Phytocannabinoids as Chemotherapy Adjuncts—A Review for Users
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cannabinoids May Increase the Efficacy of Standard Tumour Therapy and Limit Resistance Development
(a) | |||
---|---|---|---|
Anti-Neoplastic Drug | Cannabinoid Adjunct | Comments | Ref. (Selected) |
Cisplatin (2.5 mg CIS i.p./kg/w) | CBD 5 mg p.o./kg, 4x/w, 4 weeks; (sequence not stated) | human head and neck squamous cells (FaDu) s.c. xenografts, BALB/c nude mice; estimated tumour volume: CBD + cisplatin ~300 mm3 < CBD ~600 mm3 < cisplatin ~800 mm3 < vehicle ~1500 mm3; tumour weight after CBD + cisplatin was about 75% lower than in the vehicle-treated group. When FaDu cells were injected into tongues, CBD alone (5 mg i.p./kg, 3x/w) also reduced tumour growth by more than 60%. | [28] |
Cisplatin (3 mg CIS i.p./kg, 3x weekly) | THC 45 mg p.o./kg, or THCe (with 45 mg THC/kg, 3x/w) | Breast cancer, s.c. xenografts (triple negative human MDA-MB-231 cells, female nude mice); tumour volume after 30 days: CIS + THCe < CIS < THCe < THC < vehicle (animals were sacrificed after one month of treatment) | [29] |
Doxorubicin (2 mg DOX i.v./kg, 2x/w, 2 w) | CBD-EV (5 mg i.p./kg, 2x/w, 2 w) or free CBD (5 and 10 mg i.p./kg, 2x/w, 2 w) | Breast cancer s.c. xenografts, (triple negative, MDA-MB-231cells, female athymic Envigo nude mice); CBD, one day before DOX, sensitized tumour cells, enhanced effect of combination. Tumour volume after 2 weeks, extracellular vesicles (EV): CBD-EV + DOX < CBD (5 mg/kg) + DOX < DOX < CBD (10 mg/kg) ≈ CBD-EV (5 mg/kg) < EVs/controls); tumour volume with the CBD-EV + DOX combination was at least 50% lower than the average tumour volume in control animals | [30] |
Irinotecan (IRI) single MTD dose (100 mg i.p./kg) on day 1 | THC (7 mg p.o./kg/d); (sequence not stated) | healthy male Wistar rats; haematological and biochemical tests on day 1, 3, 7; the combination demonstrated a decrease in neutrophils and a tendency to decrease leucocyte counts, but alleviated the IRI induced elevation of aspartate amino-transferase (AST); diarrhea was not observed; serum level of bilirubin and triglycerides were lower after combined treatment then after individual THC or IRI; no signif. effect on erythrocytes and platelets | [31] |
Irinotecan (IRI) (60 mg i.p./kg on day 1, 5) | THC (7 mg p.o./kg/d, 7 d) (sequence not stated) | colon cancer, s.c. xenografts, (syngeneic CT26.WT cells, male BALB/c mice); tumour volume on D7: irinotecan < IRI + THC < control < THC. Tumour volume decreased with IRI by −27% (day 7), with IRI + THC by −14%; THC reduced the efficacy of IRI by about half. | [32] |
Gemcitabine (GEM) (100 mg i.p./kg, every 3 days) | CBD (100 mg i.p./kg/d until death) | Pancreatic ductal adenocarcinoma (KPC mice); mice receiving CBD + GEM survived 2.8 times longer than mice not given any treatment (1.3 times longer with CBD and 1.4 times longer with GEM alone); mean survival: CBD + GEM 52.7 days (+183%) > GEM 27.8 (+49%) > CBD 25.4 days (+37%) > no treatment 18.6 days | [33] |
Tamoxifen (2.5 mg TAM i.p./kg, 3x weekly); Lapatinib (100 mg LAPA/kg) daily, oral gavage | THC 45 mg p.o./kg, or THCe (with 45 mg THC/kg) 3-times weekly | human breast cancer, s.c. xenografts (female nude mice) T47D-cells (ER+/PR+/HER2−), tumour volume: TAM + THCe < THCe ≈ TAM < syn.THC < vehicle; triple positive BT474- cells, (ER+/PR+/HER2+), tumour volume: THCe < LAPA + THCe < LAPA < THC < control (animals were sacrificed after one month of treatment) | [29] |
Bicalutamide (BIC) 25–50 mg p.o./kg, 3x per week | CBD-BDS (CBDe), 1–10–100 mg i.p./kg/d, | Prostate cancer, s.c. xenografts, (LNCaP, androgen-receptor positive/AR+, athymic nude mice); dosing was initiated on day 15 and was terminated on day 38; CBDe (~65% CBD) enhanced efficacy of BIC on LNCaP (no significant difference between 25 and 50 mg BIC); tumour volume LNCaP, Day 35: CBDe(100 mg i.p./kg/d) + BIC(25 mg p.o./kg, 3x/w) < CBDe(100 mg i.p./kg/d) < BIC(25 mg p.o./kg, 3x/w) ≈ vehicle, and% survival (D47): BIC(25 mg p.o./kg, 3x/w) + CBDe(100 mg i.p./kg/d) > BIC(50 mg p.o./kg, 3x/w) > CBDe(100 mg i.p./kg/d) > BIC(25 mg p.o./kg, 3x/w) > vehicle | [20] |
ICI, anti-PD-1 antibodies, Pembrolizumab | THC, medical cannabis, assumed to be THC-rich | Tumour-bearing mice (CT26 non-small cell lung cancer cells) survived significantly longer with a combined anti-PD-1 antibody + THC therapy (control 21 days, < THC 24 days, < anti-PD-1 antibody 31 days < THC + anti-PD-1 antibody 54 days). | [34] |
Trametinib (MEKi) (0.75 mg s.c./kg/d) | CBD/THC = 1:1 | Melanoma (A2058 cells, s.c. injection, NSG mice); CBD + THC (each 10 mg s.c./kg/d, 21 d) reduced melanoma growth by about 50%, MEKi alone by about 75% compared to vehicle; the addition of CBD + THC to MEKi did not increase the effect of MEKi further; tumour volume Day 22: MEKi ≈ CBD + THC + MEKi < CBD + THC < vehicle | [35] |
Docetaxel (DOC) (5 mg i.v./kg once weekly) | CBD-BDS (CBDe) (~65% CBD), 100 mg i.p./kg/d; | Prostate cancer, s.c. xenografts, (DU-145, androgen-receptor-negative/AR-, athymic nude mice); CBDe enhanced the efficacy of DOC on tumours; CBDe at the highest concentration tested (100 mg i.p./kg) reduced the tumour growth of LNCaP (androgen-receptor positive/AR+) xenografts similar to that of DOC (5 mg·i.v./kg); Tumour volume, LNCaP, Day38: DOC(5 mg/kg) ≈ CBDe(100 mg/kg) < CBDe(10 mg/kg) < CBDe(100 mg/kg) + DOC ≈ CBDe(1 mg/kg) < vehicle; Tumour volume, DU-145, D90: CBDe + DOC < DOC (5 mg/kg) < CBDe(10 mg/kg) < vehicle ≈ CBDe(1 mg/kg) < CBDe(100 mg/kg); | [20] |
Temozolomid (25 mg TMZ/kg/d) for 21 days | CBD (15 mg i.p./kg/d) for 21 days | orthotopic model of human glioma (U87) in nude mice; animals were treated with CBD or TMZ or both. Mice receiving the combination lived signif. longer than with TMZ or CBD alone (0% survival: CBD + TMZ 84 days > TMZ 60 days > CBD 55 days > control 50 days) | [36] |
TMZ 5 mg i.p./kg twice a week, | Syn. CBD 15 mg p.o./kg/d for 15 days | heterotopic s.c. glioma U87MG xenografts, nude mice; Tumour volume TMZ < CBD + TMZ < CBD < vehicle; CBD + TMZ reduced tumour volume less than TMZ alone, although more than CBD alone; Tumour volume TMZ < CBD + TMZ < CBD < vehicle; | [37] |
TMZ 5 mg i.p./kg twice a week, | CBD + THC (extracts) | heterotopic s.c. glioma U87MG xenografts, nude mice; ratio THC/CBD = 1:1 or 1:4 (5 mg p.o./kg each or THC 6.5 mg/kg + CBD 24.5 mg/kg, as extracts); oral administration of THC + CBD (1:4 ratio) resulted in a similar tumour size as the 1:1 combination (but still higher than TMZ, as determined by MRI); combination with TMZ increased survival, a higher ratio of CBD did not increase the effect on tumour growth; tumour volume: TMZ + THC + CBD (1:4) ≈ TMZ + THC + CBD (1:1) < TMZ < THC + CBD (1:4) ≈ THC + CBD (1:1) < vehicle; In a similar murine study, a combination with BCNU (carmustine, instead of TMZ) did not show a stronger effect than individual treatments; tumour volume TMZ + CBD + THC (1:1) < CBD + THC (1:1) ≈ CBD + THC + BCNU < vehicle; | [37,38] |
TMZ 5 mg i.p./kg twice a week, | CBD + THC (extracts), | heterotopic s.c. glioma U87MG xenografts, nude mice; combinations with a higher proportion of CBD (THC/CBD = 1:4, 1:6) (3.5 mg p.o./kg each or THC 4.5 mg/kg + CBD 16.5 mg/kg or THC 5.2 mg/kg + CBD 29.5 mg/kg) are similar synergistic as a 1:1 combination; effect increases with a combination with TMZ; CBD + THC reduced tumour volume less than TMZ alone, although more than vehicle alone; tumour volume: TMZ + CBD/THC (6:1) ≈ TMZ + CBD/THC (4:1) ≈ TMZ + CBD/THC (1:1) < TMZ < CBD/THC (4:1) ≈ CBD/THC (1:1) ≈ CBD/THC (6:1) < vehicle; | [37] |
TMZ 5 mg i.p./kg twice a week, | CBD, THC (extracts) p.o. daily for 15 days | orthotopic intracranial glioma U87MG xenografts nude mice; administration of THC + CBD at a 1:4 ratio did not affect tumour size significantly (as determined by MRI) and did not increase survival in contrast to TMZ; the combination with TMZ decreased tumour growth and increased survival signif. from ~30 (control) to > 50 days; Tumour volume TMZ + CBD + THC (4:1) < TMZ < CBD + THC (4:1) ≈ vehicle; | [37] |
