The Role of Artificial Intelligence (AI) in the Future of Forestry Sector Logistics
Abstract
1. Introduction
2. Methods
2.1. Methodological Approach
2.2. Limitations of the Methodology
3. Literature Review
3.1. Fundamental Concepts of the Forest Production Chain and Logistics
3.2. Applications of AI in Logistics
- Forecasting and Planning: AI is widely used to predict demand and supply, based on historical data and external variables such as weather conditions and market fluctuations [24]. In the forestry sector, this capability can be applied to predict tree growth, optimize felling cycles, and calculate transport requirements, reducing waste and operational costs [25].
- Real-time Optimization: AI algorithms can be used to monitor and adjust logistics operations in real time, based on up-to-date data [28]. For example, sensors and IoT (Internet of Things)—a network of interconnected devices collecting and exchanging data—installed in vehicles and warehouses enable tracking of goods, monitoring of transport conditions (e.g., temperature, humidity), and rapid responses to unexpected changes, enhancing operational agility [29].
3.3. Relevant AI Technologies and Tools
3.4. Gaps and Opportunities in the Literature
4. Results and Discussion
4.1. Impacts of AI on the Optimization of Logistics Processes
4.1.1. Transport Planning
4.1.2. Inventory Management
4.1.3. Waste Reduction
4.1.4. Environmental Sustainability
4.2. Practical Examples and Case Studies
4.2.1. Transport Optimization in Eucalyptus Plantations
4.2.2. Forest Monitoring with Drones and AI
4.3. Limitations of AI in the Forestry Context
4.4. Future Perspectives and Opportunities
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raihan, A. Sustainable development in Europe: A review of the forestry sector’s social, environmental, and economic dynamics. Glob. Sustain. Res. 2023, 2, 72–92. [Google Scholar] [CrossRef]
- Aggestam, F.; Giurca, A. Implementing Circular-Bioeconomy Principles across Two Value Chains of the Wood-Based Sector: A Conceptual Approach. Land 2022, 11, 2037. [Google Scholar] [CrossRef]
- Tomé, M.; Almeida, M.H.; Barreiro, S.; Branco, M.R.; Deus, E.; Pinto, G.; Silva, J.S.; Soares, P.; Rodríguez-Soalleiro, R. Opportunities and challenges of Eucalyptus plantations in Europe: The Iberian Peninsula experience. Eur. J. For. Res. 2021, 140, 489–510. [Google Scholar] [CrossRef]
- Prasanth, A.; Densy, J.V.; Surendran, P.; Bindhya, T. Role of artificial intelligence and business decision making. Int. J. Adv. Comput. Sci. Appl. 2023, 14. [Google Scholar] [CrossRef]
- Holzinger, A.; Schweier, J.; Gollob, C.; Nothdurft, A.; Hasenauer, H.; Kirisits, T.; Häggström, C.; Visser, R.; Cavalli, R.; Spinelli, R. From industry 5.0 to forestry 5.0: Bridging the gap with human-centered artificial intelligence. Curr. For. Rep. 2024, 10, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Vijaykumar, V.; Mercy, P.; Lucia Agnes Beena, T.; Leena, H.; Savarimuthu, C. Convergence of IoT, Artificial Intelligence and Blockchain Approaches for Supply Chain Management. In Blockchain, IoT, and AI Technologies for Supply Chain Management: Apply Emerging Technologies to Address and Improve Supply Chain Management; Springer: Berlin/Heidelberg, Germany, 2024; pp. 45–89. [Google Scholar]
