How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?
Abstract
1. Introduction
2. Status of Autonomous Trucks Development
3. Research Methodology
- -
- What is the status of autonomous trucks in ND’s agricultural industry?
- -
- How does AT impact ND’s agricultural supply chain?
- -
- What are the pressing challenges of AT implementation in ND?
3.1. Categorization of Relevant Papers
Author | Technological | Economic | Social Change | Legality | Environment | Challenges |
---|---|---|---|---|---|---|
Bayar et al. [46] | √ | √ | ||||
C. Badgujar et al. [47] | √ | √ | √ | |||
Guo & Zhang [48] | √ | √ | ||||
Liu et al. [49] | √ | √ | √ | |||
Zha et al. [50] | √ | √ | ||||
Kassai et al. [19] | √ | √ | √ | |||
Durand-Petiteville et al. [51] | √ | √ | √ | |||
C. Badgujar et al. [52] | √ | √ | √ | |||
Hunter et al. [53] | √ | √ | ||||
C. M. Badgujar et al. [54] | √ | √ | ||||
Mack et al. [55] | √ | √ | √ | |||
Faryadi & Mohammadpour Velni [56] | √ | √ | √ | |||
Bell et al. [57] | √ | √ | ||||
Neupane et al. [58] | √ | √ | √ | √ | √ | |
Alves Nogueira et al. [59] | √ | √ | √ | |||
Joseph D. Rounsaville et al. [60] | √ | |||||
Badgujar et al. [61] | √ | √ | √ | |||
Li et al. [62] | √ | √ | ||||
Deka et al. [63] | √ | √ | ||||
Carrière & Hermand [64] | √ | |||||
Chi et al. [65] | √ | √ | ||||
Kim et al. [15] | √ | √ | ||||
Bridgelall [66] | √ | √ | ||||
Bridgelall et al. [42] | √ | √ | √ | √ | √ | √ |
Joshua Krank [67] | √ | √ | ||||
Etezadi & Eshkabilov [68] | √ | √ | ||||
Talebian & Mishra [69] | √ | √ | √ | |||
Uddin [70] | √ | √ | √ | √ | ||
Du et al. [71] | √ | √ | ||||
Fagnant & Kockelman [72] | √ | √ | √ | √ | √ | |
Pedersen et al. [73] | √ | √ | ||||
Sara et al. [74] | √ | √ | √ | √ | ||
Jones et al. [41] | √ | |||||
Stock & Gardezi [75] | √ | √ | √ | |||
Guangnan Chen [76] | √ | √ | ||||
Mirzazadeh et al. [77] | √ | √ | √ | √ |
Author | Technological | Economic | Social Change | Legality | Environment | Challenges |
---|---|---|---|---|---|---|
Pederson [78] | √ | |||||
Christopher Joseph Duchsherer [79] | √ | √ | ||||
Niederluecke et al. [80] | √ | √ | ||||
Delavarpour et al. [81] | √ | |||||
Dooley [82] | √ | |||||
Mirzazadeh [83] | √ | √ | √ | |||
Richard Bishop [84] | √ | √ | √ | |||
Greg Lardy [21] | √ | √ | ||||
Maynard Factor [34] | √ | √ | √ | |||
Mike Metzger [6] | √ | √ | √ | |||
John Sova [85] | √ | |||||
Brian Routhier [33] | √ | √ | √ | |||
Russ Buchhilz [86] | √ | √ | √ | |||
Raj Bridgelall [87] | √ | √ | √ | |||
Heidi Corcoran [35] | √ | √ | √ | √ | ||
Ron Hall [88] | √ | √ | √ | √ |
3.2. Technology Readiness Level Assessment
4. Results and Discussion
4.1. Impacts of Autonomous Trucks on the North Dakota Agricultural Supply Chain
4.2. Technology Readiness Level Analysis
4.3. Challenges of Autonomous Truck System Implementation
4.4. Future Development of Autonomous Trucking
4.5. Policy and Research Implications
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khayyam, H.; Javadi, B.; Jalili, M.; Jazar, R.N. Artificial Intelligence and Internet of Things for Autonomous Vehicles. In Nonlinear Approaches in Engineering Applications; Springer: Cham, Switzerland, 2020; pp. 39–68. [Google Scholar] [CrossRef]
- Anderhofstadt, B.; Spinler, S. Preferences for autonomous and alternative fuel-powered heavy-duty trucks in Germany. Transp. Res. D Transp. Environ. 2020, 79, 102232. [Google Scholar] [CrossRef]
- Ren, X.; Huang, B.; Yin, H. A review of the large-scale application of autonomous mobility of agricultural platform. Comput. Electron. Agric. 2023, 206, 107628. [Google Scholar] [CrossRef]