TMZ 5 mg i.p./kg twice a week, | Syn. CBD, synthetic THC, p.o. | orthotopic intracranial glioma xenografts 12O12 glioma-initiating cells (GICs), nude mice; TMZ + THC + CBD (1:5) was most effective in reducing tumour growth (MRI) and increasing survival; THC.CBD (1:1) was less effective than 1:5, and less effective than TMZ alone; a combination (THC/CBD 1:1 or 1:5) with TMZ increased these effects; Survival TMZ + CBD + THC (5:1) > TMZ + CBD + THC (1:1) > TMZ > CBD + THC (1:1) > ≈ vehicle; | [37] |
TMZ 5 mg/kg/d, peritumoural injections, for 14 days | THC 15 mg/kg/d, peritumoural, for 14 days | Human glioma U87MG s.c. xenograft, nude mice; tumour volume on day 15: THC + TMZ < TMZ < THC; compared to vehicle, tumour growth was signif. reduced with both, TMZ and THC; a tumour-decrease was only observed with the combined treatment with THC + TMZ; (the combination CBD + TMZ was not tested) | [39] |
(b) | |||
Anti-Neoplastic Drug | Cannabinoid Adjunct | Comments | Ref. (Selected) |
Irinotecan (IRI) (mostly 600 mg, 90 min i.v. infusion) | Medicinal cannabis 200 mL of herbal tea (1 g/L), daily, 15 days | Patients with metastatic cancer (observational study); 10 days after the 1st infusion of IRI, patients started with cannabis tea (Bedrocan™, THC-dominant medicinal cannabis) for 15 consecutive days; 21 days after the 1st infusion, patients received a second treatment with IRI, this time as concomitant treatment to Bedrocan-tea; 12 patients were evaluated; Bedrocan administration did not significantly influence exposure to and clearance of IRI | [40] |
Gemcitabine + paclitaxel | CBD (mainly 400 mg/d) until death | Patients with pancreatic cancer (case series); 6 of 9 patients received CBD in addition to standard chemo-therapy (mostly gemcitabine + paclitaxel), one patient received one cycle of paclitaxel, followed by one cycle of irinotecan-calcium folinate, 5-fluoruracil; two patients received only cannabinoids (CBD, THC); overall survival was about 11 months | [41] |
Tamoxifen | CBD (below 50 mg/d) | Women receiving tamoxifen (single case and observational study); concomitant oral CBD decreased the AUC of the active metabolite endoxifen; it seems to be unlikely that this affects the clinical efficacy of tamoxifen. Conversely, endocrine complaints and adverse effects improved significantly in patients | [42,43] |
Aromatase inhibitors; 71.8% of patients received anastrozole, 20.5% exemestane, 7.7% letrozole | CBD (titrated up to 2x 100 mg p.o./d over 4 weeks, then at the maximum dose) | Women with hormone-receptor-positive breast cancer; an observational study did not report a negative impact of a combined treatment. Conversely, CBD, known to have anti-inflammatory effects, alleviated the symptoms of arthralgia pain. Of 28 patients completing the 15-weeks study, 17 (60.7%) reported a ≥2-point improvement in the Brief Pain Inventory (BPI) between baseline and week 15. In addition, there was a significant improvement in PROMIS T score at week 15 in both physical function and ability to participate in social roles and activities | [44] |
various ICIs Pembrolizumab or Nivolumab or Durvalumab or Atezolizumab or Ipilimumab plus Nivolumab | cannabis, (composition unknown) | Patients with various metastatic stage IV malignancies, prospective observational study; 34 patients received cannabis plus immunotherapy (76% as second line treatment), 68 patients received immunotherapy only (54% as second line treatment). Data suggest that concomitant cannabis use was associated with shorter time to tumour progression and shorter overall survival. Results also suggested a halving of immune-related adverse events by cannabis | [45] |
ICI, anti-PD-1 antibodies, Pembrolizumab | THC, medical cannabis, assumed to be THC-rich | Patients with metastatic NSCLC were treated with Pembrolizumab as a first-line monotherapy; no negative impact of cannabis on the activity of Pembrolizumab as treatment for advanced NSCLC was observed | [34] |
Bevacizumab + radio-chemo-therapy (lomustine) | CBD (400 mg/d) | Single patient with glioblastoma; this patient is included in a case series of 15 patients with glioblastoma; the patient survived 51 months | [46] |
Docetaxel, (mostly 180 mg, 90 min i.v. infusion) | Medicinal cannabis 200 mL of herbal tea (1 g/L), daily | Patients with various metastatic, refractory carcinoma; 10 days after the 1st infusion of docetaxel, patients with metastatic cancer started with cannabis tea (Bedrocan™, THC-dominant medicinal cannabis) for 15 consecutive days; 21 days after the 1st infusion, patients received a 2nd treatment with docetaxel, this time as concomitant treatment to Bedrocan™; 12 patients were evaluated; Bedrocan administration did not significantly influence exposure to and clearance of docetaxel | [40] |
standard radio-chemo-therapy mostly Temozolomid (TMZ) | CBD (mainly 400 mg/d) | Patients with glioblastoma; prospective case series of 15 patients; mean overall survival was 30.9 months which is twice as long as has been commonly reported; three patients (20%) were still alive after more than 5 years | [46,47] |
TMZ up to one year | nabiximols oro-mucosal spray (mean 7.5 sprays/d) | Patients with glioblastoma, randomised pilot study; survival at 1 year was 83% for nabiximols (10/12) versus 44% (4/9 subjects) for placebo-treated patients, and 50% for patients treated with nabiximols versus 22% for those treated with placebo at 2 years. Median survival was >550 days with CBD/THC treatment (not signif.) and 369 days in the placebo group; | [48] |
2.1. CBD, Combined with Platinum Drugs, May Reduce Tumour Growth
2.2. CBD Potentially Enhances the Anti-Tumour Effect of Doxorubicin and of Other Anthracyclines (Animal Studies)
2.3. CBD May Increase the Efficacy of the Antimetabolite Gemcitabine
2.4. Combinations of CBD with Hormonal Anti-Cancer Agents Seem to Be Promising
2.5. Combinations of THC, CBD or Medical Cannabis with Immune Checkpoint Inhibitors Show Promising Effects in Preclinical Cancer Models: Results in Patients Are Still Inconclusive
2.6. Taxanes: CBD Enhances the Activity of Paclitaxel In Vitro
2.7. Alkylating Substances: Combinations of Temozolomide with Cannabinoids Possibly Enhance Therapeutic Effects and May Reduce Resistance
3. Alleviation of Side Effects of Cancer and Anti-Tumour Therapy
3.1. Anxiety: CBD Reduces Anxiety; THC Has a Biphasic Effect
Side Effect | Cannabinoid | Comments ‘*’ | Ref. (Selected) |
---|---|---|---|
Anxiety | THC | THC shows a pronounced biphasic effect; a dose of 10 mg THC or above increased anxiety whereas a low dose or combination with CBD suppresses anxiety and aversive memory expression. | [85] |
CBD | CBD reduces anxiety, stress and similar behaviours; regarding depression, the results were slightly lower. Although effective over a wide range, CBD seems to show an inverted U-shaped dose–response curve with about 300 mg/d being the most effective dose in anxiety disorders. | [86,87] | |
THC + CBD | A nabiximols-like combination of THC + CBD did not reduce anxiety or depression in a small, pilot study in patients with multiple sclerosis, whereas domains involving processing speed and auditory verbal memory significantly improved after 6 months. | [90] | |
Appetite/ weight loss | THC | THC (dronabinol) has received marketing authorisation for “anorexia associated with weight loss in patients with AIDS”; it is also used in cancer patients to stimulate the appetite and reduce weight loss; recommended dose: 2.5 mg before meals, twice daily (SmPC, current version); (confirmed later by a small, open, uncontrolled study in cancer patients); THC-dominant cannabis may also be effective. | [92,93] |
CBD | higher dosages of CBD (20 mg/kg) reduce the appetite and/or body weight or body mass index whereas low doses (2 × 100 mg/d, 13 weeks or 5 mg/kg) had no effect on appetite and body weight. CBD may positively influence taste alterations induced by chemotherapy. | [94] | |
Chemo-therapy-induced nausea/vomiting (CINV) | THC | CINV that failed to respond adequately to conventional antiemetic treatments is an authorised indication for THC (dronabinol); the recommended starting dosage is 5 mg/m2, administered 1 to 3 h prior to the administration of chemotherapy, then every 2 to 4 h after chemotherapy, for a total of 4 to 6 doses per day (SmPC, current version). | [95] |
