The Impact of Biostimulants on the Yield and Quality Attributes of Essential Oil from Different Basil Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plants Yield
2.3. Essential Oil
2.4. Statistical Analysis and Meteorological Data
3. Results
3.1. Basil Fresh and Dry Yield
3.2. Basil Essential Oil Yield
3.3. Basil Essential Oil Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klimánková, E.; Holadová, K.; Hajšlová, J.; Cájka, T.; Poustka, J.; Koudela, M. Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem. 2008, 107, 464–472. [Google Scholar] [CrossRef]
- Martins, A.P.; Salgueiro, L.R.; Vila, R.; Tomi, F.; Canigueral, S.; Casanova, J.; Proença da Cunha, A.; Adzet, T. Composition of the essential oils of Ocimum canum, O. gratissimum and O. minimum. Planta Med. 1999, 65, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Sanda, K.; Koba, K.; Nambo, P.; Gaset, A. Chemical investigation of Ocimum species growing in Togo. Flavour Fragr. J. 1998, 13, 226–232. [Google Scholar] [CrossRef]
- Heath, H.B. Source Book of Flavour. Avi Publishers, Westport. Hemphill, I., Cobiac, L., 2006. The historical and cultural use of herbs and spices. Med. J. Aust. 1981, 185, S5. [Google Scholar]
- Grayer, R.G.; Kite, G.C.; Goldstone, F.J.; Bryan, S.E.; Paton, A.; Putievsky, E. Infraspecific taxonomy and essential oil chemtypes in basil, Ocimum basilicum. Phytochemistry 1996, 43, 1033–1039. [Google Scholar] [CrossRef]
- Bast, F.; Rani, P.; Meena, D. Chloroplast DNA phylogeography of holy basil (Ocimum tenuiflorum) in Indian subcontinent. Sci. World J. 2014, 2014, 847482. [Google Scholar] [CrossRef]
- Lal, R.K.; Gupta, P.; Chanotiya, C.S.; Sarkar, S. Traditional plant breeding in Ocimum. In The Ocimum Genome, Compendium of Plant Genomes; Shasany, A.K., Kole, C., Eds.; Springer Nature AG: Cham, Switzerland, 2018; pp. 89–98. [Google Scholar] [CrossRef]
- Bernhardt, B.; Szabo, K.; Bernath, J. Sources of variability in essential oil composition of Ocimum americanum and Ocimum tenuiflorum. Acta Aliment. 2015, 44, 111–118. [Google Scholar] [CrossRef]
- Paton, A.J.; Springate, D.; Suddee, S.; Otieno, D.; Grayer, R.J.; Harley, M.M.; Willis, F.; Simmonds, M.S.J.; Powell, M.P.; Savolainen, V. Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Mol. Phylogenet. Evol. 2004, 31, 277–299. [Google Scholar] [CrossRef]
- Marotti, M.; Piccaglia, R.; Giovanelli, E. Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. J. Agric. Food Chem. 1996, 44, 3926–3929. [Google Scholar] [CrossRef]
- Paton, A.; Putievsky, E. Taxonomic problems and cytotaxonomic relationships between varieties of Ocimum basilicum and related species (Labiatae). Kew Bull. 1996, 5, 509–524. [Google Scholar] [CrossRef]
- Darrah, H. Investigations of the cultivars of basils (Ocimum). Econ. Bot. 1974, 28, 63–67. Available online: https://www.jstor.org/stable/4253469 (accessed on 1 January 2025). [CrossRef]
- Spence, C. Coriander: A most divisive herb? Int. J. Gastron. Food Sci. 2023, 33, 100779. [Google Scholar]
- Spence, C. Lovage: A neglected culinary herb? Int. J. Gastron. Food Sci. 2023, 33, 100764. [Google Scholar]
- Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative study of essential oils extracted from Egyptian basil leaves (Ocimum basilicum L.) using hydro-distillation and solvent-free microwave extraction. Molecules 2016, 21, 113. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Ozcan, M.M. Comparative essential oil composition of flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food Chem. 2008, 110, 501–503. [Google Scholar] [PubMed]
