. Method for isolation of both lactose-fermenting and -non-fermenting Escherichia albertii strains from stool samples. J. Microbiol. Methods 2018, 154, 134–140. [Google Scholar] [CrossRef]
- USDA-FSIS. Food Safety Research Priorities & Studies. Available online: https://www.fsis.usda.gov/science-data/research-priorities (accessed on 19 January 2023).
- Arai, S.; Ohtsuka, K.; Konishi, N.; Ohya, K.; Konno, T.; Tokoi, Y.; Nagaoka, H.; Asano, Y.; Maruyama, H.; Uchiyama, H.; et al. Evaluating methods for detecting Escherichia albertii in chicken meat. J. Food Protect. 2021, 84, 553–562. [Google Scholar] [CrossRef]
- Jalili, V.; Afgan, E.; Gu, Q.; Clements, D.; Blankenberg, D.; Goecks, J.; Taylor, J.; Nekrutenko, A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 2020, 48, W395–W402. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- USDA-FSIS. Raw Pork Products Exploratory Sampling Program. Available online: https://www.fsis.usda.gov/science-data/sampling-program/raw-pork-products-exploratory-sampling-program (accessed on 19 January 2023).
- USDA-FSIS. Serotypes Profile of Salmonella isolates from Meat and Poultry Products January 1998 through December 2012. Available online: http://www.fsis.usda.gov/wps/portal/fsis/topics/data-collection-and-reports/microbiology/annual-serotyping-reports (accessed on 26 June 2015).
- USDA-FSIS. Proposed Regulatory Framework to Reduce Salmonella Illnesses Attributable to Poultry. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/documents/FINAL-Salmonella-Framework-10112022-508-edited.pdf (accessed on 12 November 2022).
- U.S. Department of Agriculture-Food Safety and Inspection Service. New Performance Standards for Salmonella and Campylobacter in Not-Ready-to-Eat Comminuted Chicken and Turkey Products and Raw Chicken Parts and Changes to Related Agency Verification Procedures: Response to Comments and Announcement of Implementation Schedule. Fed. Reg. 2016, 81, 7285–7300. [Google Scholar]
- Ooka, T.; Ogura, Y.; Katsura, K.; Seto, K.; Kobayashi, H.; Kawano, K.; Tokuoka, E.; Furukawa, M.; Harada, S.; Yoshino, S.; et al. Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli. Genome Biol. Evol. 2015, 7, 3170–3179. [Google Scholar]
- Hirose, S.; Nakamura, Y.; Arai, S.; Hara-Kudo, Y. The development and evaluation of a selective enrichment for the detection of Escherichia albertii in food. Foodborne Pathog. Dis. 2022, 19, 704–712. [Google Scholar] [CrossRef]
Organism | Strain No./Source | Appearance |
---|---|---|
E. albertii | 3033/CDC 1 | Colorless |
4180/CDC | Colorless | |
4750/CDC | Colorless | |
3449/CDC | Colorless | |
3866/CDC | Colorless | |
3542/CDC | Light Blue | |
4143/CDC | Colorless | |
4312/CDC | Colorless | |
5188/CDC | Light Blue | |
4085/CDC | Colorless | |
1823-B/CDC | Colorless | |
E. coli | O157:H7 700278/ATCC | Blue-Green |
P41/TAMU FML | Blue-Green | |
O145:NM 83-75/TAMU FML | Blue-Green | |
O103 P50/TAMU FML | Blue-Green | |
O104 P53/TAMU FML | Blue-Green | |
O145/TAMU FML | Blue-Green | |
BAA-1427/ATCC | Blue-Green | |
S. enterica Anatum | BAA-1592/ATCC | Pink/Red-Centered |
S. enterica Agona | 100/TAMU FML | Pink/Red-Centered |
S. enterica Enteritidis | 707/TAMU FML | Pink/Red-Centered |
Listeria monocytogenes | LIS 0089/TAMU FML | NG 2 |
Staphylococcus aureus | SA101/TAMU FML | NG |
Enterococcus faecium | NRRL-B2354/USDA-ARS | NG |
Cocktail Setup | E. coli MXgMac | Salmonella MXgMac | MXgMac Sum Count | XRM-Mac |
---|---|---|---|---|
1 | 2.65 ± 0.14 1 | 2.74 ± 0.20 | 3.12 ± 0.11 | 2.87 ± 0.32 |
2 | 3.73 ± 0.25 | 3.81 ± 0.28 | 4.16 ± 0.21 | 4.12 ± 0.55 |
3 | 4.61 ± 0.58 | 4.76 ± 0.44 | 5.19 ± 0.19 | 4.83 ± 0.75 |
p = 0.511; Pooled Standard Error = 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annor, S.D.; Salazar, K.S.; Pillai, S.D.; Kerth, C.R.; Gill, J.J.; Taylor, T.M. Melibiose–X-Gal–MacConkey Agar for Presumptive Differentiation of Escherichia albertii from E. coli and Salmonella from Poultry Meat. Appl. Microbiol. 2023, 3, 119-130. https://doi.org/10.3390/applmicrobiol3010010
Annor SD, Salazar KS, Pillai SD, Kerth CR, Gill JJ, Taylor TM. Melibiose–X-Gal–MacConkey Agar for Presumptive Differentiation of Escherichia albertii from E. coli and Salmonella from Poultry Meat. Applied Microbiology. 2023; 3(1):119-130. https://doi.org/10.3390/applmicrobiol3010010
Chicago/Turabian StyleAnnor, Samuel D., Karla S. Salazar, Suresh D. Pillai, Chris R. Kerth, Jason J. Gill, and Thomas M. Taylor. 2023. "Melibiose–X-Gal–MacConkey Agar for Presumptive Differentiation of Escherichia albertii from E. coli and Salmonella from Poultry Meat" Applied Microbiology 3, no. 1: 119-130. https://doi.org/10.3390/applmicrobiol3010010
APA StyleAnnor, S. D., Salazar, K. S., Pillai, S. D., Kerth, C. R., Gill, J. J., & Taylor, T. M. (2023). Melibiose–X-Gal–MacConkey Agar for Presumptive Differentiation of Escherichia albertii from E. coli and Salmonella from Poultry Meat. Applied Microbiology, 3(1), 119-130. https://doi.org/10.3390/applmicrobiol3010010