- Maung, T.A.; Gustafson, C.R. The economic feasibility of sugar beet biofuel production in central North Dakota. Biomass Bioenergy 2011, 35, 3737–3747. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, J.; Chai, X.; Liu, B.; Zhang, G.; Yao, W. Research status and development trend of key technology of agricultural machinery chassis in hilly and mountainous areas. Comput. Electron. Agric. 2024, 226, 109447. [Google Scholar] [CrossRef]
- Metzger, M. Autonomous Truck Platooning. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Mousazadeh, H. A technical review on navigation systems of agricultural autonomous off-road vehicles. J. Terramechanics 2013, 50, 211–232. [Google Scholar] [CrossRef]
- Upadhyay, A.; Zhang, Y.; Koparan, C.; Rai, N.; Howatt, K.; Bajwa, S.; Sun, X. Advances in ground robotic technologies for site-specific weed management in precision agriculture: A review. Comput. Electron. Agric. 2024, 225, 109363. [Google Scholar] [CrossRef]
- Prioleau, D.; Dames, P.; Alikhademi, K.; Gilbert, J.E. Barriers to the Adoption of Autonomous Vehicles in Rural Communities. In Proceedings of the 2020 IEEE International Symposium on Technology and Society (ISTAS), New York, NY, USA, 12–15 November 2020; pp. 91–98. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, W.; Deng, B.; Wang, Z.; Zhang, F.; Zheng, W.; Cao, W.; Nan, J.; Lian, Y.; Burke, A.F. Autonomous driving system: A comprehensive survey. Expert Syst. Appl. 2024, 242, 122836. [Google Scholar] [CrossRef]
- Hamilton, R.; Seager, H.; Divakarla, K.P.; Emadi, A.; Razavi, S. Modeling and Simulation of an Autonomous-capable Electrified Vehicle: A Review. In Proceedings of the 2018 IEEE Electrical Power and Energy Conference (EPEC), New York, NY, USA, 10–11 October 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Tao, X.; Mårtensson, J.; Warnquist, H.; Pernestål, A. Short-term maintenance planning of autonomous trucks for minimizing economic risk. Reliab. Eng. Syst. Saf. 2021, 220, 108251. [Google Scholar] [CrossRef]
- Babak, S.-J.; Hussain, S.A.; Karakas, B.; Cetin, S. Control of autonomous ground vehicles: A brief technical review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 224, 012029. [Google Scholar] [CrossRef]
- Cugurullo, F.; Acheampong, R.A.; Gueriau, M.; Dusparic, I. The transition to autonomous cars, the redesign of cities and the future of urban sustainability. Urban Geogr. 2021, 42, 833–859. [Google Scholar] [CrossRef]
- Kim, E.; Kim, Y.; Park, J. The Necessity of Introducing Autonomous Trucks in Logistics 4.0. Sustainability 2022, 14, 3978. [Google Scholar] [CrossRef]
- Dougherty, S.; Ellen, P.; Stowell, J.; Richards, A.W. Perceptions of Fully Autonomous Freight Trucks. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Gu, Y.; Goez, J.C.; Guajardo, M.; Wallace, S.W. Autonomous vessels: State of the art and potential opportunities in logistics. Int. Trans. Oper. Res. 2021, 28, 1706–1739. [Google Scholar] [CrossRef]
- Theoto, T.N.; Kaminski, P.C. A country-specific evaluation on the feasibility of autonomous vehicles. Prod. Manag. Dev. 2019, 17, 123–133. [Google Scholar] [CrossRef]
- Kassai, E.T.; Azmat, M.; Kummer, S. Scope of Using Autonomous Trucks and Lorries for Parcel Deliveries in Urban Settings. Logistics 2020, 4, 17. [Google Scholar] [CrossRef]
- Mahajan, K.; Masud, S.S.B.; Kondyli, A. Navigating the landscape of automated truck platooning: A systematic review on stakeholder perspectives, employment implications, and regulatory challenges. Transp. Res. Interdiscip. Perspect. 2024, 23, 101009. [Google Scholar] [CrossRef]
- Lardy, G. The Future of Autonomy in Agricultural Production and Marketing. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Kalk, B. How We Achieved Fully Autonomous Operations at Brønnøy Kalk. 2023. Available online: https://www.youtube.com/watch?v=5CesNA_VY4c (accessed on 16 February 2025).
- Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review. Comput. Electron. Agric. 2023, 205, 107584. [Google Scholar] [CrossRef]
- Holzinger, A.; Schweier, J.; Gollob, C.; Nothdurft, A.; Hasenauer, H.; Kirisits, T.; Häggström, C.; Visser, R.; Cavalli, R.; Spinelli, R.; et al. From Industry 5.0 to Forestry 5.0: Bridging the gap with Human-Centered Artificial Intelligence. Curr. For. Rep. 2024, 10, 442–455. [Google Scholar] [CrossRef]
- Wang, N.; Li, S.; Xiao, J.; Wang, T.; Han, Y.; Wang, H.; Zhang, M.; Li, H. A collaborative scheduling and planning method for multiple machines in harvesting and transportation operations-Part Ⅰ: Harvester task allocation and sequence optimization. Comput. Electron. Agric. 2025, 232, 110060. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Sturm, B.; Weltzien, C.; Fulton, J.; Khosla, R.; Schirrmann, M.; Raut, S.; Basavegowda, D.H.; Yamin, M.; Hameed, I.A. Digitalization of agriculture for sustainable crop production: A use-case review. Front. Environ. Sci. 2024, 12, 1375193. [Google Scholar] [CrossRef]
- Krishnan, R.; Perumal, E.; Govindaraj, M.; Kandasamy, L. Enhancing Logistics Operations Through Technological Advancements for Superior Service Efficiency; IGI Global: Hershey, PA, USA, 2024; pp. 61–82. [Google Scholar] [CrossRef]
- Feng, S.; Liu, Y.; Pressgrove, I.; Ben-Tzvi, P. Autonomous Alignment and Docking Control for a Self-Reconfigurable Modular Mobile Robotic System. Robotics 2024, 13, 81. [Google Scholar] [CrossRef]
- Olaleye, I.A.; Mokogwu, C.; Olufemi-Phillips, A.Q.; Adewale, T.T. Transforming supply chain resilience: Frameworks and advancements in predictive analytics and data-driven strategies. Open Access Res. J. Multidiscip. Stud. 2024, 8, 085–093. [Google Scholar] [CrossRef]
- Hu, Q.; Gu, W.; Wu, L.; Zhang, L. Optimal autonomous truck platooning with detours, nonlinear costs, and a platoon size constraint. Transp. Res. E Logist. Transp. Rev. 2024, 186, 103545. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, M.; Tang, T.; Adhikari, B.; Ma, Y. Advances in intelligent detection, monitoring, and control for preserving the quality of fresh fruits and vegetables in the supply chain. Food Biosci. 2023, 56, 103350. [Google Scholar] [CrossRef]
- Salama, R.; Al-Turjman, F. Smart Grid Environment, Data Security in the Internet of Things, and Supply Chain Ecosystem Transformation; IGI Global: Hershey, PA, USA, 2024; pp. 305–332. [Google Scholar] [CrossRef]
- Routhier, B. FMCSA ADS Safety Research. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Factor, M. Self-Driving Sugarbeet Truck Deployment. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Corcoran, H. Navigating New Roads: A Four-Pillar Framework for Connected & Automated Success in Rural & Tribal Communities. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Jantzi, D. North Dakota Agriculture in One Word–Diverse. U.S. Department of Agriculture. Available online: https://www.usda.gov/about-usda/news/blog/north-dakota-agriculture-one-word-diverse#:~:text=The%20Peace%20Garden%20State%20sold,Profile%20(PDF%2C%20920%20KB)! (accessed on 16 February 2025).