- Ahmed, E.A.; Hassan, E.A.; Tobgy, K.M.; Ramadan, E.M. Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Ann. Agric. Sci. 2014, 59, 273–280. [Google Scholar]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar]
- Bravo, E.; Amrani, S.; Aziz, M.; Harnafi, H.; Napolitano, M. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages. Fitoterapia 2008, 79, 515–523. [Google Scholar] [PubMed]
- Wang, Z.F.; Chen, P.; Yu, L.L.; Harrington, P.D. Authentication of organically and conventionally grown basils by gas chromatography/mass spectrometry chemical profiles. Anal. Chem. 2013, 85, 2945–2953. [Google Scholar]
- Kandil, M.A.M.; Khatab, M.E.; Ahmed, S.S.; Schnug, E. Herbal and essential oil yield of Genovese basil (Ocimum basilicum L.) grown with mineral and organic fertilizer sources in Egypt. J. Kulturpflanzen. 2009, 61, 443–449. [Google Scholar]
- Miele, M.; Dondero, R.; Ciarallo, G.; Mazzei, M. Methyl eugenol in Ocimum basilicum L. Cv. Genovese gigante. J. Agric. Food Chem. 2001, 49, 517–521. [Google Scholar]
- Woliso, W.G.; Abuwey, D.; Fikadu, D.; Bansa, A.; Alemu, A.; Melka, B.; Mokonin, M. Performance of Ethiopian sweet basil (Ocimum bacilicum L) genotypes for agronomic and chemical traits in Ethiopia. Adv. Crop Sci. Technol. 2022, 10, 527. [Google Scholar] [CrossRef]
- Gebrehiwot, H.; Bachetti, R.K.; Dekebo, A. Chemical composition and antimicrobial activities of leaves of sweet basil (Ocimum basilicum L.) herb. Int. J. Basic Clin. Pharmacol. 2015, 4, 869–875. [Google Scholar] [CrossRef]
- Telci, I.; Bayram, E.; Yilmaz, G.; Avci, B. Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochem. Syst. Ecol. 2006, 34, 489–497. [Google Scholar] [CrossRef]
- Vina, A.; Murillo, E. Essential oil composition from twelve varieties of basil (Ocimum spp.) grown in Colombia. J. Braz. Chem. Soc. 2003, 14, 744–749. [Google Scholar]
- Ozcan, M.; Chalchat, J.C. Essential oil composition of Ocimum basilicum L. and Ocimum minimum L. in Turkey. Czech J. Food Sci. 2002, 20, 223–228. [Google Scholar]
- Keita, S.M.; Vincent, C.; Schmit, J.P.; Belanger, A. Essential oil composition of Ocimum basilicum L., O. gratissimum L and O. suave L in the Republic of Guinea. Flavour Fragr. J. 2000, 15, 339–341. [Google Scholar] [CrossRef]
- Posmyk, M.M.; Szafrańska, K. Biostimulators: A New Trend towards Solving an Old Problem. Front. Plant Sci. 2016, 7, 748. [Google Scholar]
- Toscano, S.; Romano, D.; Massa, D.; Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulant Applications in Low Input Horticultural Cultivation Systems. Italus Hortus 2018, 25, 27–36. [Google Scholar]
- Godlewska, K.; Ronga, D.; Michalak, I. Plant Extracts—Importance in Sustainable Agriculture. Ital. J. Agron. 2021, 16, 149–171. [Google Scholar]
- La Torre, A.; Battaglia, V.; Caradonia, F. An Overview of the Current Plant Biostimulant Legislations in Different European Member States: Plant Biostimulants. J. Sci. Food Agric. 2016, 96, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Wise, K.; Gill, H.; Selby-Pham, J. Willow Bark Extract and the Biostimulant Complex Root Nectar Increase Propagation Efficiency in Chrysanthemum and Lavender Cuttings. Sci. Hortic. 2020, 263, 109108. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants Research in Some Horticultural Plant Species—A Review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Mian, G.; Cantone, P.; Golinelli, F. First Evidence of the Effect of a New Biostimulant Made by Fabaceae Tissue on Ripening Dynamics and Must Technological Main Parameters in Vitis vinifera ‘Ribolla Gialla’. Acta Hortic. 2022, 1333, 317–322. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar]