THC + CBD | THC + CBD (2.5 mg each) on day −1 to day 5 reduced CINV in adults who experienced CINV during moderate and highly emetogenic i.v. chemotherapy regimens despite guideline-consistent anti-emetic prophylaxis. Complete response was signif. higher with THC + CBD (24% versus 8% with placebo; randomised, placebo-controlled trial) | [96] | |
CBD | There are no experiences in man; in animal models, CBD produced a biphasic effect suppressing vomiting induced by cisplatin (20 mg/kg but not by 40 mg/kg) at 5 or 10 mg/kg and potentiating it at 40 mg CBD/kg. THC suppressed cisplatin-induced vomiting and retching, dose-dependently; the combination of per se ineffective doses of odansetron + THC was also effective. | [97,98] | |
Chemo-therapy-induced peripheral neuropathic pain (CIPN) | CBD, THC, THC + CBD (1:1), tetra-hydro-cannabivarin (THCV) | Systematic studies exist only in rodents. Pretreatment with CBD, THC and THC + CBD reduced the mechanical sensitivity induced by paclitaxel in mice with very similar dose–response curves and with two apparent peaks in efficacy (the 1st within a dose range of 1.0–2.5 mg i.p./kg, the 2nd within the 10–20 mg/kg). A 1:1 combination of per se ineffective doses of CBD and THC (each 0.16 mg/kg) was also effective. CBD (1.25–10.0 mg/kg) attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC (10 mg/kg) significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. A low dose combination of THC+ CBD (each 0.16 mg/kg) attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity. When cannabinoids were administered after the last dose of paclitaxel, CBD (10 mg i.p./kg, twice a week for six weeks and THCV (15 mg i.p./kg) reduced thermal and mechanical hyperalgesia induced by paclitaxel to a similar extent, the combination being even more effective. Inhalation of THC predominant cannabis produced antinociception in both paclitaxel- and vehicle-treated animals (rat model) | [99,100,101,102,103] |
Nabixi-mols (up to 12 sprays/d | A randomized, placebo-controlled crossover study in 16 patients with established chemotherapy-induced neuropathic pain that received nabiximols, found a weak difference in favour of nabiximols that did not reach statistical significance. | [104] | |
Cannabis (unknown composition) | a retrospective analysis of medical records of 513 patients treated with oxaliplatin and 5-fluorouracil-based combinations of which 248 patients were treated with cannabis (265 served as controls) demonstrated a remarkable effect of cannabis against CIPN. CIPN grade 2–3 was nearly half as frequent in cannabis-exposed patients compared to a group not receiving cannabis; effect was more pronounced when patients received cannabis prior chemotherapy. | [105] | |
OTC creams with THC and/or CBD | A small randomised, placebo-controlled investigated the effect of a topical CBD (applied four times daily over 4 weeks) on neuropathic pain of various origin including chemotherapy. At the end of the 4-weeks blinded treatment neuropathic pain (such as intense, sharp and cold sensations) decreased signif. by about 30% to 70% in the CBD group (10 to 15% with placebo). Two small case series also suggest a possible benefit of topical cannabinoids | [106,107,108] | |
Cue-induced opioid craving | CBD | Over half of the patients (53%) with chronic pain and on a stable opioid dose were able to reduce or eliminate their opioids by taking soft gels of a CBD-rich hemp extract Treatment duration of this open study was 8 weeks. In a small proof-of-concept open-label study it was found that CBD (600 mg once daily for 3 consecutive days) could reduce cue-reactivity among patients with opioid-use disorder (OUD) who were not receiving medications for OUD | [109,110,111,112,113] |
CBD | CBD (400 mg/d) did not reduce oxycodone use (5 mg every 6 h, with additional rescue dosing as required) and was not superior to placebo as an adjunct medication for relieving acute, non-traumatic low back pain. | [114] | |
Cancer pain, opioids | THC, THC + CBD up to 48 sprays/d, up to 5 w (2.7 mg THC + 2.5 mg CBD per actuation | In the 1st study, patients were randomized to THC/CBD (~1:1) extract, THC extract, or placebo; change from baseline in mean pain Numerical Rating Scale (NRS) score was statistically signif. in favour of THC/CBD only compared with placebo. There was no change from baseline in median dose of opioid background medication or mean number of doses of breakthrough medication across treatment groups. In the 2nd study, only the low-dose (1–4 sprays/d) and medium-dose (6–10 sprays/d) groups reported signif. analgesia for nabiximols compared to placebo. The optimal dose may vary from person to person, and it could be that patients respond differently. | [115,116] |
Cancer pain, opioids | Cannabis, cannabinoids | Cannabinoids seem to reduce pain and improve quality of sleep, but the effect sizes are low. There is some evidence in favour of medicinal cannabis, THC and THC/CBD combinations, with insufficient evidence for individual CBD. Higher doses (>15 mg THC/d, nabiximols up to 10 sprays/d) correlated with increased pain relief but also with more side effects. Cannabinoids may have a role as an adjunct or even replacement for opioids but evidence remains uncertain | [117,118,119] |
Organ toxicity Cardio-protection | CBD | In two animal models (mice, rats), CBD administered before doxorubicin, attenuated cardiotoxic effect (a human equivalent dose would be in the order of 1 mg/kg) | [120,121] |
Protection of lung and brain | CBD | In studies with rats, lesions induced by a single dose of methotrexate (20 mg i.p./kg) could be reversed with CBD (5 mg i.p./kg/d for 7 days). CBD normalised histopathological and immunohistochemical changes in all regions, in the lung and in the brain | [122,123] |
Renal protection | CBD | In a mouse model, CBD (2.5–5–10 mg i.p./kg/d) dose-dependently attenuated the cisplatin-induced renal dysfunction (highest effect with 10 mg CBD) starting from 1.5 h before cisplatin (20 mg i.p./kg, single dose), and was still effective if administered 12 h after exposure; it markedly attenuated the cisplatin-induced oxidative/nitrosative stress, inflammation, and cell death in the kidney. Similar effects were observed in a study with rats; renal damage, induced by injection of doxorubicin was attenuated by a pretreatment with CBD (26 mg p.o./kg for 2 weeks). | [124,125] |
Mucositis | CBD | In a murine model, synthetic CBD (3, 10, and 30 mg i.p./kg/d, starting on day 4), CBD reduced dose-dependently the severity of oral lesions and loss of weight induced by 5-FU. | [126,127] |
3.2. Appetite Stimulation, Weight Loss: THC Reduces Anorexia and Cachexia
3.3. Chemotherapy-Induced Nausea and Vomiting (CINV): THC Suppresses Nausea/Vomiting/Retching to a Similar Extent as Newer Antiemetics
3.4. Chemotherapy-Induced Peripheral Neuropathic Pain (CIPN): CBD and THC Prevent the Development of Allodynia in Animal Models; Effects Are Substance-Specific
3.5. Pain: Studies Suggest a Reduction in Opioid Dosages, but the True Implications of Cannabinoids in Treatment of Tumour Pain Remain Controversial
3.6. CBD May Protect Organs against Chemotherapy-Induced Toxicity (Only Animal Data Available)
3.6.1. CBD Demonstrated Cardioprotective Effects In Vivo
3.6.2. CBD Protected the Lung and Brain against Toxic Effects of Methotrexate In Vivo
3.6.3. CBD Reduces Renal Damage in Animal Models
3.6.4. Mucositis: CBD Reduces the Severity of Therapy-Induced Oral Mucositis In Vivo
3.6.5. Ototoxic Hearing Loss: The Role of Cannabinoids Needs Further Research
4. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Zhao, J.; Xu, L.; Sun, J.; Song, M.; Wang, L.; Yuan, S.; Zhu, Y.; Wan, Z.; Larsson, S.; Tsilidis, K.; et al. Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncol. 2023, 2, e000049. [Google Scholar] [CrossRef]
- James, N.D.; Tannock, I.; N’Dow, J.; Feng, F.; Gillessen, S.; Ali, S.A.; Trujillo, B.; Al-Lazikani, B.; Attard, G.; Bray, F.; et al. The Lancet Commission on prostate cancer: Planning for the surge in cases. Lancet 2024, 403, 1683–1722. [Google Scholar] [CrossRef] [PubMed]
- Kander, J. Cannabis for the Treatment of Cancer. The Anticancer Activity of Phytocannabinoids and Endocannabinoids, 7th ed. Kindle Edition. 2021. Available online: https://www.amazon.com/Cannabis-Treatment-Cancer-Phytocannabinoids-Endocannabinoids-ebook/dp/B012UJOVVM (accessed on 19 September 2024).