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef]
- Van de Ven, A.H. The innovation journey: You can’t control it, but you can learn to maneuver it. Innovation 2017, 19, 39–42. [Google Scholar] [CrossRef]
- Caputo, A.; Kargina, M. A user-friendly method to merge Scopus and Web of Science data during bibliometric analysis. J. Mark. Anal. 2022, 10, 82–88. [Google Scholar] [CrossRef]
- Echchakoui, S. Why and how to merge Scopus and Web of Science during bibliometric analysis: The case of sales force literature from 1912 to 2019. J. Mark. Anal. 2020, 8, 165–184. [Google Scholar] [CrossRef]
- Jones, R.; Bridgelall, R.; Tolliver, D. Route Risk Index for Autonomous Trucks. Appl. Sci. 2024, 14, 2892. [Google Scholar] [CrossRef]
- Bridgelall, R.; Jones, R.; Tolliver, D. Ranking Opportunities for Autonomous Trucks Using Data Mining and GIS. Geographies 2023, 3, 806–823. [Google Scholar] [CrossRef]
- McPhearson, T.; Cook, E.M.; Berbés-Blázquez, M.; Cheng, C.; Grimm, N.B.; Andersson, E.; Barbosa, O.; Chandler, D.G.; Chang, H.; Chester, M.V.; et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 2022, 5, 505–518. [Google Scholar] [CrossRef]
- Chester, M.V.; Miller, T.R.; Muñoz-Erickson, T.A.; Helmrich, A.M.; Iwaniec, D.M.; McPhearson, T.; Cook, E.M.; Grimm, N.B.; Markolf, S.A. Sensemaking for entangled urban social, ecological, and technological systems in the Anthropocene. npj Urban Sustain. 2023, 3, 39. [Google Scholar] [CrossRef]
- Sharifi, A. Resilience of urban social-ecological-technological systems (SETS): A review. Sustain. Cities Soc. 2023, 99, 104910. [Google Scholar] [CrossRef]
- Bayar, G.; Bergerman, M.; Koku, A.B.; Konukseven, E.I. Localization and control of an autonomous orchard vehicle. Comput. Electron. Agric. 2015, 115, 118–128. [Google Scholar] [CrossRef]
- Badgujar, C.; Das, S.; Figueroa, D.M.; Flippo, D.; Welch, S. Deep neural networks to predict autonomous ground vehicle behavior on sloping terrain field. J. Field Robot. 2023, 40, 919–933. [Google Scholar] [CrossRef]
- Guo, L.-S.; Zhang, Q. A low-cost integrated positioning system for autonomous off-highway vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 1997–2009. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.W.; Nardari, G.V.; Qu, C.; Cladera, F.; Taylor, C.J.; Kumar, V. Challenges and Opportunities for Autonomous Micro-UAVs in Precision Agriculture. IEEE Micro 2022, 42, 61–68. [Google Scholar] [CrossRef]
- Zha, J.; Yang, T.; Mueller, M.W. Agri-fly: Simulator for Uncrewed Aerial Vehicle Flight in Agricultural Environments. IEEE Access 2024, 12, 140900–140907. [Google Scholar] [CrossRef]
- Durand-Petiteville, A.; Le Flecher, E.; Cadenat, V.; Sentenac, T.; Vougioukas, S. Tree Detection with Low-Cost Three-Dimensional Sensors for Autonomous Navigation in Orchards. IEEE Robot. Autom. Lett. 2018, 3, 3876–3883. [Google Scholar] [CrossRef]
- Badgujar, C.; Flippo, D.; Welch, S. Artificial neural network to predict traction performance of autonomous ground vehicle on a sloped soil bin and uncertainty analysis. Comput. Electron. Agric. 2022, 196, 106867. [Google Scholar] [CrossRef]
- Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Pest Manag. Sci. 2020, 76, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Badgujar, C.M.; Flippo, D.; Brokesh, E.; Welch, S. Experimental Investigation on Traction, Mobility, and Energy Usage of a Tracked Autonomous Ground Vehicle on a Sloped Soil Bin. J. ASABE 2022, 65, 835–847. [Google Scholar] [CrossRef]