- Κhan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Bowes, K.M.; Zheljazkov, V.D. Factors affecting yields and essential oil quality of Ocimum sanctum L. and Ocimum basilicum L. cultivars. J. Am. Soc. Hortic. Sci. 2004, 129, 789–794. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Callahan, A.; Cantrell, C.L. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J. Agric. Food Chem. 2007, 56, 241–245. [Google Scholar] [CrossRef]
- Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil Ocimum basilicum L. and thyme leaves Thymus vulgaris L. and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M.; Singh, A.K.; Kalra, A.; Yadav, A.; Patra, D.D. Enhancing productivity of Indian basil (Ocimum basilicum L.) through harvest management under rainfed conditions of subtropical north Indian plains. Ind. Crops Prod. 2010, 32, 601–606. [Google Scholar] [CrossRef]
- Varban, D.L.; Duda, M.M.; Varban, R. The study of the Ocimum basilicum L. species cultivated in organic system. Pro Environ. 2010, 3, 284–288. [Google Scholar]
- Wannissorn, B.; Jarikasem, S.; Siriwangchai, T.; Thubthimthed, S. Antibacterial properties of essential oils from Thai medicinal plants. Fitoterapia 2005, 76, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Copetta, A.; Lingua, G.; Berta, G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 2006, 16, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Giannoulis, K.; Platis, I.; Gougoulias, N.; Wogiatzi, E. Influence of Trichoderma harzianum and Glomus mycorrhiza on biomass and essential oil yield of organic Ocimum basilicum cultivation. Agric. For. 2020, 66, 139–154. [Google Scholar] [CrossRef]
- Kandeel, A.M.; Naglaa, S.A.T.; Sadek, A.A. Effect of biofertilizers on the growth, volatile oil yield and chemical composition of Ocimum basilicum L. plant. Ann. Agric. Sci. Cairo 2002, 1, 351–371. [Google Scholar]
- Rao, B.R.R. Biomass and essential oil yields of rainfed palmarosa (Cymbopogon martinii (Roxb) wats var. motia Burk) supplied with different levels of organic manure and fertilizer nitrogen in semi-arid tropical climate. Ind. Crop Prod. 2001, 14, 171–178. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- FAO. The International Support Programme for Irrigation Water Management Land and Water Development Division; FAO Via delle Terme di Caracalla: Rome, Italy, 1986; pp. 1–74. [Google Scholar]
- Tegou, A.; Giannoulis, K.D.; Zournatzis, E.; Papadopoulos, S.; Bartzialis, D.; Danalatos, N.G.; Wogiatzi-Kamvoukou, E. Assessing the Impact of Irrigation and Biostimulants on the Yield and Quality Characteristics of Two Different St. John’s Wort Cultivars in Their Second Growing Season. Plants 2024, 13, 3573. [Google Scholar] [CrossRef]
- Tsivelika, N.; Sarrou, E.; Gusheva, K.; Pankou, C.; Koutsos, T.; Chatzopoulou, P.; Mavromatis, A. Phenotypic variation of wild Chamomile (Matricaria chamomilla L.) populations and their evaluation for medicinally important essential oil. Biochem. Syst. Ecol. 2018, 80, 21–28. [Google Scholar] [CrossRef]
- Sarrou, E.; Tsivelika, N.; Chatzopoulou, P.; Tsakalidis, G.; Menexes, G.; Mavromatis, A. Conventional breeding of Greek oregano (Origanum vulgare ssp. Hirtum) and development of improved cultivars for yield potential and essential oil quality. Euphytica 2017, 213, 104. [Google Scholar]
