Monitoring the Net Primary Productivity of Togo’s Ecosystems in Relation to Changes in Precipitation and Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. MODIS Data and Preprocessing
2.2.2. Meteorological Data
2.2.3. Land Use Data
2.3. Methods
2.3.1. Estimation of NPP
2.3.2. Validation of NPP Estimation
2.3.3. Impacts of Climate Change and Land Use
2.3.4. Correlation Analysis between NPP and Climatic Variables
3. Results
3.1. Temporal Dynamics of NPP in Togo
3.1.1. Distribution and Temporal Evolution of NPP in Togo
3.1.2. Monthly Variation of NPP
3.2. Spatial Dynamics of Natural Productivity in Togo
3.2.1. Characteristics and Spatial Distribution of Natural Productivity in Togo
3.2.2. Detection of NPP Changes in Togo
3.2.3. Spatio-Temporal Dynamics of Ecosystem NPP
3.3. Impacts of Climate Change and Land Use Change on Total Production
3.4. Correlations between NPP and Climatic Parameters
4. Discussion
5. Limitations and Outlook of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, M.; Woodward, F.I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 1998, 393, 249–252. [Google Scholar]
- Jackson, R.B.; Randerson, J.T.; Canadell, J.G.; Anderson, R.G.; Avissar, R.; Baldocchi, D.D.; Bonan, G.B.; Caldeira, K.; Diffenbaugh, N.S.; Field, C.B. Protecting climate with forests. Environ. Res. Lett. 2008, 3, 044006. [Google Scholar] [CrossRef]
- Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology feedbacks on climate change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.G.; Canadell, J.G.; Randerson, J.T.; Jackson, R.B.; Hungate, B.A.; Baldocchi, D.D.; Ban-Weiss, G.A.; Bonan, G.B.; Caldeira, K.; Cao, L. Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. 2011, 9, 174–182. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, B.; Liu, L.; Chen, D.; Fang, H.; Hu, Y. Seasonal dynamic pattern analysis on global FPAR derived from AVHRR GIMMS NDVI. Int. J. Digit. Earth 2012, 5, 439–455. [Google Scholar] [CrossRef]
- Protected Areas Map of the World. Available online: https://www.protectedplanet.net (accessed on 18 March 2020).
- Mao, L.; Li, M.; Shen, W. Remote sensing applications for monitoring terrestrial protected areas: Progress in the last decade. Sustainability 2020, 12, 5016. [Google Scholar] [CrossRef]
- Grogan, K.; Pflugmacher, D.; Hostert, P.; Verbesselt, J.; Fensholt, R. Mapping clearances in tropical dry forests using breakpoints, trend, and seasonal components from MODIS time series: Does forest type matter? Remote Sens. 2016, 8, 657. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Yu, G.; Tao, J.; Yang, J.; Jiang, Y.; Wimberly, M.C.; Zhu, J. Climate-driven global changes in carbon use efficiency. Glob. Ecol. Biogeogr. 2013, 23, 144–155. [Google Scholar] [CrossRef]
- Van Tuyl, S.; Law, B.; Turner, D.; Gitelman, A.I. Variability in net primary production and carbon storage in biomass across Oregon forests—An assessment integrating data from forest inventories, intensive sites, and remote sensing. For. Ecol. Manag. 2005, 209, 273–291. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; He, J. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim. Change 2006, 74, 253–267. [Google Scholar] [CrossRef]
- Lobell, D.; Hicke, J.; Asner, G.; Field, C.; Tucker, C.; Los, S. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–1998. Glob. Change Biol. 2002, 8, 722–735. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Y.; Luo, H.; Wang, F.; Wang, S. Estimation and analysis of spatiotemporal dynamics of the net primary productivity integrating efficiency model with process model in karst area. Remote Sens. 2017, 9, 477. [Google Scholar] [CrossRef]
- Potter, C.; Klooster, S.; Genovese, V.; Hiatt, C.; Boriah, S.; Kumar, V.; Mithal, V.; Garg, A. Terrestrial ecosystem carbon fluxes predicted from MODIS satellite data and large-scale disturbance modeling. Int. J. Geosci. 2012, 3, 469–479. [Google Scholar] [CrossRef]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22, 815–835. [Google Scholar] [CrossRef]