- Amin, S.; Chae, S.W.; Kawamoto, C.T.; Phillips, K.T.; Pokhrel, P. Cannabis use among cancer patients and survivors in the United States: A systematic review. JNCI Cancer Spectr. 2024, 8, pkae004. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K. Cannabidiol (CBD) in cancer management. Cancers 2022, 14, 885. [Google Scholar] [CrossRef] [PubMed]
- Pergam, S.A.; Woodfield, M.C.; Lee, C.M.; Cheng, G.S.; Baker, K.K.; Marquis, S.R.; Fann, J.R. Cannabis use among patients at a comprehensive cancer center in a state with legalized medicinal and recreational use. Cancer 2017, 123, 4488–4497. [Google Scholar] [CrossRef]
- Salz, T.; Meza, A.M.; Chino, F.; Mao, J.J.; Raghunathan, N.J.; Jinna, S.; Brens, J.; Furberg, H.; Korenstein, D. Cannabis use among recently treated cancer patients: Perceptions and experiences. Support Care Cancer 2023, 31, 545. [Google Scholar] [CrossRef]
- Osaghae, I.; Chido-Amajuoyi, O.G.; Khalifa, B.A.A.; Rajesh, T.; Shete, S. Cannabis use among cancer survivors: Use pattern, product type, and timing of use. Cancers 2023, 15, 5822. [Google Scholar] [CrossRef]
- Munson, A.E.; Harris, L.S.; Friedman, M.A.; Dewey, W.L.; Carchman, R.A. Antineoplastic activity of cannabinoids. J. Natl. Cancer Inst. 1975, 55, 597–602. [Google Scholar] [CrossRef]
- Griffiths, C.; Aikins, J.; Warshal, D.; Ostrovsky, O. Can cannabidiol affect the efficacy of chemotherapy and epigenetic treatments in cancer? Biomolecules 2021, 11, 766. [Google Scholar] [CrossRef]
- Malhotra, P.; Casari, I.; Falasca, M. Therapeutic potential of cannabinoids in combination cancer therapy. Adv. Biol. Regul. 2021, 79, 100774. [Google Scholar] [CrossRef]
- Shalata, W.; Saleh, O.A.; Tourkey, L.; Shalata, S.; Neime, A.E.; Juma’a, A.A.; Soklakova, A.; Tourkey, L.; Abu Jama, A.; Yakobson, A. 2024 The efficacy of cannabis in oncology patient care and its anti-tumor effects. Cancers 2024, 16, 2909. [Google Scholar] [CrossRef]
- Sodergren, M.; Mangal, N. Cannabidiol as a chemotherapy adjunct in cancer treatment. Pharm. J. 2024, 312, 7983. [Google Scholar] [CrossRef]
- Zendulka, O.; Dovrtelova, G.; Noskova, K.; Turjap, M.; Sulcova, A.; Hanus, L.; Jurica, J. Cannabinoids and cytochrome P450 interactions. Curr. Drug Metab. 2016, 17, 206–226. [Google Scholar] [CrossRef] [PubMed]
- Nahler, G. Cannabidiol and other phytocannabinoids as cancer therapeutics. Pharmaceut. Med. 2022, 36, 99–129. [Google Scholar] [CrossRef] [PubMed]
- Braun, I.M.; Bohlke, K.; Abrams, D.I.; Anderson, H.; Balneaves, L.G.; Bar-Sela, G.; Bowles, D.W.; Chai, P.R.; Damani, A.; Gupta, A.; et al. Cannabis and cannabinoids in adults with cancer: ASCO guideline. J. Clin. Oncol. 2024, 42, 1575–1593. [Google Scholar] [CrossRef]
- Scott, K.A.; Dalgleish, A.G.; Liu, W.M. Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration. Int. J. Oncol. 2017, 51, 369–377. [Google Scholar] [CrossRef]
- Liu, W.M.; Fowler, D.W.; Dalgleish, A.G. Cannabis-derived substances in cancer therapy--an emerging anti-inflammatory role for the cannabinoids. Curr. Clin. Pharmacol. 2010, 5, 281–287. [Google Scholar] [CrossRef]
- Scott, K.A.; Dalgleish, A.G.; Liu, W.M. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol. Cancer Ther. 2014, 13, 2955–2967. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Ligresti, A.; Schiano Moriello, A.; Iappelli, M.; Verde, R.; Stott, C.G.; Cristino, L.; Orlando, P.; Di Marzo, V. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: Pro-apoptotic effects and underlying mechanisms. Br. J. Pharmacol. 2013, 168, 79–102. [Google Scholar] [CrossRef]
- Sainz-Cort, A.; Muller-Sanchez, C.; Espel, E. Anti-proliferative and cytotoxic effect of cannabidiol on human cancer cell lines in presence of serum. MC Res. Notes 2020, 13, 389. [Google Scholar] [CrossRef]
- Jacobsson, S.O.; Rongård, E.; Stridh, M.; Tiger, G.; Fowler, C.J. Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability. Biochem. Pharmacol. 2000, 60, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Whynot, E.G.; Tomko, A.M.; Dupré, D.J. Anticancer properties of cannabidiol and Δ9-tetrahydrocannabinol and synergistic effects with gemcitabine and cisplatin in bladder cancer cell lines. J. Cannabis Res. 2023, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Buchtova, T.; Beresova, L.; Chroma, K.; Pluhacek, T.; Beres, T.; Kaczorova, D.; Tarkowski, P.; Bartek, J.; Mistrik, M. Cannabis-derived products antagonize platinum drugs by altered cellular transport. Biomed. Pharmacother. 2023, 163, 114801. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Ng, L.; Ozawa, T.; Stella, N. Quantitative analyses of synergistic responses between cannabidiol and DNA-damaging agents on the proliferation and viability of glioblastoma and neural progenitor cells in culture. J. Pharmacol. Exp. Ther. 2017, 360, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Marzeda, P.; Wroblewska-Luczka, P.; Drozd, M.; Florek-Luszczki, M.; Zaluska-Ogryzek, K.; Luszczki, J. Cannabidiol interacts antagonistically with cisplatin and additively with mitoxantrone in various melanoma cell lines—An isobolographic analysis. Int. J. Mol. Sci. 2022, 23, 6752. [Google Scholar] [CrossRef]
- Henley, A.B.; Nunn, A.V.; Frost, G.S.; Bell, J.D. Cannabidiol (CBD) priming enhances cisplatin killing of cancer cells. In Proceedings of the 6th European Workshop on Cannabinoid Research, 018P Trinity College Dublin, Dublin, Ireland, 18–20 April 2013; p. P059. Available online: https://realmofcaring.org/wp-content/uploads/2020/12/Cannabidiol-CBD-Priming-Enhances-Cisplatin-Killing-Of-Cancer-Cells.pdf (accessed on 20 June 2024).
- Go, Y.Y.; Kim, S.R.; Kim, D.Y.; Chae, S.W.; Song, J.J. Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci. Rep. 2020, 10, 20622. [Google Scholar] [CrossRef]
- Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; Garcia-Taboada, E.; Wade, J.; Smith, S.; Guzman, M.; Perez-Gomez, E.; et al. Appraising the “entourage effect”: Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol. 2018, 157, 285–293. [Google Scholar] [CrossRef]
- Patel, N.; Kommineni, N.; Surapaneni, S.K.; Kalvala, A.; Yaun, X.; Gebeyehu, A.; Arthur, P.; Duke, L.C.; York, S.B.; Bagde, A.; et al. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. Int. J. Pharm. 2021, 607, 120943. [Google Scholar] [CrossRef]
- Prester, L.; Mikolic, A.; Juric, A.; Fuchs, N.; Neuberg, M.; Vrdoljak, A.L.; Karaconji, I.B. 2018 Effects of Δ9-tetrahydrocannabinol on irinotecan-induced clinical effects in rats. Chem. Biol. Interact. 2018, 294, 128–134. [Google Scholar] [CrossRef]
- Zunec, S.; Karaconji, I.B.; Catalinac, M.; Jurič, A.; Katić, A.; Kozina, G.; Micek, V.; Neuberg, M.; Vrdoljak, A.L. Effects of concomitant use of THC and irinotecan on tumour growth and biochemical markers in a syngeneic mouse model of colon cancer. Arh. Hig. Rada Toksikol. 2023, 74, 198–206. [Google Scholar] [CrossRef]
- Ferro, R.; Adamska, A.; Lattanzio, R.; Mavrommati, I.; Edling, C.E.; Arifin, S.A.; Fyffe, C.A.; Sala, G.; Sacchetto, L.; Chiorino, G.; et al. GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine. Oncogene 2018, 37, 6368–6382. [Google Scholar] [CrossRef] [PubMed]
- Waissengrin, B.; Leshem, Y.; Taya, M.; Meiri, D.; Merimsky, O.; Shamai, S.; Wolf, I.; Rubinek, T. The use of medical cannabis concomitantly with immune-check point inhibitors (ICI) in Non-Small Cell Lung Cancer (NSCLC): A sigh of relief? Eur. J. Cancer 2023, 180, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Richtig, G.; Kienzl, M.; Rittchen, S.; Roula, D.; Eberle, J.; Sarif, Z.; Pichler, M.; Hoefler, G.; Heinemann, A. Cannabinoids reduce melanoma cell viability and do not interfere with commonly used targeted therapy in metastatic melanoma in vivo and in vitro. Biology 2023, 12, 706. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Xu, T.; Wang, Y.; Zhou, Y.; Yu, D.; Wang, Z.; He, L.; Chen, Z.; Zhang, Y.; Davidson, D.; et al. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy 2021, 17, 3592–3606. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Valero, I.; Saiz-Ladera, C.; Torres, S.; Salazar-Roa, M.; Garcia-Taboada, E.; Hernandez Tiedra, S.; Garcia-Taboada, E.; Rodriguez-Fornes, F.; Barba, M.; de Leon, D.D.; et al. Targeting glioma initiating cells with a combined therapy of cannabinoids and temozolomide. Biochem. Pharmacol. 2018, 157, 266–274. [Google Scholar] [CrossRef]
- López-Valero, I.; Torres, S.; Salazar-Roa, M.; Garcia-Taboada, E.; Hernandez Tiedra, S.; Guzman, M.; Sepulveda, J.M.; Velasco, G.; Lorente, M. Optimization of a preclinical therapy of cannabinoids in combination with temozolomide against glioma. Biochem. Pharmacol. 2018, 157, 275–284. [Google Scholar] [CrossRef]
