Model-Based Bikeability Indexing for Inter-City Comparisons to Evaluate Infrastructure and Level of Service for Cyclists
Abstract
1. Introduction
’Bikeability: An assessment of an entire bikeway network for perceived comfort and convenience and access to important destinations’.
2. Literature Review
3. Methods
- Several German cities were selected for the subsequent comparison. The criteria for this selection were representativeness, ambition to expand urban cycling and availability of data. In addition, a selection of non-German comparison cities was performed, which were included in the comparison as examples.
- A bikeability calculation was carried out for each of these cities.
- The resulting geographical bikeability data was filtered and sampled to ensure comparability (see Section 3.4). The individual urban topological conditions of the sample cities were taken into account. The purpose of these calculations was to establish comparability of the individual values.
- The results of this calculation were overlaid with existing data to verify the validity of the calculation model. These data include surveys on the quality of cycling in the cities concerned, existing infrastructure analyzes and data on the modal split of cyclists in traffic (See Section 5).
3.1. Bikeability Calculation Algorithm
3.2. Input Parameters
3.3. Limitations of the Model
3.4. Comparability of Cities
- The worst 10% of all scores were removed in order to account for gray bands and errors in the network model.
- The 20% of buildings that were most distant from the city center were removed in order to account for the band of low scores around the city borders that is created by the calculation models.
4. Materials
4.1. Related Data and Points of Comparison
4.2. City Selection
5. Results
5.1. Reference Values
5.2. Calculated Bikeability Values
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bundesministerium für Digitales und Verkehr. Fahrrad-Monitor 2023. 2023. Available online: https://bmdv.bund.de/SharedDocs/DE/Artikel/StV/Radverkehr/fahrradmonitor.html (accessed on 30 April 2025).
- Kellershohn, J.; Maurer, F.; Jungbluth, C. Bikeability Scoring Auf Basis von Open Data—Ein Open-Source Modell. In New Players in Mobility; Springer Gabler: Wiesbaden, Germany, 2025; p. 12. [Google Scholar] [CrossRef]
- Lowry, M.; Callister, D.; Gresham, M.; Moore, B. Assessment of Communitywide Bikeability with Bicycle Level of Service. Transp. Res. Rec. J. Transp. Res. Board 2012, 2314, 41–48. [Google Scholar] [CrossRef]
- Winters, M.; Brauer, M.; Setton, E.; Teschke, K. Mapping Bikeability: A Spatial Tool to Support Sustainable Travel. 2013. Available online: https://journals.sagepub.com/doi/abs/10.1068/b38185 (accessed on 30 April 2025).
- Winters, M.; Teschke, K.; Brauer, M.; Fuller, D. Bike Score®: Associations between Urban Bikeability and Cycling Behavior in 24 Cities. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Titze, S.; Krenn, P.; Oja, P. Developing a Bikeability Index to Score the Biking-Friendliness of Urban Environments. J. Sci. Med. Sport 2012, 15, S29–S30. [Google Scholar] [CrossRef]
- Gehring, M.S.D.B. Bikeability—Index für Dresden—Wie fahrradfreundlich ist Dresden? Master’s Thesis, Technical University of Dresden, Dresden, Germany, 2017. [Google Scholar]
- Schmid-Querg, J.; Keler, A.; Grigoropoulos, G. The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability. Sustainability 2021, 13, 428. [Google Scholar] [CrossRef]
- Hardinghaus, M. Exploring Bikeability. Ph.D. Thesis, Humboldt-Universität zu Berlin, Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Hoedl, S.; Titze, S.; Oja, P. The Bikeability and Walkability Evaluation Table: Reliability and Application. Am. J. Prev. Med. 2010, 39, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Halldórsdóttir, K.; Rieser-Schüssler, N.; Axhausen, K.W.; Nielsen, O.A.; Prato, C.G. Efficiency of Choice Set Generation Methods for Bicycle Routes. Eur. J. Transp. Infrastruct. Res. 2014, 14, 332–348. [Google Scholar] [CrossRef]
- Owais, M.; Alshehri, A. Pareto Optimal Path Generation Algorithm in Stochastic Transportation Networks. IEEE Access 2020, 8, 58970–58981. [Google Scholar] [CrossRef]
- Almutairi, A.; Owais, M. Reliable Vehicle Routing Problem Using Traffic Sensors Augmented Information. Sensors 2025, 25, 2262. [Google Scholar] [CrossRef] [PubMed]
- Fosgerau, M.; Paulsen, M.; Rasmussen, T.K. A Perturbed Utility Route Choice Model. Transp. Res. Part C Emerg. Technol. 2022, 136, 103514. [Google Scholar] [CrossRef]
- Fosgerau, M.; Łukawska, M.; Paulsen, M.; Rasmussen, T.K. Bikeability and the Induced Demand for Cycling. Proc. Natl. Acad. Sci. USA 2023, 120, e2220515120. [Google Scholar] [CrossRef] [PubMed]
- Broer, K. Fietsbalans II: Competitiveness Bicycle Greatly Improved—Fietsberaad. 2008. Available online: https://www.fietsberaad.nl/Kennisbank/Fietsbalans-II-competitiveness-bicycle-greatly-imp (accessed on 30 April 2025).