- Mack, E.A.; Miller, S.R.; Chang, C.-H.; Van Fossen, J.A.; Cotten, S.R.; Savolainen, P.T.; Mann, J. The politics of new driving technologies: Political ideology and autonomous vehicle adoption. Telemat. Inform. 2021, 61, 101604. [Google Scholar] [CrossRef]
- Faryadi, S.; Velni, J.M. A reinforcement learning-based approach for modeling and coverage of an unknown field using a team of autonomous ground vehicles. Int. J. Intell. Syst. 2021, 36, 1069–1084. [Google Scholar] [CrossRef]
- Bell, T.W.; Nidzieko, N.J.; Siegel, D.A.; Miller, R.J.; Nelson, N.B.; Reed, D.C.; Fedorov, D.; Moran, C.; Snyder, J.N.; Cavanaugh, K.C.; et al. The Utility of Satellites and Autonomous Remote Sensing Platforms for Monitoring Offshore Aquaculture Farms: A Case Study for Canopy Forming Kelps. Front. Mar. Sci. 2020, 7, 520223. [Google Scholar] [CrossRef]
- Neupane, J.; Maja, J.M.; Miller, G.; Marshall, M.; Cutulle, M.; Luo, J. Effect of Controlled Defoliant Application on Cotton Fiber Quality. Appl. Sci. 2023, 13, 5694. [Google Scholar] [CrossRef]
- Nogueira, E.A.; Rocha, B.M.; Vieira, G.d.S.; da Fonseca, A.U.; Felix, J.P.; Oliveira, A.; Soares, F. Enhancing Corn Image Resolution Captured by Unmanned Aerial Vehicles with the Aid of Deep Learning. IEEE Access 2024, 12, 149090–149098. [Google Scholar] [CrossRef]
- Rounsaville, J.D.; Dvorak, J.S.; Stombaugh, T.S. Methods for Calculating Relative Cross-Track Error for ASABE/ISO Standard 12188-2 from Discrete Measurements. Trans. ASABE 2016, 59, 1609–1616. [Google Scholar] [CrossRef]
- Badgujar, C.M.; Wu, H. Flippo, and E. Brokesh. Design, Fabrication, and Experimental Investigation of Screw Auger Type Feed Mechanism for a Robotic Wheat Drill. J. ASABE 2022, 65, 1333–1342. [Google Scholar] [CrossRef]
- Li, N.; Remeikas, C.; Xu, Y.; Jayasuriya, S.; Ehsani, R. Task Assignment and Trajectory Planning Algorithm for a Class of Cooperative Agricultural Robots. J. Dyn. Syst. Meas. Control 2015, 137, 4028849. [Google Scholar] [CrossRef]
- Deka, S.A.; Lee, D.; Tomlin, C.J. Towards Cyber–Physical Systems Robust to Communication Delays: A Differential Game Approach. IEEE Control Syst. Lett. 2022, 6, 2042–2047. [Google Scholar] [CrossRef]
- Carrière, O.; Hermand, J.-P. Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration. J. Acoust. Soc. Am. 2012, 131, 2668–2681. [Google Scholar] [CrossRef] [PubMed]
- Chi, G.; Wang, D.; Hagedorn, A.D. Future interstate highway system demands: Predictions based on population projections. Case Stud. Transp. Policy 2019, 7, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Bridgelall, R. Spatial Analysis of Middle-Mile Transport for Advanced Air Mobility: A Case Study of Rural North Dakota. Sustainability 2024, 16, 8949. [Google Scholar] [CrossRef]
- Krank, J. Robo-Crop: The Imminence of Autonomous Technology in Agriculture. 2020. Available online: https://heinonline.org/HOL/Page?collection=journals&handle=hein.journals/dragl25&id=497&men_tab=srchresults (accessed on 8 December 2024).
- Etezadi, H.; Eshkabilov, S. A Comprehensive Overview of Control Algorithms, Sensors, Actuators, and Communication Tools of Autonomous All-Terrain Vehicles in Agriculture. Agriculture 2024, 14, 163. [Google Scholar] [CrossRef]
- Talebian, A.; Mishra, S. Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry. Transp. Res. E Logist. Transp. Rev. 2022, 158, 102616. [Google Scholar] [CrossRef]
- Uddin, M. Factors Influencing Adoption and Adoption Intensity of Precision Agriculture Technologies in South Dakota. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2020. Available online: https://www.proquest.com/docview/2455823975?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 8 December 2024).
