Global Research Trends for Unmanned Aerial Vehicle Remote Sensing Application in Wheat Crop Monitoring
Abstract
:1. Introduction
2. UAV Systems
2.1. UAV Data Acquisition
2.2. UAV Data Processing Tools
2.3. UAV Application on Wheat Crop Parameters
UAV Names | Sensor Type | Applications | Country | References |
---|---|---|---|---|
DJI Matrice 100 Quadcopter | RGB | Biomass estimation | Brazil | [6,26,47] |
Six-rotor DJI S1000 UAV system | 450–950 nm at 4 nm sampling interval | Yellow rust disease modelling | China | [3,12,55,73] |
AZUP-T8 eight-propeller UAV | 450–950 nm | LAI modelling | China | [13,74] |
Six-rotary wing UAV Matrice 600 Pro; DJI Phantom 4D RTK | RGB; Multispectral | Wheat lodging and mapping | USA | [26,31,75,76] |
eBee SQ UAV fixed wing; eBee UAV | Multispectral | Nitrogen mapping | China | [26,31,69,77] |
DJI Phantom 4 Pro multi-rotor | RGB | Wheat foliage disease severity | USA | [12,34,78] |
md4-1000 multi-rotor | RGB | Vegetation cover | Spain | [13,79] |
Falcon 8 octocopter | Multispectral | Crop density estimates | Germany | [13,56] |
3DR Solo Multi-rotor | Multispectral | Planting row detection | China | [15,53] |
Dajiang Four Rotor Multispectral | Multispectral | Soil moisture estimation | China | [27,50,60,80] |
Quadcopter | RGB | Nitrogen status of wheat | India | [44,61,81] |
DJI Matrice 600 Pro | Multispectral | Wheat yield | Ukraine | [16,26,48,82] |
AscTec Falcon 8 | Multispectral | High-throughput phenotyping in wheat | Mexico | [29,62,83] |
DJI Phantom 3 Standard quadcopter | RGB | Plant and water stress in winter wheat | Pakistan | [15,57] |
DJI Matrice 600 Pro hexacopter drone; Quadrotor DJI Matrice 100 | Multispectral + thermal | Water stress; evapotranspiration | Australia; Denmark | [15,30,58] |
Specialized Unmanned Aerial Vehicle (SUAV) sense Flye eBee Ag | Multispectral | LAI, fraction of Absorbed Photosynthetically Active Radiation (fAPAR), fraction of vegetation cover (fCover) | Bulgaria | [84] |
3. Data Collection and Methods
3.1. Bibliometric Study Design
3.2. Bibliometric Data Processing
4. Results
4.1. Characteristics of WOS, Scopus, and Dimensions of Science Indexed Databases
4.2. Historical and Current Trend of Scientific Contribution per Document
4.3. Spatial Distribution and Most Global Cited Scientific Research Contributions per Country
4.4. Temporal Journals Analysis
4.5. Summary of Top Global Most Cited Published Documents on Wheat and UAV Research
Rank | Document Title | TC | TC per Year | References |
---|---|---|---|---|
1 | Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture | 353 | 35.300 | [107] |
2 | Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring | 317 | 24.385 | [108] |
3 | Multi-Temporal Mapping of the Vegetation Fraction in Early-Season Wheat Fields using Images from UAV | 296 | 32.889 | [13] |
4 | Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots | 275 | 18.333 | [100] |
5 | Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field Crop Phenotyping: A Review | 245 | 30.625 | [109] |
6 | Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture | 217 | 54.250 | [37] |
7 | High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing | 214 | 30.571 | [110] |
8 | Estimates of Plant Density of Wheat Crops at Emergence from Very Low Altitude UAV Imagery | 208 | 34.667 | [111] |
9 | An Automatic Object-Based Method for Optimal Thresholding in UAV Images: Application for Vegetation Detection in Herbaceous Crops | 185 | 23.125 | [112] |
10 | Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models | 173 | 28.833 | [113] |
4.6. Authors’ Keywords and Co-Occurrence Network
4.7. Authors’ Keywords Thematic Evolution