- Kulkov, I.; Kulkova, J.; Rohrbeck, R.; Menvielle, L.; Kaartemo, V.; Makkonen, H. Artificial intelligence-driven sustainable development: Examining organizational, technical, and processing approaches to achieving global goals. Sustain. Dev. 2024, 32, 2253–2267. [Google Scholar] [CrossRef]
- Kaur, R.; Watson, J.A. A scoping review of postharvest losses, supply chain management, and technology: Implications for produce quality in developing countries. J. ASABE 2024, 67, 1103–1131. [Google Scholar] [CrossRef]
- Pakhira, R.; Biswas, S.; Manoj, C.; Singh, H. Biological Insights into Forest Adaptation to Climate Change: Ecosystem Resilience and Adaptation. In Urban Forests, Climate Change and Environmental Pollution; Springer: Berlin/Heidelberg, Germany, 2024; pp. 307–329. [Google Scholar]
- Jabbar, S.; Lloyd, H.; Hammoudeh, M.; Adebisi, B.; Raza, U. Blockchain-enabled supply chain: Analysis, challenges, and future directions. Multimed. Syst. 2021, 27, 787–806. [Google Scholar] [CrossRef]
- Sodiya, E.O.; Umoga, U.J.; Amoo, O.O.; Atadoga, A. AI-driven warehouse automation: A comprehensive review of systems. GSC Adv. Res. Rev. 2024, 18, 272–282. [Google Scholar] [CrossRef]
- Kaulen, A.; Stopfer, L.; Lippert, K.; Purfürst, T. Systematics of forestry technology for tracing the timber supply chain. Forests 2023, 14, 1718. [Google Scholar] [CrossRef]
- Thangi, D.S. Artificial Intelligence Models for Remote Sensing Applications. In Artificial Intelligence Techniques for Sustainable Development; CRC Press: Boca Raton, FL, USA, 2024; pp. 201–217. [Google Scholar]
- Vukman, K.; Klarić, K.; Greger, K.; Perić, I. Driving Efficiency and Competitiveness: Trends and Innovations in ERP Systems for the Wood Industry. Forests 2024, 15, 230. [Google Scholar] [CrossRef]
- Chen, W.; Men, Y.; Fuster, N.; Osorio, C.; Juan, A.A. Artificial intelligence in logistics optimization with sustainable criteria: A review. Sustainability 2024, 16, 9145. [Google Scholar] [CrossRef]
- Pandey, N.; de Coninck, H.; Sagar, A.D. Beyond technology transfer: Innovation cooperation to advance sustainable development in developing countries. Wiley Interdiscip. Rev. Energy Environ. 2022, 11, e422. [Google Scholar] [CrossRef]
- Lubag, M.; Bonifacio, J.; Tan, J.M.; Concepcion, R.; Mababangloob, G.R.; Galang, J.G.; Maniquiz-Redillas, M. Diversified Impacts of Enabling a Technology-Intensified Agricultural Supply Chain on the Quality of Life in Hinterland Communities. Sustainability 2023, 15, 12809. [Google Scholar] [CrossRef]
- Patel, K. Ethical reflections on data-centric AI: Balancing benefits and risks. Int. J. Artif. Intell. Res. Dev. 2024, 2, 1–17. [Google Scholar] [CrossRef]
- Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical report, ver. 2.3 ebse technical report. ebse; EdTech Hub: Cambridge, UK, 2007. [Google Scholar]
- He, Z.; Turner, P. A systematic review on technologies and Industry 4.0 in the forest supply chain: A framework identifying challenges and opportunities. Logistics 2021, 5, 88. [Google Scholar] [CrossRef]
- Broz, D.R.; Rossit, D.A.; Rossit, D.G.; Cavallin, A. The Argentinian forest sector: Opportunities and challenges in supply chain management. Uncertain Supply Chain Manag. 2018, 6, 375–392. [Google Scholar] [CrossRef]
- D’amours, S.; Rönnqvist, M.; Weintraub, A. Using operational research for supply chain planning in the forest products industry. INFOR Inf. Syst. Oper. Res. 2008, 46, 265–281. [Google Scholar] [CrossRef]