- Goetz, S.J.; Prince, S.D.; Goward, S.N.; Thawley, M.M.; Small, J. Satellite remote sensing of primary production: An improved production efficiency modeling approach. Ecol. Model. 1999, 122, 239–255. [Google Scholar] [CrossRef]
- Landsberg, J.; Waring, R. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Zhou, G.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.H.; Goulden, M.L. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Veroustraete, F.; Sabbe, H.; Eerens, H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens. Environ. 2002, 83, 376–399. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B., III. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Ruimy, A.; Dedieu, G.; Saugier, B.J.G.B.C. TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Glob. Biogeochem. Cycles 1996, 10, 269–285. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Gamon, J.; Penuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.; Aherne, F. Influence of dietary nutrient density, level of feed intake and weaning age on young pigs. II. Apparent nutrient digestibility and incidence and severity of diarrhea. Can. J. Anim. Sci. 1987, 67, 1105–1115. [Google Scholar] [CrossRef]
- Collatz, G.J.; Ball, J.T.; Grivet, C.; Berry, J.A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteorol. 1991, 54, 107–136. [Google Scholar] [CrossRef]
- Von Caemmerer, S.v.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.; Hom, J.; McCullough, K.; Clark, K. Improved estimates of net primary productivity from MODIS satellite data at regional and local scales. Ecol. Appl. 2006, 16, 125–132. [Google Scholar] [CrossRef]
- Abd Wahid Rasib, A.L.I.; Cracknell, A.; Faidi, M.A. Local scale mapping of net primary production in tropical rain forest using Modis satellite data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 1441–1446. [Google Scholar]
- Li, J.; Cui, Y.; Liu, J.; Shi, W.; Qin, Y. Estimation and analysis of net primary productivity by integrating MODIS remote sensing data with a light use efficiency model. Ecol. Model. 2013, 252, 3–10. [Google Scholar] [CrossRef]
- Bradford, J.; Hicke, J.; Lauenroth, W. The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity. Remote Sens. Environ. 2005, 96, 246–255. [Google Scholar] [CrossRef]
- Fousseni, F.; Bilouktime, B.; Mustapha, T.; Kamara, M.; Wouyo, A.; Aboudoumisamilou, I.; Oyetunde, D.; Kperkouma, W.; Komlan, B.; Koffi, A. Changements d’affectation des terres et diversité structurelle de la forêt communautaire d’Affem Boussou dans la commune de Tchamba 1 (Préfecture de Tchamba, Togo). Conservation 2023, 3, 346–362. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Huang, W.; Wang, W.-H.; Juang, J.-Y.; Hong, J.-S.; Kato, T.; Luyssaert, S. Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Sci. Rep. 2019, 9, 3643. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Olufayo, A.A.; Fasinmirin, J.T.; Komolafe, A.A. Dynamics of land use land cover and its impact on carbon stocks in Sub-Saharan Africa: An overview. Environ. Dev. Sustain. 2022, 24, 40–76. [Google Scholar] [CrossRef]
- Kombate, A.; Folega, F.; Atakpama, W.; Dourma, M.; Wala, K.; Goïta, K. Characterization of land-cover changes and forest-cover dynamics in Togo between 1985 and 2020 from Landsat images using Google Earth Engine. Land 2022, 11, 1889. [Google Scholar] [CrossRef]
- MERF. Quatrième Communication Nationale sur les Changements Climatiques du Togo. Projet 4ème CN α 2ème RBA du Togo sur les Changements Climatiques. 2022. Available online: https://unfccc.int/sites/default/files/resource/QUATRIEME%20OMMUNICATION%20%20NATIONALE%20DU%20TOGO%20SUR%20LES%20CHANGEMENTS%20CLIMATIQUES.pdf (accessed on 5 July 2024).