- Du, Y.; Zhang, G.; Tsang, D.; Jawed, M.K. Deep-CNN based Robotic Multi-Class Under-Canopy Weed Control in Precision Farming. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 2273–2279. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Fountas, S.; Blackmore, S. Economic potential of robots for high value crops and landscape treatment. In Precision Agriculture ’07; Brill|Wageningen Academic: Wageningen, The Netherlands, 2007; pp. 457–464. [Google Scholar] [CrossRef]
- Sara, G.; Todde, G.; Pinna, D.; Waked, J.; Caria, M. Implementation and Assessment of an Autonomous Ground Vehicle (AGV) for On-Field Agricultural Operations; Springer: Berlin/Heidelberg, Germany, 2024; pp. 340–348. [Google Scholar] [CrossRef]
- Stock, R.; Gardezi, M. Make bloom and let wither: Biopolitics of precision agriculture at the dawn of surveillance capitalism. Geoforum 2021, 122, 193–203. [Google Scholar] [CrossRef]
- Chen, G. Advances in Agricultural Machinery and Technologies; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Mirzazadeh, B.; Huang, Y.; Motuba, D. The Attitudes towards Autonomous Vehicles in a Medium-Sized Academic-Dominated U.S. Metropolitan Area with Cold Winters. Int. J. Hum. Comput. Interact. 2024, 40, 1033–1048. [Google Scholar] [CrossRef]
- Pederson, B. A Field Study on LiDAR Sensor for Unmanned Ground Vehicle Navigation Application in Precision Agriculture. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2022. Available online: https://www.proquest.com/openview/ecaffbcb2208ded27a769465bab3a77f/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 8 December 2024).
- Duchsherer, C.J. On the Profitability of UAS-Based NDVI Imagery for Variable Rate Nitrogen Prescriptions in Corn and Wheat in North Dakota. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2018. Available online: https://library.ndsu.edu/ir/items/d90d3e18-b593-4f46-a798-886219d04697 (accessed on 8 December 2024).
- Niederluecke, K.J.; Tremblay, B.E.; Merrill, R.K.C.; Ewing, S. Protecting Innovation Panel. 2024. Available online: https://law.und.edu/_files/docs/ndlr/pdf/issues/99/3/99ndlr523.pdf (accessed on 9 December 2024).
- Delavarpour, N. Design and Development of an Automatic Steering System for Agricultural Towed Implements. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2022. Available online: https://www.proquest.com/docview/2669532489?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 8 December 2024).
- Dooley, F.J. A Comprehensive Review and the Proposed Reorganization of North Dakota State Government Transportation Agencies (DP-65). 1988. Available online: https://rosap.ntl.bts.gov/view/dot/59801/dot_59801_DS1.pdf (accessed on 8 December 2024).
- Mirzazadeh, B. The Acceptance of Autonomous Vehicles and Their Impacts on Travel Behavior for an Academic Subpopulation in a Midsize U.S. Metropolitan Area with Extremely Cold Winters. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2022. Available online: https://www.proquest.com/docview/2699970944?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 8 December 2024).
