Efficacy of PostivaTM for Management of Bacterial Diseases of Ornamental Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design University of Florida
2.2. Experimental Design Syngenta Crop Protection
3. Results
3.1. Efficacy on Xanthomonas Leaf Spot of Geranium
3.2. Efficacy on Xanthomonas Leaf Spot of Ficus
3.3. Bacterial Wilt Efficacy
3.4. Efficacy on Xanthomonas Leaf Spot of Zinnia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nass, U. Floriculture crops 2018 summary. In United States Department of Agriculture, National Agricultural Statistics Service (USDA/NASS); National Agricultural Statistic Service: Washington, DC, USA, 2019. [Google Scholar]
- Daughtrey, M.; Buitenhuis, R. Integrated Pest and Disease Management in Greenhouse Ornamentals. In Integrated Pest and Disease Management in Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2020; pp. 625–679. [Google Scholar]
- Haygood, R.A.; Strider, D.L. Bacterial Diseases. In Diseases of Floral Crops; Strider, D.L., Ed.; Praeger Scientific: New York, NY, USA, 1985; Volume 1, pp. 229–251. [Google Scholar]
- Norman, D.J.; Chen, J. Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 2011, 46, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Ball, V. Ball Redbook, 16th ed.; Ball Publishing: Batavia, IL, USA, 1998. [Google Scholar]
- Hong, C.; Moorman, G. Plant pathogens in irrigation water: Challenges and opportunities. Crit. Rev. Plant Sci. 2005, 24, 189–208. [Google Scholar] [CrossRef]
- Jeon, S.; Krasnow, C.S.; Bhalsod, G.D.; Harlan, B.R.; Hausbeck, M.K.; Safferman, S.I.; Zhang, W. Rapid Sand Filtration of Recycled Irrigation Water Controlled Pythium Root Rot of Poinsettia in Greenhouse. HortTechnology 2019, 29, 578–589. [Google Scholar] [CrossRef]
- Bush, E.A.; Hong, C.; Stromberg, E.L. Fluctuations of Phytophthora and Pythium spp. in components of a recycling irrigation system. Plant Dis. 2003, 87, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Hoitink, H.A.J. Transmission of plant pathogens in an ebb and flood system. Ohio Flor. Assn. Bul. 1991, 742, 5–9. [Google Scholar]
- Peterson, D. Treat early, manage moisture. Keys to bacterial disease control in tomato. Veg. Grow. News 2018, 52, 12. [Google Scholar]
- Robbs, P.; Bartz, J.; Brecht, J.; Sargent, S. Oxidation-reduction potential of chlorine solutions and their toxicity to Erwinia carotovora subsp. carotovora and Geotrichum candidum. Plant Dis. 1995, 79, 158–162. [Google Scholar] [CrossRef]
- Norman, D.J.; Zapata, M.; Gabriel, D.W.; Duan, Y.; Yuen, J.M.; Mangravita-Novo, A.; Donahoo, R.S. Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America. Phytopathology 2009, 99, 1070–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, S.M.; Lawson, O.B.; Miller, J.W.; Chase, A. Leafspot and blight of basil, Ocimum basilicum, caused by Pseudomonas cichorii. Proc. Fla. State Hort. Soc. 1986, 99, 249–251. [Google Scholar]
- Šević, M.; Gašić, K.; Ignjatov, M.; Mijatović, M.; Prokić, A.; Obradović, A. Integration of biological and conventional treatments in control of pepper bacterial spot. Crop Prot. 2019, 119, 46–51. [Google Scholar] [CrossRef]
- Abrahamian, P.; Jones, J.B.; Vallad, G.E. Efficacy of copper and copper alternatives for management of bacterial spot on tomato under transplant and field production. Crop Prot. 2019, 126, 104919. [Google Scholar] [CrossRef]
- Deberdt, P.; Davezies, I.; Coranson-Beaudu, R.; Jestin, A. Efficacy of leaf oil from Pimenta racemosa var. racemosa in controlling bacterial wilt of tomato. Plant Dis. 2018, 102, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaherty, J.; Harbaugh, B.; Jones, J.; Somodi, G.; Jackson, L. H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience 2001, 36, 98–100. [Google Scholar] [CrossRef] [Green Version]
- Sidorovich, L. Antibacterial effect of certain preparations on bacteriosis agents of flowering and ornamental plants. Mikrobiol. Zh. 1986, 48, 75–80. [Google Scholar]