- Adams, R.P. Identification of Volatile Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Co.: Carol Stream, IL, USA, 1995. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. A Biometrical Approach, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1982; p. 633. [Google Scholar]
- Blank, A.F.; Rosa, Y.R.S.; Carvalho Filho, J.L.S.d.; Santos, C.A.d.; Arrigoni-Blank, M.d.F.; Niculau, E.d.S.; Alves, P.B. A diallel study of yield components and essential oil constituents in basil (Ocimum basilicum L.). Ind. Crops Prod. 2012, 38, 93–98. [Google Scholar]
- Zheljazkov, V.D.; Cantrell, C.L.; Evans, W.B.; Ebelhar, M.W.; Coker, C. Yield and composition of Ocimum basilicum L. and Ocimum sanctum L. grown at four locations. HortScience 2008, 43, 737–741. [Google Scholar]
- Anwar, M.; Patra, D.D.; Chand, S.; Kumar, A.; Naqvi, A.A.; Khanuja, S.P.S. Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation, and oil quality of French basil. Commun. Soil Sci. Plant Anal. 2005, 36, 1737–1746. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Kamvoukou, C.A.; Gougoulias, N.; Wogiatzi, E. Irrigation and nitrogen application affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition. Ind. Crops Prod. 2020, 150, 112392. [Google Scholar]
- Smitha, G.R.; Basak, B.B.; Thondaiman, V.; Saha, A. Nutrient Management through Organics, Bio-Fertilizers and Crop Residues Improves Growth, Yield and Quality of Sacred Basil (Ocimum sanctum Linn). Ind. Crop. Prod. 2019, 128, 599–606. [Google Scholar]
- Saha, S.; Monroe, A.; Day, M.R. Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- Sifola, M.I.; Barbieri, G. Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hortic. 2006, 108, 408–413. [Google Scholar]
- Ram, M.; Ram, D.; Roy, S.K. Influence of an organic mulching on fertilizer nitrogen use efficiency and herb and essential oil yields in geranium (Pelargonium graveolens). Biores. Technol. 2003, 87, 273–278. [Google Scholar] [CrossRef]
- Ottaiano, L.; Di Mola, I.; Cozzolino, E.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Biostimulant Application under Different Nitrogen Fertilization Levels: Assessment of Yield, Leaf Quality, and Nitrogen Metabolism of Tunnel-Grown Lettuce. Agronomy 2021, 11, 1613. [Google Scholar] [CrossRef]
- Sabatino, L.; Consentino, B.B.; Ntatsi, G.; La Bella, S.; Baldassano, S.; Rouphael, Y. Stand-Alone or Combinatorial Effects of Grafting and Microbial and Non-Microbial Derived Compounds on Vigour, Yield and Nutritive and Functional Quality of Greenhouse Eggplant. Plants 2022, 11, 1175. [Google Scholar] [CrossRef] [PubMed]
- Consentino, B.B.; Vultaggio, L.; Sabatino, L.; Ntatsi, G.; Rouphael, Y.; Bondì, C.; De Pasquale, C.; Guarino, V.; Iacuzzi, N.; Capodici, G. Combined effects of biostimulants, N level and drought stress on yield, quality and physiology of greenhouse-grown basil. Plant Stress 2023, 10, 100268. [Google Scholar] [CrossRef]
- Ioannidis, D.; Bonner, L.; Johnson, C.B. UN-B is required for normal development of oil glands in Ocimum basilicum L. (sweet basil). Ann. Bot. 2002, 90, 453–460. [Google Scholar] [CrossRef]
- Fahlen, A.; Welander, M.; Wennersten, R. Effects of light-temperature regimes on plant growth and essential oil yield of selected aromatic plants. J. Sci. Food Agric. 1997, 73, 111–119. [Google Scholar] [CrossRef]
- Wetzeil, S.B.; Kruger, H.; Hammer, K.; Bachmann, K. Investigations on morphological and molecular variability of Ocimum L. species. J. Herbs Spices Med. Plants 2002, 9, 8183–8187. [Google Scholar]