- Bishop, R. Our Future with Autonomous Trucking. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Sova, J. Enhanced Inspection Program for ADS vehicles. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Buchhilz, R. Innovation for Transportation Systems. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Bridgelall, R. Digital Infrastructure: Planning for Autonomous Vehicles. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Hall, R. Engagement with Tribal Communities. In Autonomous Trucking in North Dakota: Prospects and Challenges; Upper Great Plains Transportation Institute: Bismarck, ND, USA, 2024. [Google Scholar]
- Hasiri, A.; Kermanshah, A. Exploring the Role of Autonomous Trucks in Addressing Challenges within the Trucking Industry: A Comprehensive Review. Systems 2024, 12, 320. [Google Scholar] [CrossRef]
- Sindi, S.; Woodman, R. Implementing commercial autonomous road haulage in freight operations: An industry perspective. Transp. Res. Part A Policy Pract. 2021, 152, 235–253. [Google Scholar] [CrossRef]
- Helmick, D.; Angelova, A.; Matthies, L. Terrain Adaptive Navigation for planetary rovers. J. Field Robot. 2009, 26, 391–410. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Ma, T.; Chen, Y. Initial Positioning of Terrain Relative Navigation Under Pseudo-Peaks Interference. IEEE Trans. Instrum. Meas. 2023, 72, 8506916. [Google Scholar] [CrossRef]
- Domínguez, M.; Fuertes, J.J.; Reguera, P.; Díaz, I.; Cuadrado, A.A. Internet-based remote supervision of industrial processes using self-organizing maps. Eng. Appl. Artif. Intell. 2007, 20, 757–765. [Google Scholar] [CrossRef]
- Papadimitriou, E.; Schneider, C.; Tello, J.A.; Damen, W.; Vrouenraets, M.L.; Broeke, A.T. Transport safety and human factors in the era of automation: What can transport modes learn from each other? Accid. Anal. Prev. 2020, 144, 105656. [Google Scholar] [CrossRef]
- Zhao, J.; Lee, J.Y. Effect of Connected and Autonomous Vehicles on Supply Chain Performance. Transp. Res. Rec. J. Transp. Res. Board. 2023, 2677, 402–424. [Google Scholar] [CrossRef]
- ESA. The ESA Science Technology Development Route. Sci-ft. Available online: https://sci.esa.int/web/sci-ft/-/50124-technology-readiness-level (accessed on 29 June 2025).
- EU. Europe 2020 Flagship Initiative Innovation Union: SEC(2010) 1161, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; EU Publications: Luxembourg, 2011. [Google Scholar] [CrossRef]
- Vik, J.; Melås, A.M.; Stræte, E.P.; Søraa, R.A. Balanced readiness level assessment (BRLa): A tool for exploring new and emerging technologies. Technol. Forecast. Soc. Chang. 2021, 169, 120854. [Google Scholar] [CrossRef]
- ISO 16290:2013; Space Systems—Definition of the Technology Readiness Levels (TRLs) and Their Criteria of Assessment. International Electrotechnical Commission: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/56064.html (accessed on 29 June 2025).
- Gunderson, D. Ag Industry Testing Driverless Trucks to Solve Labor Shortage|MPR News. Minnesota Public Radio. Available online: https://www.mprnews.org/story/2023/11/16/ag-industry-testing-driverless-trucks-to-solve-labor-shortage (accessed on 29 June 2025).
- Chiao, D. Autonomous Vehicles Moving Forward: Perspectives from Industry Leaders; McKinsey & Company: New York, NY, USA, 2024; Available online: https://www.mckinsey.com/features/mckinsey-center-for-future-mobility/our-insights/autonomous-vehicles-moving-forward-perspectives-from-industry-leaders (accessed on 29 June 2025).
- Heineke, K.; Heuss, R.; Kelkar, A.; Kellner, M. What’s Next for Autonomous Vehicles? | McKinsey. McKinsey & Company. Available online: https://www.mckinsey.com/features/mckinsey-center-for-future-mobility/our-insights/whats-next-for-autonomous-vehicles (accessed on 29 June 2025).
- Andrei, N.; Scarlat, C.; Ioanid, A. Transforming E-Commerce Logistics: Sustainable Practices through Autonomous Maritime and Last-Mile Transportation Solutions. Logistics 2024, 8, 71. [Google Scholar] [CrossRef]
- Nitsche, B. Exploring the Potentials of Automation in Logistics and Supply Chain Management: Paving the Way for Autonomous Supply Chains. Logistics 2021, 5, 51. [Google Scholar] [CrossRef]
- Bronson, K. Looking through a responsible innovation lens at uneven engagements with digital farming. NJAS Wagening. J. Life Sci. 2019, 90–91, 1–6. [Google Scholar] [CrossRef]
- Araújo, S.O.; Peres, R.S.; Barata, J.; Lidon, F.; Ramalho, J.C. Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities. Agronomy 2021, 11, 667. [Google Scholar] [CrossRef]
- CAD. US—Testing Infrastructure and Procedure Description. Connected and Automated Driving.eu. Available online: https://www.connectedautomateddriving.eu/regulation-and-policies/national-level/non-eu/us/ (accessed on 1 July 2025).