- Xie, Y.; Ma, Z.; Fang, M.; Liu, W.; Yu, F.; Tian, J.; Zhang, S.; Yan, Y. Analysis of Net Primary Productivity of Retired Farmlands in the Grain-for-Green Project in China from 2011 to 2020. Land 2023, 12, 1078. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189, 11–18. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Zhang, L.; Wang, Z. The relative roles of climate variations and human activities in vegetation change in North China. Phys. Chem. Earth Parts A/B/C 2015, 87, 67–78. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Chen, Z.; Sha, Z.; Yin, J.; Chen, Z. Quantifying the contributions of climate factors and human activities to variations of net primary productivity in China from 2000 to 2020. Front. Earth Sci. 2023, 11, 1084399. [Google Scholar] [CrossRef]
- Folega, F.; Woegan, Y.A.; Marra, D.; Wala, K.; Batawila, K.; Seburanga, J.L.; Zhang, C.-Y.; Peng, D.-l.; Zhao, X.-H.; Akpagana, K. Long term evaluation of green vegetation cover dynamic in the Atacora Mountain chain (Togo) and its relation to carbon sequestration in West Africa. J. Mt. Sci. 2015, 12, 921–934. [Google Scholar] [CrossRef]
- Ern, H. Die vegetation togos. gliederung, gefährdung, erhaltung. Willdenowia. 1979, 9, pp. 295–312. Available online: https://www.jstor.org/stable/3995654 (accessed on 12 October 2023).
- Adjossou, K. Diversité Floristique des Forêts Riveraines de la Zone Écologique IV du Togo; Mém DEA biologie de développement, option biologie végétale appliquée, Univ Lomé: Lomé, Togo, 2004; p. 75. [Google Scholar]
- INSEED. Résultats Définitifs du RGPH-5 de Novembre 2022; Institut de la Statistique et des Etudes Economiques et Démographiques-Togo: Lomé, Togo, 2022. [Google Scholar]
- Zhang, M. Modeling net primary productivity of wetland with a satellite-based light use efficiency model. Geocarto Int. 2022, 37, 4028–4052. [Google Scholar] [CrossRef]
- Guan, X.; Shen, H.; Gan, W.; Yang, G.; Wang, L.; Li, X.; Zhang, L.J.R.S. A 33-year NPP monitoring study in southwest China by the fusion of multi-source remote sensing and station data. Remote Sens. 2017, 9, 1082. [Google Scholar] [CrossRef]
- Sun, J.; Yue, Y.; Niu, H. Evaluation of NPP using three models compared with MODIS-NPP data over China. PLoS ONE 2021, 16, e0252149. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, X.; Gao, Z.; Shi, Q.; Lv, G. Carbon uptake and change in net primary productivity of oasis-desert ecosystem in arid western China with remote sensing technique. J. Geogr. Sci. 2006, 16, 315–325. [Google Scholar] [CrossRef]
- Hatfield, J.; Asrar, G.; Kanemasu, E.T. Intercepted photosynthetically active radiation estimated by spectral reflectance. Remote Sens. Environ. 1984, 14, 65–75. [Google Scholar] [CrossRef]
- Los, S.; Justice, C.; Tucker, C. A global 10 x 10 NDVI data set for climate studies: Part I: Derivation of a reduced resolution data set from the GIMMS Global Area Coverage product of the AVHRR. Int. J. Remote Sens. 1994, 15, 3493–3518. [Google Scholar] [CrossRef]
- Peng, X.; Chen, Z.; Chen, Y.; Chen, Q.; Liu, H.; Wang, J.; Li, H. Modelling of the biodiversity of tropical forests in China based on unmanned aerial vehicle multispectral and light detection and ranging data. Int. J. Remote Sens. 2021, 42, 8858–8877. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Christensen, S.; Goudriaan, J. Deriving light interception and biomass from spectral reflectance ratio. Remote Sens. Environ. 1993, 43, 87–95. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Folega, F.; Atakpama, W.; Pereki, H.; Diwediga, B.; Novotny, I.P.; Dray, A.; Gracia, C.; Wala, K.; Batawila, K.; Akpagana, K. GIS/Remote-Sensing-Based Assessment of Vegetation Health Related to Agroecological Practices in the Southeast of Togo. Appl. Sci. 2023, 13, 9106. [Google Scholar] [CrossRef]