- Munagandla, V.B.; Dandyala, S.S.V.; Vadde, B.C. The future of data analytics: Trends, challenges, and opportunities. Rev. Intel. Artif. Med. 2022, 13, 421–442. [Google Scholar]
- Narashimman, G.; Balaji, C.; Kumar, K.R.; Suresh, M.; Sivaranjani, R. The role of ai in predictive analytics for market trends and consumer demand. Comput. Integr. Manuf. Syst. 2024, 29, 180–200. [Google Scholar]
- Scholz, J.; De Meyer, A.; Marques, A.S.; Pinho, T.M.; Boaventura-Cunha, J.; Van Orshoven, J.; Rosset, C.; Künzi, J.; Kaarle, J.; Nummila, K. Digital technologies for forest supply chain optimization: Existing solutions and future trends. Environ. Manag. 2018, 62, 1108–1133. [Google Scholar] [CrossRef] [PubMed]
- Kaul, D.; Khurana, R. Ai-driven optimization models for e-commerce supply chain operations: Demand prediction, inventory management, and delivery time reduction with cost efficiency considerations. Int. J. Soc. Anal. 2022, 7, 59–77. [Google Scholar]
- Bafandegan Emroozi, V.; Kazemi, M.; Doostparast, M.; Pooya, A. Improving industrial maintenance efficiency: A holistic approach to integrated production and maintenance planning with human error optimization. Process Integr. Optim. Sustain. 2024, 8, 539–564. [Google Scholar] [CrossRef]
- Adeniran, I.A.; Efunniyi, C.P.; Osundare, O.S.; Abhulimen, A. Optimizing logistics and supply chain management through advanced analytics: Insights from industries. Eng. Sci. Technol. J. 2024, 4, 52–61. [Google Scholar]
- Tran-Dang, H.; Krommenacker, N.; Charpentier, P.; Kim, D.-S. The Internet of Things for logistics: Perspectives, application review, and challenges. IETE Tech. Rev. 2022, 39, 93–121. [Google Scholar] [CrossRef]
- Haq, B.; Jamshed, M.A.; Ali, K.; Kasi, B.; Arshad, S.; Kasi, M.K.; Ali, I.; Shabbir, A.; Abbasi, Q.H.; Ur-Rehman, M. Tech-Driven Forest Conservation: Combating Deforestation With Internet of Things, Artificial Intelligence, and Remote Sensing. IEEE Internet Things J. 2024, 11, 24551–24568. [Google Scholar] [CrossRef]
- Hammouch, H.; Raghav, A. AI and ML Applications in Wildlife Conservation and Forest Management: A Comprehensive Review. Mach. Learn. Internet Things Fire Ecol. 2025, 49–68. [Google Scholar] [CrossRef]
- Habila, M.A.; Ouladsmane, M.; Alothman, Z.A. Role of artificial intelligence in environmental sustainability. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 2023; pp. 449–469. [Google Scholar]
- Sahil, K.; Mehta, P.; Bhardwaj, S.K.; Dhaliwal, L.K. Development of mitigation strategies for the climate change using artificial intelligence to attain sustainability. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 2023; pp. 421–448. [Google Scholar]
- Lu, F.; Du, Z.; Wang, Z.; Wang, L.; Wang, S. Towards enhancing the crowdsourcing door-to-door delivery: An effective model in Beijing. J. Ind. Manag. Optim. 2025, 21, 2371–2395. [Google Scholar] [CrossRef]
- Feng, Y.; Audy, J.-F. Forestry 4.0: A framework for the forest supply chain toward Industry 4.0. Gest. Prod. 2020, 27, e5677. [Google Scholar] [CrossRef]
- Muys, B.; Hynynen, J.; Palahi, M.; Lexer, M.J.; Fabrika, M.; Pretzsch, H.; Gillet, F.; Briceño, E.; Nabuurs, G.-J.; Kint, V. Simulation tools for decision support to adaptive forest management in Europe. For. Syst. 2010, 19, 86–99. [Google Scholar]
- Melo, S.; Baptista, P. Evaluating the impacts of using cargo cycles on urban logistics: Integrating traffic, environmental and operational boundaries. Eur. Transp. Res. Rev. 2017, 9, 30. [Google Scholar] [CrossRef]