- Torres, S.; Lorente, M.; Rodriguez-Fornes, F.; Hernandez-Tiedra, S. à; Salazar, M.; Garcia-Taboada, E.; Barcia, J.; Guzman, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther. 2011, 10, 90–103. [Google Scholar] [CrossRef]
- Engels, F.K.; de Jong, F.A.; Sparreboom, A.; Mathot, R.A.A.; Loos, W.J.; Kitzen, J.J.E.M.; de Bruijn, P.; Verweij, J.; Mathijssen, R.H.J. Medicinal cannabis does not influence the clinical pharmacokinetics of irinotecan and docetaxel. Oncologist 2007, 12, 291–300. [Google Scholar] [CrossRef]
- Likar, R.; Nahler, G. Cannabidiol possibly improves survival of patients with pancreatic cancer: A case series. Clin. Oncol. Res. 2020, 2020, 2613–4942. [Google Scholar] [CrossRef]
- Parihar, V.; Rogers, A.; Blain, A.M.; Zacharias, S.R.K.; Patterson, L.L.; Siyam, M.A.M. Reduction in tamoxifen metabolites endoxifen and N-desmethyltamoxifen with chronic administration of low dose cannabidiol: A CYP3A4 and CYP2D6 drug interaction. J. Pharm. Pract. 2022, 35, 322–326. [Google Scholar] [CrossRef]
- Buijs, S.M.; Braal, C.L.; Buck, S.A.J.; van Maanen, N.F.; van der Meijden-Erkelens, L.M.; Kuijper-Tissot van Patot, H.A.; Oomen-de Hoop, E.; Saes, L.; van den Boogerd, S.J.; Struik, L.E.M.; et al. CBD-oil as a potential solution in case of severe tamoxifen-related side effects. npj Breast Cancer 2023, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Fleege, N.M.G.; Miller, E.; Kidwell, K.M.; Scheu, K.L.; Kemmer, K.A.; Boehnke, K.; Henry, N.L. The impact of cannabidiol (CBD) on aromatase inhibitor (AI)-associated musculoskeletal symptoms (AIMSS). Meeting Abstract: 2024 ASCO Annual Meeting. J. Clin. Oncol. 2024, 42 (Suppl. 16), e24060. [Google Scholar] [CrossRef]
- Bar-Sela, G.; Cohen, I.; Campisi-Pinto, S.; Lewitus, G.M.; Oz-Ari, L.; Jehassi, A.; Peer, A.; Turgeman, I.; Vernicova, O.; Berman, P.; et al. Cannabis consumption used by cancer patients during immunotherapy correlates with poor clinical outcome. Cancers 2020, 12, 2447. [Google Scholar] [CrossRef] [PubMed]
- Likar, R.; Koestenberger, M.; Stutschnig, M.; Nahler, G. Cannabidiol may prolong survival in patients with glioblastoma multiforme. Cancer Diagn. Progn. 2021, 1, 77–82. [Google Scholar] [CrossRef]
- Likar, R.; Nahler, G. Surprising long term survival in glioblastoma patients treated with cannabidiol. Clin. Oncol. Res. 2023, 2023, 2613–4942. [Google Scholar] [CrossRef]
- Twelves, C.; Sabel, M.; Checketts, D.; Miller, S.; Tay, B.; Jove, M.; Brazil, L.; Short, S.C.; on behalf of the GWCA1208 study group. A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma. Br. J. Cancer 2021, 124, 1379–1387. [Google Scholar] [CrossRef]
- Wei, T.; Chen, L.; Shi, P.; Wang, C.; Peng, Y.; Yang, J.; Liao, X.; Yang, P.; Gao, C. Platinum (IV) drugs with cannabidiol inducing mitochondrial dysfunction and synergistically enhancing anti-tumor effects. Inorg. Biochem. 2024, 254, 112515. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, B.G.; Kim, D.Y.; Kim, B.R.; Kim, J.L.; Park, S.H.; Na, Y.J.; Jo, M.J.; Yun, H.K.; Jeong, Y.A.; et al. Cannabidiol overcomes oxaliplatin resistance by enhancing NOS3- and SOD2-Induced autophagy in human colorectal cancer cells. Cancers 2019, 11, 781. [Google Scholar] [CrossRef]
- Misri, S.; Kaul, K.; Mishra, S.; Charan, M.; Verma, A.K.; Barr, M.P.; Ahirwar, D.K.; Ganju, R.K. Cannabidiol inhibits tumorigenesis in cisplatin-resistant non-small cell lung cancer via TRPV2. Cancers 2022, 14, 1181. [Google Scholar] [CrossRef]
- Hamad, H.; Brinkmann Olsen, B. Cannabidiol induces cell death in human lung cancer cells and cancer stem cells. Pharmaceuticals 2021, 4, 1169. [Google Scholar] [CrossRef]
- Holland, M.L.; Panetta, J.A.; Hoskins, J.M.; Bebawy, M.; Roufogalis, B.D.; Allen, J.D.; Arnold, J.C. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem. Pharmacol. 2006, 71, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.J.; Wang, J.S.; Markowitz, J.S.; Donovan, J.L.; Gibson, B.B.; Gefroh, H.A.; DeVane, C.L. Characterization of P-glycoprotein inhibition by major cannabinoids from Marijuana. J. Pharmacol. Exp. Ther. 2006, 317, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Kalvala, A.K.; Nimma, R.; Bagde, A.; Surapaneni, S.K.; Patel, N.; Arthur, P.; Sun, L.; Singh, R.; Kommineni, N.; Nathani, A.; et al. The role of cannabidiol and tetrahydrocannabivarin to overcome doxorubicin resistance in MDA-MB-231 xenografts in athymic nude mice. Biochemie 2023, 208, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Mangoato, I.M.; Mahadevappa, C.P.; Matsabisa, M.G. Cannabis sativa L. Extracts can reverse drug resistance in colorectal carcinoma cells in vitro. Synergy 2019, 9, 100056. [Google Scholar] [CrossRef]
- Fox, E.J. Mechanism of action of mitoxantrone. Neurology 2004, 63 (Suppl. 6), S15–S18. [Google Scholar] [CrossRef]
- Holland, M.L.; Lau, D.T.T.; Allen, J.D.; Arnold, J.C. The multidrug transporter Abcg2 (Bcrp) is inhibited by plant-derived cannabinoids. Br. J. Pharmacol. 2007, 152, 815–824. [Google Scholar] [CrossRef]
- de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet. 2018, 57, 1229–1254. [Google Scholar] [CrossRef]
- Vrdoljak, A.L.; Fuchs, N.; Mikolic, A.; Žunec, S.; Karačonji, I.B.; Jurič, A.; Prester, L.; Micek, V.; Neuberg, M.; Čanović, S.; et al. Irinotecan and D9-tetrahydrocannabinol interactions in rat liver: A preliminary evaluation using biochemical and genotoxicity markers. Molecules 2018, 23, 1332. [Google Scholar] [CrossRef]
- Kerstjens, M.; Castro, P.G.; Pinhancos, S.S.; Schneider, P.; Wander, P.; Pieters, R.; Stam, R.W. Irinotecan induces disease remission in xenograft mouse models of pediatric MLL-rearranged acute lymphoblastic leukemia. Biomedicines 2021, 9, 711. [Google Scholar] [CrossRef]
- Donadelli, M.; Dando, I.; Zaniboni, T.; Costanzo, C.; Salla Pozza, E.; Scupoli, M.T.; Scarpa, A.; Zappavigna, S.; Marra, M.; Abbruuese, A.; et al. 2011 Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis. 2011, 2, e152. [Google Scholar] [CrossRef]
- Adamska, A.; Elaskalani, O.; Emmanouilidi, A.; Kim, M.; Razak, N.B.A.; Metharom, P.; Falasca, M. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv. Biol. Regul. 2018, 68, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Dobovisek, L.; Krstanovic, F.; Borstnar, S.; Debeljak, N. Cannabinoids and hormone receptor-positive breast cancer treatment. Cancers 2020, 12, 525. [Google Scholar] [CrossRef] [PubMed]
- Franks, L.N.; Ford, B.M.; Prather, P.L. Selective estrogen receptor modulators: Cannabinoid receptor inverse agonists with differential CB1 and CB2 selectivity. Front. Pharmacol. 2016, 7, 503. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Baillie, G.L.; Phillips, A.M.; Razdan, R.K.; Ross, R.A.; Pertwee, R. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br. J. Pharmacol. 2007, 150, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Morales, L.; Mendoza-Rodriguez, M.G.; Ramirez, J.T.; Meza, I. CBD inhibits in vivo development of human breast cancer tumors. Int. J. Mol. Sci. 2023, 24, 13235. [Google Scholar] [CrossRef]
- Lu, W.J.; Desta, Z.; Flockhart, D.A. Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res. Treat. 2012, 131, 473–481. [Google Scholar] [CrossRef]
- Chang, M. Tamoxifen resistance in breast cancer. Biomol. Therap. 2012, 20, 256. [Google Scholar] [CrossRef]
- Almada, M.; Amaral, C.; Oliveira, A.; Fernandes, P.A.; Ramos, M.J.; Fonesca, B.M.; Correia-da-Silva, G.; Teixeira, N. Cannabidiol (CBD) but not tetrahydrocannabinol (THC) dysregulate in vitro decidualization of human endometrial stromal cells by disruption of estrogen signaling. Reprod. Toxicol. 2020, 93, 75–82. [Google Scholar] [CrossRef]
- Almeida, C.F.; Teixeira, N.; Valente, M.J.; Vinggaard, A.M.; Correia-da-Silv, G.; Amaral, C. Cannabidiol as a promising adjuvant therapy for estrogen receptor-positive breast tumors: Unveiling its benefits with aromatase inhibitors. Cancers 2023, 15, 2517. [Google Scholar] [CrossRef]
- Amaral, C.; Trouille, F.M.; Almeida, C.F.; Correia-da-Silva, G.; Teixeira, N. Unveiling the mechanism of action behind the anti-cancer properties of cannabinoids in ER+ breast cancer cells: Impact on aromatase and steroid receptors. J. Steroid Biochem. Mol. Biol. 2021, 210, 105876. [Google Scholar] [CrossRef]
- Almeida, C.; Augusto, T.; Correia-da-Silva, G.; Teixera, N.; Amaral, C. PS181. The effects of cannabinoids in exemestane-resistant breast cancer cells. Abstr. Porto Biomed. J. 2017, 2, 221–222. [Google Scholar] [CrossRef] [PubMed]
