Advances in DNA- and RNA-Based Oncolytic Viral Therapeutics and Immunotherapies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Oncolytic Virus Therapy
3.2. Viruses with DNA Genomes
3.3. Viruses with RNA Genomes
3.4. Cancer Immunotherapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cancer. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 24 April 2021).
- World Cancer Research Fund. Worldwide Cancer Data. 2018. Available online: https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data (accessed on 24 April 2021).
- Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016, 107, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Gilboa, E.; Vieweg, J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol. Rev. 2004, 199, 251–263. [Google Scholar] [PubMed]
- Shibata, H.; Zhou, L.; Xu, N.; Egloff, A.M.; Uppaluri, R. Personalized cancer vaccination in head and neck cancer. Cancer Sci. 2020, 112, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Slingluff, C.L., Jr. Building on the promise of a cancer vaccine for solid tumours. Clin. Cancer Res. 2019, 26, 529–531. [Google Scholar] [CrossRef]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Yaghchi, C.A.; Zhang, Z.; Alusi, G.; Lemoine, N.R.; Wang, Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 2015, 7, 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991, 252, 854–856. [Google Scholar] [CrossRef]
- Shaw, A.R.; Suzuki, M. Immunology of Adenoviral Vectors in Cancer Therapy. Mol. Ther. Methods Clin. Dev. 2019, 15, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Pituch, K.C.; Xiao, A.; Young, J.S.; Panek, W.K.; Muroski, M.E.; Rashidi, A.; Kane, J.R.; Kanojia, D.; Lesniak, M.S. Chapter 15-Gene/Viral Treatment Approaches for Malignant Brain Cancer. In Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy, 2nd ed.; Newton, H.B., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 211–227. Available online: https://www.sciencedirect.com/science/article/pii/B9780128121009000152 (accessed on 24 April 2021).
- Singh, S.; Kumar, R.; Agrawal, B. Adenoviral Vector-Based Vaccines and Gene Therapies: Current Status and Future Prospects. In Adenoviruses; IntechOpen, 2018; Available online: https://www.intechopen.com/books/adenoviruses/adenoviral-vector-based-vaccines-and-gene-therapies-current-status-and-future-prospects (accessed on 24 April 2021).
- Williams, J.A. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines 2013, 1, 225–249. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021, 20, 41. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, L.; Wicha, M.S.; Chang, A.E.; Xia, J.; Ren, X.; Li, Q. The promise of cancer stem cell vaccine. Hum. Vaccines Immunother. 2015, 11, 2796–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Chen, J. Current status and future directions of cancer immunotherapy. J. Cancer 2018, 9, 1773–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother.=Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Sasada, T. Cancer vaccines: Toward the next breakthrough in cancer immunotherapy. J. Immunol. Res. 2020, 2020, 5825401. [Google Scholar] [CrossRef]
- Russell, S.J. Replicating vectors for cancer therapy: A question of strategy. Semin. Cancer Biol. 1994, 5, 437–443. [Google Scholar]
- Varghese, S.; Rabkin, S.D. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002, 9, 967–978. [Google Scholar] [CrossRef] [Green Version]
- Marconi, P.; Argnani, R.; Epstein, A.L.; Manservigi, R. HSV as a Vector in Vaccine Development and Gene Therapy. In Madame Curie Bioscience Database; Landes Bioscience, 2013. Available online: http://www.ncbi.nlm.nih.gov/books/NBK7024/ (accessed on 24 April 2021).
- Glorioso, J.C.; Fink, D.J. Herpes Vector-Mediated Gene Transfer in Treatment of Diseases of the Nervous System. Annu. Rev. Microbiol. 2004, 58, 253–271. [Google Scholar] [CrossRef]
- Riedel, S. Edward Jenner and the history of smallpox and vaccination. Proc. Bayl. Univ. Med. Cent. 2005, 18, 21–25. [Google Scholar] [CrossRef]
- Kirn, D.H.; Thorne, S.H. Targeted and armed oncolytic poxviruses: A novel multi-mechanistic therapeutic class for cancer. Nat. Rev. Cancer 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Hawkins, L.K.; Kirn, D. Replication-Selective Viruses for Cancer Treatment. In Encyclopedia of Cancer, 2nd ed.; Bertino, J.R., Ed.; Academic Press: New York, NY, USA, 2002; pp. 71–91. Available online: https://www.sciencedirect.com/science/article/pii/B0122275551002549 (accessed on 24 April 2021).