- Tilton, J.C.; De Colstoun, E.B.; Wolfe, R.E.; Tan, B.; Huang, C. (Eds.) Generating ground reference data for a global impervious surface survey. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Piscataway, NJ, USA; pp. 5993–5996. [Google Scholar]
- Liu, F.; Xu, C.; Yang, X.; Ye, X. Controls of climate and land-use change on terrestrial net primary productivity variation in a subtropical humid basin. Remote Sens. 2020, 12, 3525. [Google Scholar] [CrossRef]
- Cleophas, T.J.; Zwinderman, A.H.; Cleophas, T.J.; Zwinderman, A.H. Bayesian Pearson correlation analysis. In Modern Bayesian Statistics in Clinical Research; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Ogbue, C.; Igboeli, E.; Yahaya, I.; Yeneayehu, F.; Fu, S.; Chen, Y.; You, Y.; Wang, Y. Spatiotemporal dynamics and climatic factors affecting Net Primary Productivity in Niger River Basin, from 2000 to 2020. Appl. Ecol. Environ. Res. 2023, 21, 6003–6022. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, Q.; Khalifa, M.; Zhang, Z.; Tong, L.; Li, J.; Shi, A. Assessing the Dynamics of Grassland Net Primary Productivity in Response to Climate Change at the Global Scale. Chin. Geogr. Sci. 2019, 29, 725–740. [Google Scholar] [CrossRef]
- Adjossou, K. Diversité, Structure et Dynamique de la Végétation Dans les Fragments de Forêts Humides du Togo: Les Enjeux Pour la Conservation de la Biodiversite. Ph.D. Thesis, De l’Université de Lomé, Lomé, Togo, 2009; 235p. [Google Scholar]
- PNUD. Situation de Référence des Paysages. Stratégie Nationale du Programme de Micro Financements du FEM pour L’utilisation des Fonds de la 6e Phase Opérationnelle (OP 6); PNUD: New York, NY, USA, 2016. [Google Scholar]
- Atakpama, W.; Badjare, B.; Aladji, E.Y.K.; Batawila, K.; Akpagana, K. Dégradation alarmante des ressources Forestières de la forêt classée de la fosse de Doungh au Togo. Afr. J. Land Policy Geospat. Sci. 2023, 6, 485–503. [Google Scholar]
- Polo-Akpisso, A.; Wala, K.; Soulemane, O.; Foléga, F.; Akpagana, K.; Tano, Y. Assessment of habitat change processes within the Oti-Keran-Mandouri network of protected areas in Togo (West Africa) from 1987 to 2013 using decision tree analysis. Sci 2020, 2, 1. [Google Scholar] [CrossRef]
- Folega, F.; Zhang, C.-y.; Zhao, X.-h.; Wala, K.; Batawila, K.; Huang, H.-g.; Dourma, M.; Akpagana, K. Satellite monitoring of land-use and land-cover changes in northern Togo protected areas. J. For. Res. 2014, 25, 385–392. [Google Scholar] [CrossRef]
- Folega, F.; Haliba, M.; Folega, A.A.; Ekougoulou, R.; Wala, K.; Akpagana, K. Diversité structurale des ligneux en lien avec l’utilisation des terres du Socle Eburneen au Togo. Ann. Rech. For. Algérie 2022, 12, 7–25. [Google Scholar]
- Badjare, B.; Woegan, Y.A.; Folega, F.; Atakpama, W.; Wala, K.; Akpagana, K. Vulnérabilité des ressources ligneuses en lien avec les différentes formes d’usages au Togo: Cas du paysage des aires protégées Doungh-fosse aux lions (Région des Savanes). Rev. Agrobiol. 2021, 11, 2552–2565. [Google Scholar]