- Younus, J.; Kligman, L. Management of aromatase inhibitor-induced arthralgia. Curr. Oncol. 2010, 17, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Taha, T.; Meiri, D.; Talhamy, S.; Wollner, M.; Peer, A.; Bar-Sela, G. Cannabis impacts tumor response rate to nivolumab in patients with advanced malignancies. Oncologist 2019, 24, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Piper, B.J.; Tian, M.; Saini, P.; Higazy, A.; Graham, J.; Carbe, C.J.; Bordonaro, M. Immunotherapy and cannabis: A harmful drug interaction or Reefer Madness? Cancers 2024, 16, 1245. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Kim, B.R.; Kim, D.Y.; Yun, H.; Kim, D.; Kim, W.Y.; Kang, S.; Oh, S.C. Abstract 5548: Cannabidiol enhances efficacy of atezolizumab via upregulation of PD-L1 expression by cGAS-STING pathway in triple negative breast cancer cells. Cancer Res. 2024, 84 (Suppl. 6), 5548. [Google Scholar] [CrossRef]
- Fraguas-Sanchez, A.I.; Fernandez-Carballido, A.; Delie, F.; Cohen, M.; Martin-Sabroso, C.; Mezzanzanica, D.; Figini, M.; Satta, A.; Torres-Suarez, A. Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles. Eur. J. Pharm. Biopharm. 2020, 154, 246–258. [Google Scholar] [CrossRef]
- Fraguas-Sanchez, A.I.; Fernandez-Carballido, A.; Simancas-Herbada, R.; Martin-Sabroso, C.; Torres-Suarez, A. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int. J. Pharm. 2019, 574, 118916. [Google Scholar] [CrossRef]
- Miyato, H.; Kitayama, J.; Yamashita, H.; Souma, D.; Asakage, M.; Yamada, J.; Nagawa, H. Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines. J. Surg. Res. 2009, 155, 40–47. [Google Scholar] [CrossRef]
- Sales, A.J.; Guimaraes, F.S.; Joca, S.R.L. CBD modulates DNA methylation in the prefrontal cortex and hippocampus of mice exposed to forced swim. Behav. Brain Res. 2020, 388, 112627. [Google Scholar] [CrossRef]
- Lah, T.T.; Novak, M.; Pena Almidon, M.A.; Marinelli, O.; Žvar Baškovič, B.; Majc, B.; Mlinar, M.; Bošnjak, R.; Breznik, B.; Zomer, R.; et al. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells 2021, 10, 340. [Google Scholar] [CrossRef]
- Koltai, H.; Shalev, N. Anti-cancer activity of Cannabis sativa phytocannabinoids: Molecular mechanisms and potential in the fight against ovarian cancer and stem cells. Cancers 2022, 14, 4299. [Google Scholar] [CrossRef] [PubMed]
- Stark, D.P.H.; House, A. Anxiety in cancer patients. Br. J. Cancer 2000, 83, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Raymundi, A.M.; da Silva, T.R.; Sohn, J.M.B.; Bertoglio, L.J.; Stern, C.A. Effects of Δ9-tetrahydrocannabinol on aversive memories and anxiety: A review from human studies. BMC Psychiatry 2020, 20, 420. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; Escalante, P.; Graubard, P. The role of cannabidiol in the inflammatory process and its properties as an alternative therapy—A review (meta-analysis). Innovare J. Med. Sci. 2020, 8, 18–24. [Google Scholar] [CrossRef]
- Fliegel, D.K.; Lichenstein, S.D. Systematic literature review of human studies assessing the efficacy of cannabidiol for social anxiety. Psychiatry Res. Commun. 2022, 2, 100074. [Google Scholar] [CrossRef]
- Bidwell, L.C.; Willett, R.M.; Skrzynski, C.; Lisano, J.; Torres, M.O.; Giordano, G.; Hutchison, K.E.; Bryan, A.D. Acute and extended anxiolytic effects of cannabidiol in cannabis flower: A quasi-experimental ad libitum use study. Cannabis Cannabinoid Res. 2024, 9, 1015–1027. [Google Scholar] [CrossRef]
- Narayan, A.J.; Downey, L.A.; Manning, B.; Hayley, A.C. Cannabinoid treatments for anxiety: A systematic review and consideration of the impact of sleep disturbance. Neurosci. Biobehav. Rev. 2022, 143, 104941. [Google Scholar] [CrossRef]
- Alessandria, G.; Meli, R.; Infante, M.T.; Vestito, L.; Capello, E.; Bandini, F. Long-term assessment of the cognitive effects of nabiximols in patients with multiple sclerosis: A pilot study. Clin. Neurol. Neurosurg. 2020, 196, 105990. [Google Scholar] [CrossRef]
- Hutten, N.R.P.W.; Arkell, T.R.; Vinckenbosch, F.; Schepers, J.; Kevin, R.C.; Theunissen, E.L.; Kuypers, K.P.C.; McGregor, I.S.; Ramaekers, J.G. Cannabis containing equivalent concentrations of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) induces less state anxiety than THC-dominant cannabis. Psychopharmacology 2022, 239, 3731–3741. [Google Scholar] [CrossRef]
- Brisbois, T.D.; de Kock, I.H.; Watanabe, S.M.; Mirhosseini, M.; Lamoureux, D.C.; Chasen, M.; MacDonald, N.; Baracos, V.E.; Wismer, W.V. Delta-9-tetrahydrocannabinol may palliate altered chemosensory perception in cancer patients: Results of a randomized, double-blind, placebo-controlled pilot trial. Ann. Oncol. 2011, 22, 2086–2093. [Google Scholar] [CrossRef]
- Bar-Sela, G.; Zalman, D.; Semenysty, V.; Ballan, E. The effects of dosage-controlled cannabis capsules on cancer-related cachexia and anorexia syndrome in advanced cancer patients: Pilot study. Integr. Cancer Ther. 2019, 18, 153473541988149. [Google Scholar] [CrossRef] [PubMed]
- Dominiak, H.S.H.; Hasselsteen, S.D.; Nielsen, S.W.; Andersen, J.R.; Herrstedt, J. Prevention of taste alterations in patients with cancer receiving paclitaxel- or oxaliplatin-based chemotherapy-a pilot trial of cannabidiol. Nutrients 2023, 15, 3014. [Google Scholar] [CrossRef] [PubMed]
- Meiri, E.; Jhangiani, H.; Vredenburgh, J.J.; Barbato, L.M.; Carter, F.J.; Yang, H.M.; Baranowski, V. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr. Med. Res. Opin. 2007, 23, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Mersiades, A.; Kirby, A.; Stockler, M.; Tognela, A. Cannabis extract for secondary prevention of chemotherapy-induced nausea and vomiting: Results of a phase II/III, placebo-controlled, randomised trial. J. Clin. Oncol. 2023, 41 (Suppl. 16), 12019. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Parker, L.A.; Burton, P.; Mechoulam, R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology 2004, 174, 254–259. [Google Scholar] [CrossRef]
- Rock, E.; Bolognini, D.; Limebeer, C.; Cascio, M.; Anavi-Goffer, S.; Fletcher, P.; Mechoulam, R.; Pertwee, R.; Parker, L. Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT(1A) somatodendritic autoreceptors in the dorsal raphe nucleus. Br. J. Pharmacol. 2012, 165, 2620–2634. [Google Scholar] [CrossRef]
- Ward, S.J.; Ramirez, M.D.; Neelakantan, H.; Walker, E.A. Cannabidiol prevents the development of cold and mechanical allodynia in paclitaxel-treated female C57Bl6 mice. Anesth. Analg. 2011, 113, 947–950. [Google Scholar] [CrossRef]
- Ward, S.J.; McAllister, S.D.; Kawamura, R.; Murase, R.; Neelakantan, H.; Walker, E.A. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br. J. Pharmacol. 2014, 171, 636–645. [Google Scholar] [CrossRef]
- King, K.M.; Myers, A.M.; Soroka-Monzo, A.J.; Tuma, R.F.; Tallarida, R.J.; Walker, E.A.; Ward, S.J. Single and combined effects of Δ9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br. J. Pharmacol. 2017, 174, 2832–2841. [Google Scholar] [CrossRef]
- Kalvala, A.K.; Bagde, A.; Arthur, P.; Surapaneni, S.K.; Ramesh, N.; Nathani, A.; Singh, M. Role of cannabidiol and tetrahydrocannabivarin on paclitaxel-induced neuropathic pain in rodents. Int. Immunopharmacol. 2022, 107, 108693. [Google Scholar] [CrossRef]
- Alkislar, I.; Miller, A.R.; Hohmann, A.G.; Sadaka, A.H.; Cai, X.; Kulkarni, P.; Ferris, C.F. Inhaled cannabis suppresses chemotherapy-induced neuropathic nociception by decoupling the Raphe Nucleus: A Functional Imaging Study in rats. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.E.; Cesar-Rittenberg, P.; Hohmann, A.G. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J. Pain Symptom Manag. 2014, 47, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Waissengrin, B.; Mirelman, D.; Pelles, S.; Bukstein, F.; Blumenthal, D.T.; Wolf, I.; Geva, R. Effect of cannabis on oxaliplatin-induced peripheral neuropathy among oncology patients: A retrospective analysis. Ther. Adv. Med. Oncol. 2021, 13, 1758835921990203. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.H.; Cullen, B.D.; Tang, M.; Fang, Y. The effectiveness of topical cannabidiol oil in symptomatic relief of peripheral neuropathy of the lower extremities. Curr. Pharm. Biotechnol. 2020, 21, 390–402. [Google Scholar] [CrossRef] [PubMed]
- D’Andre, S.; McAllister, S.; Nagi, J.; Giridhar, K.V.; Ruiz-Macias, E.; Loprinzi, C. Topical cannabinoids for treating chemotherapy-induced neuropathy: A case series. Integr. Cancer Ther. 2021, 20, 15347354211061739. [Google Scholar] [CrossRef]