- Hjalmar Christiansen, Marie Karen Anderson The Danish National Travel Survey Annual Statistical Report, 2024. DTU Center for Transport Analytics. Denmark 2024. Available online: https://www.man.dtu.dk/english/-/media/institutter/management/scientific-advice/transportvaneundersoegelsen/t-u/tu-udgivelser/tu_denmark_2024-engelsk.pdf (accessed on 30 April 2025).
- Nobis, C.; Kuhnimhof, T. MiD Ergebnisbericht. Technical Report, Infas, DLR, IVT und Infas 360; MiD Ergebnisbericht: Bonn, Berlin, 2018. [Google Scholar]
- Copenhagenize. Available online: https://copenhagenizeindex.eu/about/methodology (accessed on 30 April 2025).
- Luko. Le Classement 2022 des Meilleures Villes au Monde où Faire du Vélo. Available online: https://fr.luko.eu/conseils/guide/bike-index/ (accessed on 30 April 2025).
- ADFC. ADFC Fahrradklima-Test 2022: Städteranking. 2023. Available online: https://fahrradklima-test.adfc.de/ergebnisse (accessed on 30 April 2025).
- Kellershohn, J. Bikeability Comparison Data for MDPI Paper, 2025. Available online: https://zenodo.org/records/15064679 (accessed on 30 March 2025).
- Kellershohn, J.; Maurer, F. Bikeability—NOWUM Energy Git. 2024. Available online: https://github.com/NOWUM/bikeability (accessed on 30 March 2025).
- OpenStreetMap contributors. 2017. Planet Dump. Available online: https://planet.osm.org (accessed on 30 April 2025).
- Ferster, C.; Fischer, J.; Manaugh, K.; Nelson, T.; Winters, M. Using OpenStreetMap to Inventory Bicycle Infrastructure: A Comparison with Open Data from Cities. Int. J. Sustain. Transp. 2019, 14, 64–73. [Google Scholar] [CrossRef]
- Boeing, G. Modeling and Analyzing Urban Networks and Amenities with OSMnx. Geogr. Anal. 2025; published online ahead of print. Available online: https://geoffboeing.com/publications/osmnx-paper/ (accessed on 30 April 2025).
- Statistische Ämter des Bundes und der Länder. Unfallatlas. Available online: https://unfallatlas.statistikportal.de/ (accessed on 30 April 2025).
- Städte in Bewegung. Available online: https://www.agora-verkehrswende.de/veroeffentlichungen/staedte-in-bewegung (accessed on 30 April 2025).
- Fischer, B. Kosten Der Mobilität–Zahnlen Und Fakten Zu Den. Preisen Im Straßen- Und Schienenverkehr Sowie Deren Bedeutung Für Die Gesellschaft Und Den Klimaschutz, 2023. Available online: https://www.agora-verkehrswende.de/fileadmin/user_upload/99_Faktenblatt-Mobilitaetskosten.pdf (accessed on 30 April 2025).
- Lumiste, M. CycloRank. 2021. Available online: https://mlumiste.com/projects/cyclorank/ (accessed on 30 April 2025).
- Directorate-General for Research and Innovation (European Commission). EU Missions: 100 Climate Neutral and Smart Cities; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Melderegisterauswertung Stand 31.12.2024. 2025. Available online: https://www.aachen.de/aachen-entdecken/typisch-aachen/statistische-daten/melderegisterauswertung-stand-311224.pdf?cid=msj (accessed on 30 April 2025).
- Andrä, D.; Koch, F.; Schlattmann, T. Bevölkerung in Zahlen. 2024. Available online: https://statistikportal.dortmund.de/bevoelkerung/bevoelkerunginzahlen/#bev%C3%B6lkerungsstand (accessed on 30 April 2025).
- Dresden, L. Bevölkerungsentwicklung Laut Melderegister. 2024. Available online: https://www.dresden.de/de/leben/stadtportrait/statistik/bevoelkerung-gebiet/Bevoelkerungsbestand.php (accessed on 30 April 2025).
- Leipzig, B. Bevölkerungsbestand. 2024. Available online: https://statistik.leipzig.de/statcity/table.aspx?cat=2&rub=1&per=q (accessed on 30 April 2025).
- Mannheim, S. Bevölkerungsbestand 2023 in Kleinräumlicher Gliederung. 2024. Available online: https://www.mannheim.de/de/stadt-gestalten/daten-und-fakten/bevoelkerung (accessed on 30 April 2025).
- München, S.A. Statistische Daten Zur Münchner Bevölkerung. 2024. Available online: https://stadt.muenchen.de/infos/statistik-bevoelkerung.html (accessed on 30 April 2025).