- Clements, D.; Helson, E.; Gujar, S.A.; Lee, P.W. Reovirus in cancer therapy: An evidence-based review. Oncolytic Virotherapy 2014, 3, 69–82. [Google Scholar]
- Gujar, S.A.; Marcato, P.; Pan, D.; Lee, P.W.K. Reovirus Virotherapy Overrides Tumor Antigen Presentation Evasion and Promotes Protective Antitumor Immunity. Mol. Cancer Ther. 2010, 9, 2924–2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chellappa, M.M.; Dey, S.; Gaikwad, S.; Kataria, J.M.; Vakharia, V.N. Complete Genome Sequence of Newcastle Disease Virus Mesogenic Vaccine Strain R2B from India. J. Virol. 2012, 86, 13814–13815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Zhong, L.-P.; He, J.; Huang, Y.; Zhao, Y.-X. Application of Newcastle disease virus in the treatment of colorectal cancer. World J. Clin. Cases 2019, 7, 2143–2154. [Google Scholar] [CrossRef] [PubMed]
- Lehner, B.; Schlag, P.; Liebrich, W.; Schirrmacher, V. Postoperative active specific immunization in curatively resected colorectal cancer patients with a virus-modified autologous tumor cell vaccine. Cancer Immunol. Immunother. 1990, 32, 173–178. [Google Scholar] [CrossRef]
- Dobrikova, E.Y.; Broadt, T.; Poiley-Nelson, J.; Yang, X.; Soman, G.; Giardina, S.; Harris, R.; Gromeier, M. Recombinant Oncolytic Poliovirus Eliminates Glioma In Vivo Without Genetic Adaptation to a Pathogenic Phenotype. Mol. Ther. 2008, 16, 1865–1872. [Google Scholar] [CrossRef]
- Vignuzzi, M.; Stone, J.K.; Arnold, J.J.; Cameron, C.E.; Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions within a viral population. Nature 2006, 439, 344–348. [Google Scholar] [CrossRef]
- Gromeier, M.; Lachmann, S.; Rosenfeld, M.R.; Gutin, P.H.; Wimmer, E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. USA 2000, 97, 6803–6808. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.-C.; Kirn, D. Gene therapy progress and prospects cancer: Oncolytic viruses. Gene Ther. 2008, 15, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.J.; Whye Peng, K. Measles virus for cancer therapy. Curr. Top Microbiol. Immunol. 2009, 330, 213–241. [Google Scholar]
- Liszewski, M.K.; Atkinson, J.P. Membrane Cofactor Protein. In Membrane Defenses against Attack by Complement and Perforins; Current Topics in Microbiology and, Immunology; Parker, C.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 45–60. [Google Scholar] [CrossRef]
- Anderson, B.D.; Nakamura, T.; Russell, S.J.; Peng, K.-W. High CD46 Receptor Density Determines Preferential Killing of Tumor Cells by Oncolytic Measles Virus|Cancer Research. 2004. Available online: https://cancerres-aacrjournals-org.libaccess.lib.mcmaster.ca/content/64/14/4919.long (accessed on 27 April 2021).
- Xu, Z.; Zeng, S.; Gong, Z.; Yan, Y. Exome-based immunotherapy: A promising approach for cancer treatment. Mol. Cancer 2020, 19, 160. [Google Scholar] [CrossRef]
- Noriega, V.; Redmann, V.; Gardner, T.; Tortorella, D. Diverse immune evasion strategies by human cytomegalovirus. Immunol. Res. 2012, 54, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Margolin, K. Tumour-infiltrating lymphocytes in melanoma. Curr. Oncol. Rep. 2012, 14, 468–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brassard, D.L.; Grace, M.J.; Bordens, R.W. Interferon-α as an immunotherapeutic protein. J. Leukoc. Biol. 2002, 71, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol. 2018, 11, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Bullock, T.N.J. Fundamentals of cancer immunology and their application to cancer vaccines. Clin. Transl. Sci. 2021, 14, 120–131. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. Mol. Ther.-Oncolytics 2019, 15, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Ricca, J.M.; Oseledchyk, A.; Walther, T.; Liu, C.; Mangarin, L.; Merghoub, T.; Wolchok, J.D.; Zamarin, D. Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Mol. Ther. 2018, 26, 1008–1019. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Russell, S.J. Oncolytic measles viruses for cancer therapy. Expert Opin. Biol. Ther. 2004, 4, 1685–1692. [Google Scholar] [CrossRef]
Cancer Treatment Therapies | Advantages | Disadvantages |
DNA-viral therapy | ||
RNA-viral therapy | ||
Immunotherapies |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, P.A.; Wu, A.; Johnson, J.C.; Schauer, Z.; Wu, T.; Fernandes, F.; Schabert, R.; Mardon, A. Advances in DNA- and RNA-Based Oncolytic Viral Therapeutics and Immunotherapies. Appl. Microbiol. 2022, 2, 319-329. https://doi.org/10.3390/applmicrobiol2020024
Johnson PA, Wu A, Johnson JC, Schauer Z, Wu T, Fernandes F, Schabert R, Mardon A. Advances in DNA- and RNA-Based Oncolytic Viral Therapeutics and Immunotherapies. Applied Microbiology. 2022; 2(2):319-329. https://doi.org/10.3390/applmicrobiol2020024
Chicago/Turabian StyleJohnson, Peter Anto, Alyssa Wu, John Christy Johnson, Zachary Schauer, Terrence Wu, Francis Fernandes, Reinette Schabert, and Austin Mardon. 2022. "Advances in DNA- and RNA-Based Oncolytic Viral Therapeutics and Immunotherapies" Applied Microbiology 2, no. 2: 319-329. https://doi.org/10.3390/applmicrobiol2020024
APA StyleJohnson, P. A., Wu, A., Johnson, J. C., Schauer, Z., Wu, T., Fernandes, F., Schabert, R., & Mardon, A. (2022). Advances in DNA- and RNA-Based Oncolytic Viral Therapeutics and Immunotherapies. Applied Microbiology, 2(2), 319-329. https://doi.org/10.3390/applmicrobiol2020024