- Ali, S.I.; Abdulqader, D.M.; Ahmed, O.M.; Ismael, H.R.; Hasan, S.; Ahmed, L.H. Consideration of web technology and cloud computing inspiration for AI and IoT role in sustainable decision-making for enterprise systems. J. Inf. Technol. Inform. 2024, 3, 4. [Google Scholar]
- Hang, H.T.; Mallick, J.; Alqadhi, S.; Bindajam, A.A.; Abdo, H.G. Exploring forest fire susceptibility and management strategies in Western Himalaya: Integrating ensemble machine learning and explainable AI for accurate prediction and comprehensive analysis. Environ. Technol. Innov. 2024, 35, 103655. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Khan, L.U.; Yaqoob, I.; Tran, N.H.; Kazmi, S.A.; Dang, T.N.; Hong, C.S. Edge-computing-enabled smart cities: A comprehensive survey. IEEE Internet Things J. 2020, 7, 10200–10232. [Google Scholar] [CrossRef]
- Keefe, R.F.; Wempe, A.M.; Becker, R.M.; Zimbelman, E.G.; Nagler, E.S.; Gilbert, S.L.; Caudill, C.C. Positioning methods and the use of location and activity data in forests. Forests 2019, 10, 458. [Google Scholar] [CrossRef]
- Bastos, T.; Teixeira, L.C.; Nunes, L.J. Forest 4.0: Technologies and digitalization to create the residual biomass supply chain of the future. J. Clean. Prod. 2024, 467, 143041. [Google Scholar] [CrossRef]
- Henriques, J.; Westerlund, W. Digitalization of Forest Management: Next Generation Unsupervised Monitoring Using Internet of Things and Blockchain; DiVA Portal: Hot Springs Village, AR, USA, 2020. [Google Scholar]
- Elias, M. Timber Traceability and Sustainable Transportation Management: A Review of Technologies and Procedures. Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2024, 17, 11–52. [Google Scholar] [CrossRef]
- Buchelt, A.; Adrowitzer, A.; Kieseberg, P.; Gollob, C.; Nothdurft, A.; Eresheim, S.; Tschiatschek, S.; Stampfer, K.; Holzinger, A. Exploring artificial intelligence for applications of drones in forest ecology and management. For. Ecol. Manag. 2024, 551, 121530. [Google Scholar] [CrossRef]
- Shivaprakash, K.N.; Swami, N.; Mysorekar, S.; Arora, R.; Gangadharan, A.; Vohra, K.; Jadeyegowda, M.; Kiesecker, J.M. Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability 2022, 14, 7154. [Google Scholar] [CrossRef]
- Causevic, A.; Causevic, S.; Fielding, M.; Barrott, J. Artificial intelligence for sustainability: Opportunities and risks of utilizing Earth observation technologies to protect forests. Discov. Conserv. 2024, 1, 2. [Google Scholar] [CrossRef]
- Wang, G.G.; Lu, D.; Gao, T.; Zhang, J.; Sun, Y.; Teng, D.; Yu, F.; Zhu, J. Climate-smart forestry: An AI-enabled sustainable forest management solution for climate change adaptation and mitigation. J. For. Res. 2024, 36, 7. [Google Scholar] [CrossRef]
- Chisika, S.; Park, J.; Yeom, C. Public Perception on the Role of Artificial Intelligence in the Sustainable Management of Tree and Forest Resources in Kenya; University of Turin: Torino, Italy, 2023. [Google Scholar]
- Palander, T.; Haavikko, H.; Kärhä, K. Towards sustainable wood procurement in forest industry–The energy efficiency of larger and heavier vehicles in Finland. Renew. Sustain. Energy Rev. 2018, 96, 100–118. [Google Scholar] [CrossRef]
- Chung, S.-H. Applications of smart technologies in logistics and transport: A review. Transp. Res. Part E Logist. Transp. Rev. 2021, 153, 102455. [Google Scholar] [CrossRef]