- Bocsanczy, A.M.; Huguet-Tapia, J.C.; Norman, D.J. Whole-genome sequence of Ralstonia solanacearum P673, a strain capable of infecting tomato plants at low temperatures. Genome Announc. 2014, 2, e00106-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelman, A. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 1954, 44, 693–695. [Google Scholar]
- Norman, D.; Chen, J.; Yuen, J.; Mangravita-Novo, A.; Byrne, D.; Walsh, L. Control of bacterial wilt of geranium with phosphorous acid. Plant Dis. 2006, 90, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Gisi, U.; Binder, H.; Rimbach, E. Synergistic interactions of fungicides with different modes of action. Trans. Brit. Mycol. Soc. 1985, 85, 299–306. [Google Scholar] [CrossRef]
- Baysal-Gurel, F.; Oksel, C.; Simmons, T.; Jennings, C. Evaluation of bactericides for control of Pseudomonas leaf spot on Magnolia. PDMR 2020, 15, OT016. [Google Scholar]
Product Name | Active Ingredient | Manufacturer | Rate |
---|---|---|---|
PostivaTM | Pydiflumetofen (6.9%) + Difenoconozole (11.5%) | Syngenta Crop Protection LLC | 0.73, 1.02, 1.5 L/ha |
CuPRO® 5000 | Copper Hydroxide (61.3%) | SePRO Co | 1.75 kg/ha |
Cease® | Bacillus subtilis, QST 713 strain (1.34%) | AgraQuest | 9.35 L/ha |
DaconilZN® | Chlorothalonil (38.5%) | Syngenta Crop Protection LLC | 2.34 L/ha |
A19649B | Pydiflumetofen (6.9%) | Syngenta Crop Protection LLC | 1.02/ha |
Treatments (Rate/ha) | Geranium | Ficus microcarpa | ||||||
---|---|---|---|---|---|---|---|---|
2019 Test 1 | 2020 | 2021 | ||||||
Test 2 | Test 3 | |||||||
Mean Leafspots x | LSD y | Mean Leafspots | LSD | Mean Leafspots | LSD | Mean Blighted Leaves | LSD | |
Negative control | 0 | a | 0 | a | 0 | a | 0 | a |
Inoculated control | 171.1 | d | 183 | e | 77.8 | e | 15.2 | d |
PostivaTM (0.73 L/ha) | 77.5 | bc | 47.6 | bcd | 48 | cd | 11.2 | bc |
PostivaTM (1.02 L/ha) | 126 | cd | 81 | d | 30 | bc | 11.1 | bc |
PostivaTM (1.5 L/ha) | 101.3 | bc | 46.5 | bcd | 26.5 | abc | 8.9 | ab |
Cease® (9.35 L/ha) | 56.6 | ab | 60.1 | cd | 62.6 | de | - | - |
CuPRO® 5000 (1.75 kg/ha) | - z | - | 15.9 | ab | 2.2 | a | - | - |
DaconilZN® (2.34 L/ha) | - | - | 27.7 | abc | 8.9 | ab | - | - |
Treatment (Rate/ha) | Ralstonia/Geranium 2019 | |||
---|---|---|---|---|
14 DAI y | 28 DAI | |||
Mean % Wilted Foliage | LSD z | Mean % Wilted Foliage | LSD | |
Uninoculated control | 0 | a | 0 | a |
Inoculated control | 23 | b | 62.5 | c |
PostivaTM (0.73 L/ha) | 3.5 | a | 18 | ab |
PostivaTM (1.02 L/ha) | 24 | b | 54.5 | c |
PostivaTM (1.5 L/ha) | 20.5 | b | 59 | c |
Cease® (9.35 L/ha) | 12.5 | ab | 42 | bc |
Treatment (Rate/ha) | 2019 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|
Mean % Leaf Damage w | LSD y | Plant Health x | LSD | Mean % Leaf Damage | LSD | Plant Health | LSD | |
Uninoculated control | 1.8 | b | 8.4 | a | 0.5 | c | 8.8 | a |
Inoculated control | 23.6 | a | 3.8 | b | 20.5 | a | 3 | d |
PostivaTM (0.73 L/ha) | 2.8 | b | 7.8 | a | 4.8 | bc | 7.3 | abc |
PostivaTM (1.02 L/ha) | 3.7 | b | 7.2 | a | 10.5 | abc | 6 | c |
PostivaTM (1.5 L/ha) | 0.6 | b | 8.4 | a | 12 | abc | 6 | c |
CuPRO 5000® (1.75 kg/ha) | 4.4 | b | 6.6 | a | - z | - | ||
Cease® (9.35 L/ha) | 4.1 | b | 7.4 | a | 14 | ab | 6.3 | bc |
DaconilZN® (2.34 L/ha) | 1.9 | b | 8.2 | a | - | - | ||
A19649B (6.9%)(1.02 L/ha) | 1.8 | b | 8.4 | a | 4.2 | bc | 8.3 | ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasnow, C.; Norman, D. Efficacy of PostivaTM for Management of Bacterial Diseases of Ornamental Crops. Appl. Microbiol. 2022, 2, 302-308. https://doi.org/10.3390/applmicrobiol2020022
Krasnow C, Norman D. Efficacy of PostivaTM for Management of Bacterial Diseases of Ornamental Crops. Applied Microbiology. 2022; 2(2):302-308. https://doi.org/10.3390/applmicrobiol2020022
Chicago/Turabian StyleKrasnow, Charles, and David Norman. 2022. "Efficacy of PostivaTM for Management of Bacterial Diseases of Ornamental Crops" Applied Microbiology 2, no. 2: 302-308. https://doi.org/10.3390/applmicrobiol2020022
APA StyleKrasnow, C., & Norman, D. (2022). Efficacy of PostivaTM for Management of Bacterial Diseases of Ornamental Crops. Applied Microbiology, 2(2), 302-308. https://doi.org/10.3390/applmicrobiol2020022