- Halbritter, K. Cannabidiol—Lokale Anwendung bei Chemotherapie-induzierter Neuropathie. PHYTO Ther. 2018, 3, 22–23. [Google Scholar]
- Aprikian, S.; Kasvis, P.; Vigano, M.L.; Hachem, Y.; Canac-Marquis, M.; Vigano, A. Medical cannabis is effective for cancer-related pain: Quebec Cannabis Registry results. BMJ Support. Palliat. Care 2024, 13, e1285–e1291. [Google Scholar] [CrossRef]
- Capano, A.; Weaver, R.; Burkman, E. Evaluation of the effects of CBD hemp extract on opioid use and quality of life indicators in chronic pain patients: A prospective cohort study. Postgrad. Med. 2020, 132, 56–61. [Google Scholar] [CrossRef]
- Le, K.; Au, J.; Hua, J.; Le, K.D.R. The therapeutic potential of cannabidiol in revolutionising opioid use disorder management. Cureus 2023, 15, e50634. [Google Scholar] [CrossRef]
- Lichtman, A.H.; Lux, E.A.; McQuade, R.; Rossetti, S.; Sanchez, R.; Sun, W.; Wright, S.; Kornyeyeva, E.; Fallon, M.T. Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J. Pain Symptom Manag. 2018, 55, 179–188.e1. [Google Scholar] [CrossRef]
- Suzuki, J.; Martin, B.; Prostko, S.; Chai, P.R.; Weiss, R.D. Cannabidiol effect on cue-induced craving for individuals with opioid use disorder treated with buprenorphine: A small proof-of-concept open-label study. Integr. Med. Rep. 2022, 1, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Bebee, B.; Taylor, D.M.; Bourke, E.; Pollack, K.; Foster, L.; Ching, M.; Wong, A. The CANBACK trial: A randomised, controlled clinical trial of oral cannabidiol for people presenting to the emergency department with acute low back pain. Med. J. Aust. 2021, 214, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manag. 2010, 39, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Portenoy, R.K.; Ganae-Motan, E.D.; Allende, S.; Yanagihara, R.; Shaiova, L.; Weinstein, S.; McQuade, R.; Wright, S.; Fallon, M.T. Nabiximols for Opioid-Treated Cancer Patients with Poorly-Controlled Chronic Pain: A Randomized, Placebo-Controlled, Graded-Dose Trial. J. Pain. 2012, 13, 438–449. [Google Scholar] [CrossRef]
- Häuser, W.; Welsch, P.; Radbruch, L.; Fisher, E.; Bell, R.F.; Moore, R.A. Cannabis-based medicines and medical cannabis for adults with cancer pain (Review). Cochrane Database Syst. Rev. 2023, 6, CD014915. [Google Scholar] [CrossRef]
- Nielsen, S.; Picco, L.; Murnion, B.; Winters, B.; Matheson, J.; Graham, M.; Campbell, G.; Parvaresh, L.; Khor, K.E.; Betz-Stablein, B.; et al. Opioid-sparing effect of cannabinoids for analgesia: An updated systematic review and meta-analysis of preclinical and clinical studies. Neuropsychopharmacology 2022, 47, 1315–1330. [Google Scholar] [CrossRef]
- Pantoja-Ruiz, C.; Restrepo-Jimenez, P.; Castaneda-Cardona, C.; Ferreiros, A.; Rosselli, D. Cannabis and pain: A scoping review. Braz. J. Anesthesiol. 2022, 72, 142–151. [Google Scholar] [CrossRef]
- Fouad, A.A.; Albuali, W.H.; Al-Mulhim, A.S.; Jresat, I. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. Environ. Toxicol. Pharmacol. 2013, 36, 347–357. [Google Scholar] [CrossRef]
- Hao, E.; Mukhopadhyay, P.; Cao, Z.; Erdelyi, K.; Holovac, E.; Liaudet, L.; Lee, W.S.; Hasko, G.; Mechoulam, R.; Pacher, P. Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis. Mol. Med. 2015, 21, 38–45. [Google Scholar] [CrossRef]
- Ozmen, O.; Milletsever, A.; Tasan, S.; Selcuk, E.; Savran, M. The effects of cannabidiol against Methotrexate-induced lung damage. Basic Clin. Pharmacol. Toxicol. 2024, 134, 695–703. [Google Scholar] [CrossRef]
- Unlu, M.D.; Asci, H.; Tepebasi, M.Y.; Arlioglu, I.; Huseynov, I.; Ozmen, O.; Sezer, S.; Demirci, S. The ameliorative effects of cannabidiol on methotrexate-induced neuroinflammation and neuronal apoptosis via inhibiting endoplasmic reticulum and mitochondrial stress. J. Biochem. Mol. Toxicol. 2024, 38, e23571. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Mukhopadhyay, P.; Rajesh, M.; Patel, V.; Mukhopadhyay, B.; Gao, B.; Haskó, G.; Pacher, P. Cannabidiol attenuates cisplatin-Induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. J. Pharmacol. Exp. Ther. 2009, 328, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Soliman, N.A.; El Dahmy, S.I.; Shalaby, A.A.; Mohammed, K.A. Prospective affirmative therapeutics of cannabidiol oil mitigates doxorubicin-induced abnormalities in kidney function, inflammation, and renal tissue changes. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 3897–3906. [Google Scholar] [CrossRef] [PubMed]
- Cuba, F.; Salum, F.G.; Guimaraes, F.S.; Cherubini, K.; Borghetti, R.L.; Zancanaro de Figueiredo, M.A. Cannabidiol on 5-FU-induced oral mucositis in mice. Oral Dis. 2020, 26, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xuan, Y.; Zhu, B.; Wang, X.; Tian, X.; Zhao, L.; Wang, Y.; Jiang, X.; Wen, N. Protective effects of cannabidiol on chemotherapy-induced oral mucositis via the Nrf2/Keap1/ARE signaling pathways. Oxid. Med. Cell Longev. 2022, 25, 4619760. [Google Scholar] [CrossRef]
- Hopkinson, J.B.; Wright, D.N.M.; McDonald, J.W.; Corner, J. The prevalence of concern about weight loss and change in eating habits in people with advanced cancer. J. Pain Symptom Manag. 2006, 32, 322–331. [Google Scholar] [CrossRef]
- Pinto, J.S.; Martel, F. Effects of Cannabidiol on appetite and body weight: A systematic review. Clin. Drug Investig. 2022, 42, 909–919. [Google Scholar] [CrossRef]
- Smith, L.A.; Azariah, F.; Lavender, V.T.C.; Stoner, N.S.; Bettiol, S. Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy (Review). Cochrane Database Syst. Rev. 2015, 2015, CD009464. [Google Scholar] [CrossRef]
- Grimison, P.; Mersiades, A.; Kirby, A.; Lintzeris, N.; Morton, R.; Haber, P.; Olver, I.; Walsh, A.; McGregor, I.; Cheung, Y.; et al. Oral THC:CBD cannabis extract for refractory chemotherapy-induced nausea and vomiting: A randomised, placebo-controlled, phase II crossover trial. Ann. Oncol. 2020, 31, 1553–1560. [Google Scholar] [CrossRef]
- Sukpiriyagul, A.; Chartchaiyarerk, R.; Tabtipwon, P.; Smanchat, B.; Prommas, S.; Bhamarapravatana, K.; Suwannarurk, K. Oral tetrahydrocannabinol (THC):cannabinoid (CBD) cannabis extract adjuvant for reducing chemotherapy-induced nausea and vomiting (CINV): A randomized, double-blinded, placebo-controlled, crossover trial. Int. J. Women’s Health 2023, 15, 1345–1352. [Google Scholar] [CrossRef]
- Zikos, T.A.; Nguyen, L.; Kamal, A.; Fernandez-Becker, N.; Regalia, K.; Nandwani, M.; Sonu, I.; Garcia, M.; Okafor, P.; Neshatian, L.; et al. Marijuana, ondansetron, and promethazine are perceived as most effective treatments for gastrointestinal nausea. Dig. Dis. Sci. 2020, 65, 3280–3286. [Google Scholar] [CrossRef] [PubMed]
- Fehninger, J.; Brodsky, A.L.; Kim, A.; Pothuri, B. Medical marijuana utilization in gynecologic cancer patients. Gynecol. Oncol. Rep. 2021, 37, 100820. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.; Suthar, K.; Meyer, T.A.; Wong, L. The use of cannabinoids in palliating cancer-related symptoms: A narrative review. Bayl. Univ. Med. Cent. Proc. 2024, 37, 288–294. [Google Scholar] [CrossRef]
- Abraham, A.D.; Leung, E.J.Y.; Wong, B.A.; Rivera, Z.M.G.; Kruse, L.C.; Clark, J.J.; Land, B.B. Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. Neuropsychopharmacology 2020, 45, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Hecht, S.L.; Quach, A.; Gao, D.; Brazell, A.; Beltran, G.; Holbrook, S.; Gore, L.; Iguchi, N.; Malykhina, A.; Wilcox, D.; et al. A prospective survey study of lower urinary tract dysfunction in childhood cancer survivors after vincristine and/or doxorubicin chemotherapy. Pediatr. Blood Cancer 2021, 68, e29226. [Google Scholar] [CrossRef] [PubMed]
- Cho, O.H.; Yoo, Y.S.; Kim, J.C.; Park, R.H.; Hwang, K.H. Factors influencing Lower Urinary Tract Symptoms in advanced cancer patients with chemotherapy-induced peripheral neuropathy. Int. Neurourol. J. 2018, 22, 192–199. [Google Scholar] [CrossRef]
- Youssef, N.A.; Schneider, M.P.; Mordasini, L.; Ineichen, B.V.; Bachmann, L.M.; Chartier-Kastler, E.; Panicker, J.N.; Kessler, T.M. Cannabinoids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: A systematic review and meta-analysis. BJU Int. 2017, 119, 515–521. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for the Pharmacological and Radiotherapeutic Management of Cancer Pain in Adults and Adolescents; World Health Organization: Geneva, Switzerland, 2018; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://www.who.int/publications-detail-redirect/9789241550390 (accessed on 6 June 2024).