- Koumoi, Z.; Alassane, A.; Djangbedja, M.; Boukpessi, T.; Kouya, A.-E. Dynamique spatio-temporelle de l’occupation du sol dans le Centre-Togo. AHOHO-Rev. Géographie LARDYMES 2013, 7, 163–172. [Google Scholar]
- Djiwa, O. Dynamique Forestière et Diagnostic de la Gestion de la Forêt Classée d’Abdoulaye au Togo; AgroParisTech: Palaiseau, France, 2008. [Google Scholar]
- Dimobe, K.; Wala, K.; Batawila, K.; Dourma, M.; Woegan, Y.A.; Akpagana, K. Analyse spatiale des différentes formes de pressions anthropiques dans la réserve de faune de l’Oti-Mandouri (Togo). VertigO-La Rev. Électronique En Sci. L’environnement 2012, 14. [Google Scholar] [CrossRef]
- Akodéwou, A.; Oszwald, J.; Saïdi, S.; Gazull, L.; Akpavi, S.; Akpagana, K.; Gond, V. Land use and land cover dynamics analysis of the Togodo protected area and its surroundings in Southeastern Togo, West Africa. Sustainability 2020, 12, 5439. [Google Scholar] [CrossRef]
- Yang, H.; Hu, D.; Peng, F.; Wang, Y. Exploring the response of net primary productivity variations to land use/land cover change: A case study in Anhui, China. Pol. J. Environ. Stud. 2019, 28, 3971–3984. [Google Scholar] [CrossRef]
- Pang, Y.; Chen, C.; Guo, B.; Qi, D.; Luo, Y. Impacts of Climate Change and Anthropogenic Activities on the Net Primary Productivity of Grassland in the Southeast Tibetan Plateau. Atmosphere 2023, 14, 1217. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, W.; Yu, X.; Song, Q.; Yang, J.; Wu, J.; Zhang, H.J.R.S. Variation of net primary production and its correlation with climate change and anthropogenic activities over the Tibetan Plateau. Remote Sens. 2018, 10, 1352. [Google Scholar] [CrossRef]
- Luo, L.; Ma, W.; Zhuang, Y.; Zhang, Y.; Yi, S.; Xu, J.; Long, Y.; Ma, D.; Zhang, Z.J.E.I. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecol. Indic. 2018, 93, 24–35. [Google Scholar] [CrossRef]
- Bejagam, V.; Sharma, A. Impact of climatic changes and anthropogenic activities on ecosystem net primary productivity in India during 2001–2019. Ecol. Inform. 2022, 70, 101732. [Google Scholar] [CrossRef]
- Li, M.; Shaoqiang, W.; Jinghua, C.; Bin, C.; Leiming, Z.; Lixia, M.; Leigang, S.; Amir, M.; Guoyi, Z.; Ze, M. Relationship between Light Use Efficiency and Photochemical Reflectance Index Corrected Using a BRDF Model at a Subtropical Mixed Forest. Remote Sens. 2020, 12, 550. [Google Scholar] [CrossRef]
North Latitude | J | F | M | A | M | J | J | A | S | O | N | D |
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 1.02 | 0.93 | 1.03 | 1.02 | 1.06 | 1.03 | 1.06 | 1.05 | 1.01 | 1.03 | 0.99 | 1.02 |
10 | 1 | 0.91 | 1.03 | 1.03 | 1.08 | 1.06 | 1.08 | 1.07 | 1.02 | 1.02 | 0.98 | 0.99 |
Land Use Units | Year 2000 | Year 2022 | Trends | |||||
---|---|---|---|---|---|---|---|---|
km2 | ha | % | km2 | ha | % | ha | % | |
Forests | 25,464 | 2,546,445 | 44.99 | 19,469 | 1,946,876 | 34.40 | −599,569 | −23.55 |
Savanna Mosaic | 19,527 | 1,952,739 | 34.50 | 13,972 | 1,397,218 | 24.69 | −555,521 | −28.45 |
Crops/Agroforestry Parks/Fallow | 9360 | 936,003 | 16.54 | 20,014 | 2,001,382 | 35.36 | 1,065,379 | 113.82 |
Swamp Vegetation | 708 | 70,802 | 1.25 | 679 | 67,893 | 1.20 | −2909 | −4.11 |
Water Bodies | 247 | 24,658 | 0.44 | 266 | 26,563 | 0.47 | 1905 | 7.73 |
Dwellings/Infrastructure/Quarries | 1294 | 129,400 | 2.29 | 2201 | 220,114 | 3.89 | 90,713 | 70.10 |
56,600 | 5,660,047 | 100 | 56,600 | 5,660,046 | 100 |
Land Use Units | NPP in 2000 (kg C.ha−1.year−1) | NPP in 2022 (kg C.ha−1.year−1) |