- Veisi, O.; Moradi, M.A.; Gharaei, B.; Jabbari Maleki, F.; Morteza, R. Sustainable Forestry Logistics: Using Modified A-Star Algorithm for Efficient Timber Transportation Route Optimization. For. Policy Econ. 2025, 173, 103456. [Google Scholar] [CrossRef]
- Araújo, C.A.; Leite, H.G.; Soares, C.P.B.; Binoti, D.H.B.; Souza, A.P.d.; Santana, A.F.; Torre, C.M.M.E. A multi-agent system for forest transport activity planning. Cerne 2017, 23, 329–337. [Google Scholar] [CrossRef]
- Malladi, K.T.; Sowlati, T. Optimization of operational level transportation planning in forestry: A review. Int. J. For. Eng. 2017, 28, 198–210. [Google Scholar] [CrossRef]
- Sumarlin, T.; Qosidah, N. Optimizing Sales and Inventory Management with Machine Learning: Applications of Neural Networks and Random Forests. J. Manag. Inform. 2024, 3, 312–327. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Anderson, N. Machine learning applications in forest and biomass supply chain management: A review. Int. J. For. Eng. 2024, 35, 371–380. [Google Scholar] [CrossRef]
- Raihan, A. Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Nat. Resour. Conserv. Res. 2023, 6, 3825. [Google Scholar] [CrossRef]
- Ming, L.W.; Anderson, J.; Hidayat, F.; Yulian, F.D.; Septiani, N. Ai as a driver of efficiency in waste management and resource recovery. Int. Trans. Artif. Intell. 2024, 2, 128–134. [Google Scholar]
- Guo, J.; Zhang, Y.; Fang, J.; Ma, Z.; Li, C.; Yan, M.; Qiao, N.; Liu, Y.; Bian, M. Reduction and reuse of forestry and agricultural bio-waste through innovative green utilization approaches: A review. Forests 2024, 15, 1372. [Google Scholar] [CrossRef]
- Hernandez, D.; Pasha, L.; Yusuf, D.A.; Nurfaizi, R.; Julianingsih, D. The role of artificial intelligence in sustainable agriculture and waste management: Towards a green future. Int. Trans. Artif. Intell. 2024, 2, 150–157. [Google Scholar] [CrossRef]
- Mahmood, T.; Asif, M.; Raza, Z.H. Smart forestry: The role of AI and bioengineering in revolutionizing timber production and biodiversity protection. Rev. Intel. Artif. Med. 2024, 15, 1176–1202. [Google Scholar]
- Galaz, V.; Centeno, M.A.; Callahan, P.W.; Causevic, A.; Patterson, T.; Brass, I.; Baum, S.; Farber, D.; Fischer, J.; Garcia, D. Artificial intelligence, systemic risks, and sustainability. Technol. Soc. 2021, 67, 101741. [Google Scholar] [CrossRef]
- Hirigoyen, A.; Acuna, M.; Rachid-Casnati, C.; Franco, J.; Navarro-Cerrillo, R. Use of Optimization Modeling to Assess the Effect of Timber and Carbon Pricing on Harvest Scheduling, Carbon Sequestration, and Net Present Value of Eucalyptus Plantations. Forests 2021, 12, 651. [Google Scholar] [CrossRef]
- Duarte, A.; Borralho, N.; Cabral, P.; Caetano, M. Recent advances in forest insect pests and diseases monitoring using UAV-based data: A systematic review. Forests 2022, 13, 911. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Yar, F.G.M.; Yasouri, M. Rural Development Challenges in Addition to Effective Solutions to Overcome Obstacles. Zhongguo Kuangye Daxue Xuebao 2024, 29, 79–90. [Google Scholar]
- Sovacool, B.K.; Newell, P.; Carley, S.; Fanzo, J. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 2022, 6, 326–337. [Google Scholar] [CrossRef]
- Liang, W.; Tadesse, G.A.; Ho, D.; Fei-Fei, L.; Zaharia, M.; Zhang, C.; Zou, J. Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 2022, 4, 669–677. [Google Scholar] [CrossRef]