- Bevölkerung Jahres-Statistik 2023. 2025. Available online: https://www.stadt-muenster.de/statistik-stadtforschung/zahlen-daten-fakten (accessed on 30 April 2025).
- CBS.nl. Huishoudens; Personen Naar Geslacht, Leeftijd En Regio, 1 Januari. 2025. Available online: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/71488ned/table?dl=6DF07 (accessed on 30 April 2025).
Category | 1st Instance | 2nd Instance | 3rd Instance |
---|---|---|---|
Educational facilities | 8 | 4 | 1 |
Doctors’ offices | 5 | 1 | 0 |
Entertainment | 2 | 0 | 0 |
Pharmacies and drug stores | 2 | 0 | 0 |
Financial services | 2 | 0 | 0 |
Gastronomy | 4 | 2 | 0 |
Supermarkets | 8 | 4 | 1 |
Food shops | 5 | 1 | 0 |
Offices | 8 | 4 | 1 |
Quality Level | Separation | Surface Quality |
---|---|---|
5 | 0 | 0 |
4 | 0.05 | 0.1 |
3 | 0.25 | 0.2 |
2 | 0.35 | 0.35 |
1 | 0.75 | 0.6 |
0 | 0.9 | 0.9 |
City | Population | Bicycle Climate [21] | Cycle Road Share [30] | Bicycle Share |
---|---|---|---|---|
Aachen | 261,472 [32] | 3.99 | unavailable | 0.11 [28] |
Dortmund | 612,065 [33] | 4.27 | 7.0% | 0.06 [20] |
Dresden | 573,648 [34] | 4.05 | 5.0% | 0.12 [20] |
Leipzig | 632,562 [35] | 3.84 | 7.3% | 0.15 [20] |
Mannheim | 330,896 [36] | 3.99 | 10.1% | 0.17 [28] |
Munich | 1,603,776 [37] | 3.89 | 9.5% | 0.18 [28] |
Münster | 322,904 [38] | 3.04 | 12.2% | 0.39 [20] |
Utrecht | 374,238 [39] | unavailable | 12.5% | 0.51 [20] |
City | n | Mean | Std | Median |
---|---|---|---|---|
Aachen | 51,874 | 0.347 | 0.179 | 0.344 |
Aachen (80%) | 41,494 | 0.402 | 0.152 | 0.396 |
Dortmund | 154,522 | 0.469 | 0.133 | 0.493 |
Dresden | 62,535 | 0.365 | 0.167 | 0.378 |
Leipzig | 70,347 | 0.429 | 0.113 | 0.444 |
Mannheim | 51,339 | 0.553 | 0.115 | 0.586 |
Munich | 126,095 | 0.640 | 0.073 | 0.649 |
Münster | 89,021 | 0.327 | 0.252 | 0.303 |
Münster (80%) | 64,108 | 0.416 | 0.222 | 0.245 |
Utrecht | 114,985 | 0.652 | 0.069 | 0.667 |
City | n | Mean | Std | Median |
---|---|---|---|---|
Aachen | 5379 | 0.577 | 0.083 | 0.595 |
Dortmund | 3683 | 0.604 | 0.097 | 0.637 |
Dresden | 296 | 0.495 | 0.085 | 0.510 |
Dresden (2 km) | 2327 | 0.441 | 0.131 | 0.467 |
Leipzig | 2365 | 0.515 | 0.055 | 0.522 |
Mannheim | 3400 | 0.608 | 0.096 | 0.637 |
Munich | 228 | 0.678 | 0.029 | 0.683 |
Munich (2 km) | 2072 | 0.672 | 0.039 | 0.677 |
Münster | 4076 | 0.621 | 0.098 | 0.662 |
Utrecht | 6777 | 0.615 | 0.066 | 0.605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kellershohn, J.; Dickler, S.; Jungbluth, C. Model-Based Bikeability Indexing for Inter-City Comparisons to Evaluate Infrastructure and Level of Service for Cyclists. Future Transp. 2025, 5, 64. https://doi.org/10.3390/futuretransp5020064
Kellershohn J, Dickler S, Jungbluth C. Model-Based Bikeability Indexing for Inter-City Comparisons to Evaluate Infrastructure and Level of Service for Cyclists. Future Transportation. 2025; 5(2):64. https://doi.org/10.3390/futuretransp5020064
Chicago/Turabian StyleKellershohn, Jan, Sebastian Dickler, and Christian Jungbluth. 2025. "Model-Based Bikeability Indexing for Inter-City Comparisons to Evaluate Infrastructure and Level of Service for Cyclists" Future Transportation 5, no. 2: 64. https://doi.org/10.3390/futuretransp5020064
APA StyleKellershohn, J., Dickler, S., & Jungbluth, C. (2025). Model-Based Bikeability Indexing for Inter-City Comparisons to Evaluate Infrastructure and Level of Service for Cyclists. Future Transportation, 5(2), 64. https://doi.org/10.3390/futuretransp5020064