- Pino, J.A.; Roncal, E.; Rosado, A.; Goire, I. The essential oil of Ocimum basilicum L. from Cuba. J. Essent. Oil Res. 1994, 6, 89–90. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Antimicrobial activity of basil (Ocimum basilicum) oil against salmonella enteritidis in vitro and in food. Biosci. Biotechnol. Biochem. 2010, 74, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.E.; Farrag, E.S. Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Food/Nahrung 2003, 47, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Onofrei, V.; Benchennouf, A.; Jancheva, M.; Loupassaki, S.; Ouaret, W.; Burducea, M.; Lobiuc, A.; Teliban, G.C.; Robu, T. Ecological foliar fertilization effects on essential oil composition of sweet basil (Ocimum basilicum L.) cultivated in a field system. Sci. Hortic. 2018, 239, 104–113. [Google Scholar] [CrossRef]
- Rao, B.R.R.; Kotharia, S.K.; Rajput, D.K.; Patel, R.P.; Darokar, M.P. Chemical and biological diversity in fourteen selections of four Ocimum species. Nat. Prod. Commun. 2011, 6, 1705–1710. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar]
- Pozzatti, P.; Scheid, L.A.; Spader, T.B.; Atayde, M.L.; Santurio, J.M.; Alves, S.H. In vitro activity of essential oils extracted from plants used as spices against fluconazole resistant and fluconazole-susceptible Candida spp. Can. J. Microbiol. 2008, 54, 950–956. [Google Scholar] [CrossRef]
- Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat. Prod. Commun. 2015, 10, 1473–1478. [Google Scholar]
- Cardoso, N.N.R.; Alviano, C.S.; Blank, A.F.; Romanos, M.T.V.; Fonseca, B.B.; Rozental, S.; Rodrigues, I.A.; Alviano, D.S. Synergism effect of the essential oil from Ocimum basilicum var. Maria Bonita and its major components with fluconazole and its influence on ergosterol biosynthesis. Evid. Based. Complement. Alternat. Med. 2016, 2016, 5647182. [Google Scholar] [PubMed]
- Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basil—An essential oil from Ocimum basilicum L.—Against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods 2003, 54, 105–110. [Google Scholar] [PubMed]
- Aktsoglou, D.C.; Kasampalis, D.S.; Sarrou, E.; Tsouvaltzis, P.; Chatzopoulou, P.; Martens, S.; Siomos, A.S. Protein Hydrolysates Supplement in the Nutrient Solution of Soilless Grown Fresh Peppermint and Spearmint as a Tool for Improving Product Quality. Agronomy 2021, 11, 317. [Google Scholar] [CrossRef]
- Ortiz, A.; Graell, J.; Lara, I. Volatile ester-synthesising capacity throughout on-tree maturation of ‘Golden Reinders’ apples. Sci. Hortic. 2011, 131, 6–14. [Google Scholar] [CrossRef]
- Pinto, J.; Blank, A.; Nogueira, P.C.; Arrigoni-Blank, M.d.F.; Andrade, T.; Sampaio, T.S.; Pereira, K. Chemical characterization of the essential oil from leaves of basil genotypes cultivated in different seasons. Bol. Latinoam. Caribe Plantas Med. Aromat. 2019, 18, 58–70. [Google Scholar]
- Simon, J.E.; Reiss-Buhenheinra, D.; Joly, R.J.; Charles, D.J. Water stress induced alterations in essential oil content and composition of sweet basil. J. Essen. Oil Res. 1992, 4, 71–75. [Google Scholar] [CrossRef]
- Khalid, K.A. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). Int. Agrophys. 2006, 20, 289–296. [Google Scholar]
- Phippen, W.B.; Simon, J.E. Anthocyanin inheritance and instability in purple basil (Ocimum basilicum L.). J. Hered. 2000, 91, 289–296. [Google Scholar] [PubMed]
- Smitha, G.R.; Tripathy, V. Seasonal variation in the essential oils extracted from leaves and inflorescence of different Ocimum species grown in Western plains of India. Ind. Crop Prod. 2016, 94, 52–64. [Google Scholar]