- Giordano, G.; Martin-Willett, R.; Gibson, L.P.; Camdige, D.R.; Bowle, D.W.; Hutchison, K.E.; Bryan, A.D. Cannabis use in cancer patients: Acute and sustained associations with pain, cognition, and quality of life. Explor. Med. 2023, 4, 254–271. [Google Scholar] [CrossRef]
- Krok-Schoen, J.L.; Plascak, J.; Newton, A.M.; Strassels, S.A.; Adib, A.; Adley, N.C.; Hays, J.L.; Wagener, T.; Stevens, E.E.; Brasky, T.M. Current cannabis use and pain management among US cancer patients. Support Care Cancer 2024, 32, 111. [Google Scholar] [CrossRef]
- Raghunathan, N.J.; Brens, J.; Vemuri, S.; Li, Q.S.; Mao, J.J.; Korenstein, D. In the weeds: A retrospective study of patient interest in and experience with cannabis at a cancer center. Support Care Cancer 2022, 30, 7491–7497. [Google Scholar] [CrossRef]
- Boehnke, K.F.; Gagnier, J.J.; Matallana, L.; Williams, D.A. Substituting Cannabidiol for Opioids and Pain Medications Among Individuals with Fibromyalgia: A Large Online Survey. J. Pain 2021, 22, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.; Miroshnychenko, A.; Shergill, Y.; Ashoorion, V.; Rehmann, Y.; Couban, R.J.; Buckley, D.N.; Thabane, L.; Bhandari, M.; Guyatt, G.H.; et al. Opioid-sparing effects of medical cannabis or cannabinoids for chronic pain: A systematic review and meta-analysis of randomised and observational studies. BMJ Open 2021, 11, e047717. [Google Scholar] [CrossRef] [PubMed]
- Sihota, A.; Smith, B.K.; Ahmed, S.; Bell, A.; Blain, A.; Clarke, H.; Cooper, Z.D.; Cyr, C.; Daeninck, P.; Deshpande, A.; et al. Consensus-based recommendations for titrating cannabinoids and tapering opioids for chronic pain control. Int. J. Clin. Pract. 2021, 75, e13871. [Google Scholar] [CrossRef] [PubMed]
- Pai, V.B.; Nahata, M.C. Cardiotoxicity of chemotherapeutic agents: Incidence, treatment and prevention. Drug Saf. 2000, 22, 263–302. [Google Scholar] [CrossRef]
- Banaszkiewicz, M.; Tarwacka, P.; Krzywonos-Zawadzka, A.; Olejnik, A.; Laprairie, R.; Noszczyk-Nowak, A.; Sawicki, G.; Bil-Lula, I. Δ9-Tetrahydrocannabinol (Δ9-THC) improves ischemia/reperfusion heart dysfunction and might serve as a cardioprotective agent in the future treatment. Front. Biosci. 2022, 27, 114. [Google Scholar] [CrossRef]
- Gonca, E.; Darici, F. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: The role of adenosine A1 receptors. J. Cardiovasc. Pharmacol. Ther. 2015, 20, 76–83. [Google Scholar] [CrossRef]
- Rajesh, M.; Mukhopadhyay, P.; Bátkai, S.; Patel, V.; Saito, K.; Matsumoto, S.; Kashiwaya, Y.; Horváth, B.; Mukhopadhyay, B.; Becker, L.; et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2010, 56, 2115–2125. [Google Scholar] [CrossRef]
- Waldman, M.; Hochhauser, E.; Fishbein, M.; Aravot, D.; Shainberg, A.; Sarne, Y. An ultra-low dose of tetrahydrocannabinol provides cardioprotection. Biochem. Pharmacol. 2013, 85, 1626–1633. [Google Scholar] [CrossRef]
- Walsh, S.K.; Hepburn, C.Y.; Kane, K.A.; Wainwright, C.L. Acute administration of cannabidiol in vivo suppresses ischaemia-induced cardiac arrhythmias and reduces infarct size when given at reperfusion. Br. J. Pharmacol. 2010, 160, 1234–1242. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, Z.; Zhang, Z.; Zhao, M.; Tong, C.; Cong, P.; Mao, S.; Zhao, Y.; Hou, M.; Piao, Y.; et al. Protective effect and mechanism of cannabidiol on myocardial injury in exhaustive exercise training mice. Chem. Biol. Interact. 2022, 365, 110079. [Google Scholar] [CrossRef]
- Hokmabadi, V.; Khalili, A.; Hashemi, S.A.; Hedayatyanfard, K.; Parvari, S.; Changizi-Ashtiyani, S.; Bayat, G. Cannabidiol interacts with the FXR/Nrf2 pathway and changes the CB1/CB2 receptors ratio in gentamicin-induced kidney injury in rats. Iran. J. Basic Med. Sci. 2023, 26, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, C.; Zhang, Y.; Guan, C.; Wang, Q.; Ding, Y.; Hu, X. Incidence and Risk Factors for Radiotherapy-Induced Oral Mucositis among Patients With Nasopharyngeal Carcinoma: A Meta-Analysis. Asian Nurs. Res. 2023, 17, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.P.; Costa, G.; Mascarenhas-Melo, F.; Pires, P.C.; Heidarizadeh, F.; Giram, P.S.; Mazzola, P.G.; Cabral, C.; Veiga, F.; Paiva-Santos, A.C. Skin applications of cannabidiol: Sources, effects, delivery systems, marketed formulations and safety. Phytochem. Rev. 2023, 22, 781–828. [Google Scholar] [CrossRef]
- Dillard, L.K.; Lope-Perez, L.; Martinez, R.X.; Fullerton, A.M.; Chadha, S.; McMahon, C.M. Global burden of ototoxic hearing loss associated with platinum-based cancer treatment: A systematic review and meta-analysis. Cancer Epidemiol. 2022, 79, 102203. [Google Scholar] [CrossRef]
- Bhatta, P.; Dhukhwa, A.; Shechan, K.; Al Aameri, R.F.H.; Borse, V.; Ghosh, S.; Sheth, S.; Mamillapalli, C.; Rybak, L.; Ramkumar, V.; et al. Capsaicin protects against cisplatin ototoxicity by changing the STAT3/STAT1 ratio and activating cannabinoid (CB2) receptors in the cochlea. Sci. Rep. 2019, 9, 4131. [Google Scholar] [CrossRef]
- He, Y.; Zheng, Z.; Liu, C.; Li, W.; Zhao, L.; Nie, G.; Li, H. Inhibiting DNA methylation alleviates cisplatin-induced hearing loss by decreasing oxidative stress-induced mitochondria-dependent apoptosis via the LRP1-PI3K/AKT pathway. Acta Pharm. Sin. B. 2022, 12, 1305–1321. [Google Scholar] [CrossRef]
- Domingos, L.B.; Silva, N.R.; Chaves Filho, A.J.M.; Sales, A.J.; Starnawska, A.; Joca, S. Regulation of DNA methylation by cannabidiol and its implications for psychiatry: New insights from in vivo and in silico models. Genes 2022, 13, 2165. [Google Scholar] [CrossRef]
- Wanner, N.M.; Colwell, M.; Drown, C.; Faulk, C. Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus. Environ. Mol. Mutagen. 2020, 61, 890–900. [Google Scholar] [CrossRef]
- Tan, W.J.T.; Vlajkovic, S.M. 2023 Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int. J. Mol. Sci. 2023, 24, 16545. [Google Scholar] [CrossRef]
- Morrison, G.; Crockett, J.; Blakey, G.; Sommerville, K. A phase I, open-label, pharmacokinetic trial to investigate possible drug-drug interactions between clobazam, stiripentol, or valproate and cannabidiol in healthy subjects. Clin. Pharmacol. Drug Dev. 2019, 8, 1009–1031. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahler, G. Phytocannabinoids as Chemotherapy Adjuncts—A Review for Users. Onco 2024, 4, 287-321. https://doi.org/10.3390/onco4040021
Nahler G. Phytocannabinoids as Chemotherapy Adjuncts—A Review for Users. Onco. 2024; 4(4):287-321. https://doi.org/10.3390/onco4040021
Chicago/Turabian StyleNahler, Gerhard. 2024. "Phytocannabinoids as Chemotherapy Adjuncts—A Review for Users" Onco 4, no. 4: 287-321. https://doi.org/10.3390/onco4040021
APA StyleNahler, G. (2024). Phytocannabinoids as Chemotherapy Adjuncts—A Review for Users. Onco, 4(4), 287-321. https://doi.org/10.3390/onco4040021