---|---|---|
Forests | 4813.79 | 7050.33 |
Savanna Mosaic | 4336.64 | 6786.72 |
Crops/Agroforestry Parks/Fallow | 4127.76 | 2161.66 |
Swamp Vegetation | 4208.68 | 4914.66 |
Water Bodies | 2685.50 | 2791.45 |
Dwellings/Infrastructure/Quarries | 3956.09 | 2604.24 |
Land Use Units | NPP in 2000 (Pg C.yr−1) | % | NPP in 20022 (Pg C.yr−1) | % | Evolution (Pg C.yr−1) |
---|---|---|---|---|---|
Forests | 12.26 | 48.13 | 13.73 | 37.95 | 1.47 |
Savanna Mosaic | 8.47 | 33.25 | 9.48 | 24.48 | 1.01 |
Crops/Agroforestry Parks/Fallow | 3.86 | 15.17 | 4.33 | 32.81 | 0.46 |
Swamp Vegetation | 0.30 | 1.17 | 0.33 | 1.10 | 0.04 |
Water Bodies | 0.07 | 0.26 | 0.07 | 0.28 | 0.01 |
Dwellings/Infrastructure/Quarries | 0.51 | 2.01 | 0.57 | 3.38 | 0.06 |
2547 | 100.00 | 28.52 | 100.00 | 3.05 |
Land Use Units | Forests | Savanna Mosaic | Swamp Vegetation | Water Bodies | Crops/Agroforestry Parks/Fallow | Dwellings/Infrastructure/Quarries |
---|---|---|---|---|---|---|
Forests | 1,912,269.22 | 18,691.92 | 49.07 | 9.29 | 15,689.06 | 339.05 |
98.21% | 0.96% | 0.00% | 0.00% | 0.81% | 0.02% | |
Savanna mosaic | 156,129.20 | 1,038,496.38 | 564.01 | 732.43 | 199,945.41 | 1257.08 |
11.18% | 74.33% | 0.04% | 0.05% | 14.31% | 0.09% | |
Swamp Vegetation | 112.71 | 691.17 | 64,832.85 | 1510.99 | 633.43 | 109.94 |
0.17% | 1.02% | 95.50% | 2.23% | 0.93% | 0.16% | |
Water Bodies | 29.94 | 316.01 | 3729.00 | 22,234.77 | 20.94 | 224.59 |
0.11% | 1.19% | 14.04% | 83.73% | 0.08% | 0.85% | |
Crops/Agroforestry Parks/Fallow | 452,303.68 | 866,538.69 | 1235.72 | 56.06 | 679,920.61 | 1256.41 |
22.60% | 43.30% | 0.06% | 0.00% | 33.97% | 0.06% | |
Dwellings/Infrastructure/Quarries | 19,983.75 | 31,549.03 | 516.98 | 159.25 | 41,527.15 | 126,362.74 |
9.08% | 14.33% | 0.23% | 0.07% | 18.87% | 57.41% |
Land Use Units | Ƞclim | Ƞland | Ƞintersect |
---|---|---|---|
Forests | 387.94% | −196.60% | −91.34% |
Savanna Mosaics | 471.74% | −237.54% | −134.20% |
Crops/Agroforestry Parks/Fallow | −397.71% | 950.39% | −452.68% |
Swamp Vegetation | 140.06% | −34.31% | −5.75% |
Water Bodies | 32.94% | 64.51% | 2.55% |
Dwellings/Infrastructure/Quarries | −285.32% | 585.35% | −200.02% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilouktime, B.; Fousséni, F.; Maza-esso, B.D.; Weiguo, L.; Hua Guo, H.; Kpérkouma, W.; Komlan, B. Monitoring the Net Primary Productivity of Togo’s Ecosystems in Relation to Changes in Precipitation and Temperature. Geomatics 2024, 4, 342-361. https://doi.org/10.3390/geomatics4030018
Bilouktime B, Fousséni F, Maza-esso BD, Weiguo L, Hua Guo H, Kpérkouma W, Komlan B. Monitoring the Net Primary Productivity of Togo’s Ecosystems in Relation to Changes in Precipitation and Temperature. Geomatics. 2024; 4(3):342-361. https://doi.org/10.3390/geomatics4030018
Chicago/Turabian StyleBilouktime, Badjaré, Folega Fousséni, Bawa Demirel Maza-esso, Liu Weiguo, Huang Hua Guo, Wala Kpérkouma, and Batawila Komlan. 2024. "Monitoring the Net Primary Productivity of Togo’s Ecosystems in Relation to Changes in Precipitation and Temperature" Geomatics 4, no. 3: 342-361. https://doi.org/10.3390/geomatics4030018
APA StyleBilouktime, B., Fousséni, F., Maza-esso, B. D., Weiguo, L., Hua Guo, H., Kpérkouma, W., & Komlan, B. (2024). Monitoring the Net Primary Productivity of Togo’s Ecosystems in Relation to Changes in Precipitation and Temperature. Geomatics, 4(3), 342-361. https://doi.org/10.3390/geomatics4030018