- Saran, P.L.; Tripathy, V.; Saha, A.; Kalariya, K.A.; Suthar, M.K.; Kumar, J. Selection of superior Ocimum sanctum L. Accessions for industrial application. Ind. Crop Prod. 2017, 108, 700–707. [Google Scholar]
- Jordan, M.J.; Quilez, M.; Luna, M.C.; Bekhradi, F.; Sotomayor, J.; Sanchez-Gomez, P.; Gil, M.I. Influence of Water Stress and Storage Time on Preservation of the Fresh Volatile Profile of Three Basil Genotypes. Food Chem. 2017, 221, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R. Sweet basil essential oil composition: Relationship between cultivar, foliar feeding with nitrogen and oil content. J. Essent. Oil Res. 2012, 24, 217–227. [Google Scholar] [CrossRef]
- Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017, 17, 60. [Google Scholar]
- Císarová, M.; Tančinová, D.; Medo, J.; Kačániová, M. The in vitro effect of selected essential oils on the growth and mycotoxin production of Aspergillus species. J. Environ. Sci. Health Part B 2016, 51, 668–674. [Google Scholar]
- Shirazi, M.T.; Gholami, H.; Kavoosi, G.; Rowshan, V.; Tafsiry, A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Sci. Nutr. 2014, 2, 146–155. [Google Scholar]
- Bozin, B.; Mimca-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar]
Fresh Weight | Dry Weight | |||||
---|---|---|---|---|---|---|
1st Sampling | 2nd Sampling | Total | 1st Sampling | 2nd Sampling | Total | |
kg ha−1 | ||||||
Varieties | ||||||
V1 | 10,553 | 18,946 | 29,499 | 1537 | 2972 | 4509 |
V2 | 4842 | 11,695 | 16,537 | 703 | 1578 | 2281 |
V3 | 8491 | 14,086 | 22,576 | 912 | 1484 | 2396 |
V4 | 7483 | 12,034 | 19,517 | 858 | 1391 | 2249 |
V5 | 6241 | 9948 | 16,189 | 729 | 1214 | 1942 |
LSD0.05 | 1090.3 | 1645.1 | 2050.1 | 153.7 | 240.6 | 299.7 |
Biostimulants | ||||||
B1 | 6739 | 12,131 | 18,871 | 829 | 1604 | 2433 |
B2 | 8033 | 14,731 | 22,764 | 1022 | 1895 | 2917 |
B3 | 7602 | 13,192 | 20,794 | 938 | 1695 | 2633 |
B4 | 7714 | 13,312 | 21,026 | 1002 | 1717 | 2720 |
LSD0.05 | ns | 1479.4 | 1833.7 | 137.5 | ns | 268 |
Interactions | ||||||
LSD0.05 | ns | ns | ||||
CV (%) | 17.5 | 15.0 | 11.9 | 19.6 | 16.8 | 13.6 |
Compounds | V1 | V2 | V3 | V4 | V5 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B1 | B2 | B3 | B4 | B1 | B2 | B3 | B4 | B1 | B2 | B3 | B4 | B1 | B2 | B3 | B4 | |
1,8-cineole | 1.4 | 1.7 | 1.5 | 1.4 | 1.0 | 0.5 | 0.2 | 0.7 | 11.2 | 11.7 | 12.0 | 9.7 | 19.1 | 20.3 | 20.7 | 21.1 | 8.6 | 9.6 | 10.2 | 10.1 |
cis-Sabinene hydrate | 1.5 | 1.6 | 1.5 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 1.3 | 1.1 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
cis-Linalool oxide | 1.2 | 1.4 | 1.3 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
trans-Linalool oxide | 1.5 | 1.6 | 1.5 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Terpinolene | 1.0 | 1.1 | 1.1 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Linalool | 41.0 | 42.0 | 41.7 | 39.7 | 0.5 | 0.6 | 0.5 | 0.5 | 40.1 | 33.8 | 33.0 | 37.1 | 33.3 | 36.1 | 36.4 | 36.6 | 55.5 | 54.1 | 54.9 | 53.3 |
Camphor | 0.0 | 3.4 | 0.0 | 0.0 | 2.1 | 2.5 | 2.3 | 2.4 | 0.0 | 0.0 | 0.8 | 0.0 | 2.3 | 2.2 | 2.1 | 2.1 | 0.5 | 0.6 | 0.7 | 0.0 |
Terpinen-4-ol | 6.6 | 4.6 | 6.7 | 6.7 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 5.1 | 4.3 | 4.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
α-Terpineol | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 1.3 | 1.2 | 1.2 | 1.1 | 1.9 | 2.1 | 2.1 | 2.2 | 1.0 | 1.0 | 1.0 | 1.1 |