- Gil, Y.; Garijo, D.; Khider, D.; Knoblock, C.A.; Ratnakar, V.; Osorio, M.; Vargas, H.; Pham, M.; Pujara, J.; Shbita, B. Artificial intelligence for modeling complex systems: Taming the complexity of expert models to improve decision making. ACM Trans. Interact. Intell. Syst. 2021, 11, 1–49. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A. Tackling climate change with machine learning. ACM Comput. Surv. (CSUR) 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Coulibaly-Lingani, P.; Savadogo, P.; Tigabu, M.; Oden, P.-C. Factors influencing people’s participation in the forest management program in Burkina Faso, West Africa. For. Policy Econ. 2011, 13, 292–302. [Google Scholar] [CrossRef]
- Bhatt, G.D. Knowledge management in organizations: Examining the interaction between technologies, techniques, and people. J. Knowl. Manag. 2001, 5, 68–75. [Google Scholar] [CrossRef]
- Agnoletti, M. Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (southern) European perspective. Landsc. Urban Plan. 2014, 126, 66–73. [Google Scholar] [CrossRef]
- Ren, J.; Ishak, S.; Hamzah, H.Z. AI and the Future of Work: Investigating the Transformation of the Labor Market in China’s Secondary Sector with a Focus on Income Distribution, Skill Gaps, and Unemployment Rates. Cuad. Econ. 2024, 47, 38–52. [Google Scholar]
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. J. Clean. Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- Burström, T.; Parida, V.; Lahti, T.; Wincent, J. AI-enabled business-model innovation and transformation in industrial ecosystems: A framework, model and outline for further research. J. Bus. Res. 2021, 127, 85–95. [Google Scholar] [CrossRef]
- Chauhan, M.; Sahoo, D.R. Towards a greener tomorrow: Exploring the potential of AI, blockchain, and IoT in sustainable development. Nat. Environ. Pollut. Technol. 2024, 23, 1105–1113. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. Artificial intelligence for enhancing resilience. J. Appl. Artif. Intell. 2024, 5, 1–33. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Abid, N.; Ceci, F.; Ahmad, F.; Aftab, J. Financial development and green innovation, the ultimate solutions to an environmentally sustainable society: Evidence from leading economies. J. Clean. Prod. 2022, 369, 133223. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef] [PubMed]
Country/Region | Number of Studies | Percentage |
---|---|---|
Europe | 28 | 35% |
North America | 20 | 25% |
Asia | 16 | 20% |
Portugal | 6 | 8% |
Others | 10 | 12% |
Total | 80 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R. The Role of Artificial Intelligence (AI) in the Future of Forestry Sector Logistics. Future Transp. 2025, 5, 63. https://doi.org/10.3390/futuretransp5020063
Nunes LJR. The Role of Artificial Intelligence (AI) in the Future of Forestry Sector Logistics. Future Transportation. 2025; 5(2):63. https://doi.org/10.3390/futuretransp5020063
Chicago/Turabian StyleNunes, Leonel J. R. 2025. "The Role of Artificial Intelligence (AI) in the Future of Forestry Sector Logistics" Future Transportation 5, no. 2: 63. https://doi.org/10.3390/futuretransp5020063
APA StyleNunes, L. J. R. (2025). The Role of Artificial Intelligence (AI) in the Future of Forestry Sector Logistics. Future Transportation, 5(2), 63. https://doi.org/10.3390/futuretransp5020063