- Teleki, A.-C.; Fritz, M.; Kreimeyer, M. Use Cases for Automated Driving Commercial Vehicles; Springer: Berlin/Heidelberg, Germany, 2017; pp. 187–200. [Google Scholar] [CrossRef]
- McPeak, M. How Self-Driving Trucks Curtail the Driver Shortage. Food Logistics. Available online: https://www.foodlogistics.com/transportation/trucking/article/22865529/hale-trailer-how-selfdriving-trucks-curtail-the-driver-shortage (accessed on 17 February 2025).
- Schuster, A.M.; Agrawal, S.; Britt, N.; Sperry, D.; Van Fossen, J.A.; Wang, S.; Mack, E.A.; Liberman, J.; Cotten, S.R. Will automated vehicles solve the truck driver shortages? Perspectives from the trucking industry. Technol. Soc. 2023, 74, 102313. [Google Scholar] [CrossRef]
- Engesser, V.; Rombaut, E.; Vanhaverbeke, L.; Lebeau, P. Autonomous Delivery Solutions for Last-Mile Logistics Operations: A Literature Review and Research Agenda. Sustainability 2023, 15, 2774. [Google Scholar] [CrossRef]
- Ukoba, K.; Olatunji, K.O.; Adeoye, E.; Jen, T.-C.; Madyira, D.M. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy Environ. 2024, 35, 3833–3879. [Google Scholar] [CrossRef]
- Jain, S.; Ahuja, N.J.; Srikanth, P.; Bhadane, K.V.; Nagaiah, B.; Kumar, A.; Konstantinou, C. Blockchain and Autonomous Vehicles: Recent Advances and Future Directions. IEEE Access 2021, 9, 130264–130328. [Google Scholar] [CrossRef]
- Waltermann, J.; Henkel, S. Public discourse on automated vehicles in online discussion forums: A social constructionist perspective. Transp. Res. Interdiscip. Perspect. 2023, 17, 100743. [Google Scholar] [CrossRef]
- AVIA. State of AV 2024. 2024. Available online: https://cdn.prod.website-files.com/67ee365c25e6530594bd40c2/684b318f289049a3a648e077_2024%20state%20of%20av-compressed.pdf (accessed on 9 December 2024).
Eligibility | Exclusion Criteria | Inclusion Criteria |
---|---|---|
1 | The study is unrelated to agriculture or farming. | The study focuses on autonomous trucks or vehicle systems. |
2 | It lacks relevance to North Dakota or similar regions. | It relates to the agricultural or farming sector. |
3 | It mentions explicitly or applies to North Dakota. |
Readiness Level | TRL Category | Count | Percentage | Key Technologies |
---|---|---|---|---|
TRL 8–9 | Commercial | 17 | 39.5% | GPS/RTK, V2V Communication, Platooning |
TRL 6–7 | Development | 16 | 37.2% | Computer Vision, Path Planning |
TRL 4–5 | Validation | 8 | 18.6% | Cold-weather Sensors, Autonomous Docking |
TRL 1–3 | Research | 2 | 4.7% | Swarm Intelligence, Blockchain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, E.A.; Mattson, J.; Lu, P.; Akoto, E.T.; Boadu, S.; Atuobi, H.B.; Dadson, K.; Tolliver, D. How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry? Future Transp. 2025, 5, 100. https://doi.org/10.3390/futuretransp5030100
Thompson EA, Mattson J, Lu P, Akoto ET, Boadu S, Atuobi HB, Dadson K, Tolliver D. How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry? Future Transportation. 2025; 5(3):100. https://doi.org/10.3390/futuretransp5030100
Chicago/Turabian StyleThompson, Emmanuel Anu, Jeremy Mattson, Pan Lu, Evans Tetteh Akoto, Solomon Boadu, Herman Benjamin Atuobi, Kwabena Dadson, and Denver Tolliver. 2025. "How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?" Future Transportation 5, no. 3: 100. https://doi.org/10.3390/futuretransp5030100
APA StyleThompson, E. A., Mattson, J., Lu, P., Akoto, E. T., Boadu, S., Atuobi, H. B., Dadson, K., & Tolliver, D. (2025). How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry? Future Transportation, 5(3), 100. https://doi.org/10.3390/futuretransp5030100