Methyl chavicol | 0.0 | 0.0 | 0.0 | 0.0 | 81.7 | 77.4 | 75.4 | 79.0 | 1.5 | 10.6 | 17.4 | 12.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nerol | 1.4 | 6.3 | 1.4 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Neral | 12.3 | 5.3 | 11.4 | 12.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Geranial | 18.5 | 7.8 | 17.4 | 18.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bornyl acetate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 1.8 | 1.7 | 1.6 | 1.8 | 1.3 | 1.5 | 1.4 | 1.1 |
Eugenol | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.6 | 1.2 | 1.3 | 1.2 | 13.7 | 11.1 | 11.0 | 10.8 | 10.7 | 9.7 | 9.0 | 8.6 |
Neryl acetate | 0.9 | 1.6 | 0.8 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
β-Elemene | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.4 | 0.6 | 0.2 | 1.7 | 1.9 | 1.5 | 1.5 | 3.0 | 2.1 | 2.0 | 1.9 | 1.2 | 1.2 | 1.1 | 1.2 |
Methyl eugenol | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.2 | 1.5 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ε-Caryophyllene | 1.7 | 3.3 | 2.0 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
α-trans-Bergamotene | 4.2 | 2.5 | 4.8 | 4.9 | 4.5 | 5.7 | 6.1 | 5.3 | 12.8 | 11.2 | 9.4 | 10.8 | 4.8 | 5.1 | 5.3 | 4.8 | 9.2 | 9.6 | 9.6 | 11.1 |
α-Guaiene | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.5 | 0.0 | 0.0 | 0.4 | 0.3 | 0.3 | 0.5 |
Germacrene D | 0.0 | 0.4 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 2.6 | 1.9 | 2.3 | 1.8 | 1.6 | 1.7 | 1.6 | 1.0 | 0.9 | 0.8 | 1.1 |
α-Bulnesene | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 1.1 | 0.8 | 0.9 | 2.7 | 1.7 | 1.7 | 1.7 | 1.0 | 0.9 | 0.9 | 0.8 |
γ-Cadinene | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 1.7 | 1.9 | 1.5 | 3.7 | 3.6 | 3.0 | 3.4 | 2.3 | 2.3 | 2.2 | 2.2 | 1.7 | 1.9 | 1.8 | 1.9 |
trans-α-Bisabolene | 1.2 | 1.7 | 1.6 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Spathulenol | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.4 | 0.5 | 1.2 | 1.1 | 1.2 | 0.5 | 0.6 | 0.5 | 0.8 |
Caryophyllene oxide | 2.9 | 3.2 | 2.9 | 3.3 | 0.6 | 0.8 | 0.8 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1,10-di-epicubenol | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.7 | 0.7 | 0.6 | 1.3 | 1.3 | 1.1 | 1.1 | 0.4 | 0.5 | 0.4 | 0.5 | 0.7 | 0.7 | 0.6 | 0.7 |
epi-α-Cadinol | 0.0 | 0.0 | 0.0 | 0.0 | 3.1 | 4.4 | 4.9 | 3.7 | 10.1 | 10.3 | 8.9 | 9.5 | 6.7 | 7.3 | 7.1 | 6.9 | 5.2 | 5.7 | 5.2 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannoulis, K.D.; Bartzialis, D.; Asimaki, K.; Breza, A.-Z.; Malamou, P.-K.; Zournatzis, E.; Wogiatzi-Kamvoukou, E.; Danalatos, N.G. The Impact of Biostimulants on the Yield and Quality Attributes of Essential Oil from Different Basil Varieties. Crops 2025, 5, 14. https://doi.org/10.3390/crops5020014
Giannoulis KD, Bartzialis D, Asimaki K, Breza A-Z, Malamou P-K, Zournatzis E, Wogiatzi-Kamvoukou E, Danalatos NG. The Impact of Biostimulants on the Yield and Quality Attributes of Essential Oil from Different Basil Varieties. Crops. 2025; 5(2):14. https://doi.org/10.3390/crops5020014
Chicago/Turabian StyleGiannoulis, Kyriakos D., Dimitrios Bartzialis, Kyriaki Asimaki, Argiro-Zoi Breza, Paraskevi-Konstantina Malamou, Elias Zournatzis, Eleni Wogiatzi-Kamvoukou, and Nicholaos G. Danalatos. 2025. "The Impact of Biostimulants on the Yield and Quality Attributes of Essential Oil from Different Basil Varieties" Crops 5, no. 2: 14. https://doi.org/10.3390/crops5020014
APA StyleGiannoulis, K. D., Bartzialis, D., Asimaki, K., Breza, A.-Z., Malamou, P.-K., Zournatzis, E., Wogiatzi-Kamvoukou, E., & Danalatos, N. G. (2025). The Impact of Biostimulants on the Yield and Quality Attributes of Essential Oil from Different Basil Varieties. Crops, 5(2), 14. https://doi.org/10.3390/crops5020014