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Francesconi, S.; Harfouche, A.; Maesano, M.; Balestra, G.M. UAV-Based Thermal, RGB Imaging and Gene Expression Analysis Allowed Detection of Fusarium Head Blight and Gave New Insights into the Physiological Responses to the Disease in Durum Wheat. Front. Plant Sci. 2021, 12, 628575. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global Trends in Wheat Production, Consumption and Trade. In Wheat Improvement; Reynolds, M.P., Braun, H.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar] [CrossRef]
- Mitchell, D.O.; Mielke, M. Wheat: The global market, policies, and priorities. In Global Agricultural Trade and Developing Countries; World Bank: Washington, DC, USA, 2005; pp. 195–214. [Google Scholar]
- Wu, X.; Xiao, X.; Steiner, J.; Yang, Z.; Qin, Y.; Wang, J. Spatiotemporal Changes of Winter Wheat Planted and Harvested Areas, Photosynthesis and Grain Production in the Contiguous United States from 2008–2018. Remote Sens. 2021, 13, 1735. [Google Scholar] [CrossRef]
- Alvarez, J.B.; Guzmán, C. Interspecific and Intergeneric Hybridization as a Source of Variation for Wheat Grain Quality Improvement. Theor. Appl. Genet. 2018, 131, 225–251. [Google Scholar] [CrossRef]
- FAOStat. Food and Agriculture Organization of the United Nation Statistics. 2020. Available online: http://www.fao.org/faostat (accessed on 25 May 2022).
- United State Department Agriculture (USDA) Foreign Agricultural Service (FAS). World Agricultural Production. Circular Series WAP. 2020; pp. 4–22. Available online: https://www.fas.usda.gov/data/world-agricultural-production (accessed on 3 May 2022).
- United State Department Agriculture (USDA) Foreign Agricultural Service (FAS). World Agricultural Production. Circular Series WAP. 2022; pp. 7–22. Available online: https://www.fas.usda.gov/data/world-agricultural-production (accessed on 4 August 2022).
- Pronin, D.; Börner, A.; Weber, H.; Scherf, K.A. Wheat (Triticum aestivum L.) Breeding from 1891 to 2010 Contributed to Increasing Yield and Glutenin Contents but Decreasing Protein and Gliadin Contents. J. Agric. Food Chem. 2020, 68, 13247–13256. [Google Scholar] [CrossRef]
- Liebenberg, I.; De Wet, F. Food Security, Wheat Production and Policy in South Africa: Reflections on Food Sustainability and Challenges for a Market Economy. J. Transdiscipl. Res. South. Afr. 2018, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Petronaitis, T.; Simpfendorfer, S.; Hüberli, D. Importance of Fusarium spp. in Wheat to Food Security: A Global Perspective. In Plant Diseases and Food Security in the 21st Century; Scott, P., Strange, R., Korsten, L., Gullino, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 127–159. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Pena, J.M.; de Castro, A.I.; López-Granados, F. Multi-Temporal Mapping of the Vegetation Fraction in Early-Season Wheat Fields Using Images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Singh, A.P.; Yerudkar, A.; Mariani, V.; Iannelli, L.; Glielmo, L. A Bibliometric Review of the Use of Unmanned Aerial Vehicles in Precision Agriculture and Precision Viticulture for Sensing Applications. Remote Sens. 2022, 14, 1604. [Google Scholar] [CrossRef]
- Antoniuk, V.; Manevski, K.; Kørup, K.; Larsen, R.; Sandholt, I.; Zhang, X.; Andersen, M.N. Diurnal and Seasonal Mapping of Water Deficit Index and Evapotranspiration by an Unmanned Aerial System: A Case Study for Winter Wheat in Denmark. Remote Sens. 2021, 13, 2998. [Google Scholar] [CrossRef]
- Costa, L.; McBreen, J.; Ampatzidis, Y.; Guo, J.; Gahrooei, M.R.; Babar, M.A. Using UAV-Based Hyperspectral Imaging and Functional Regression to Assist in Predicting Grain Yield and Related Traits in Wheat under Heat-Related Stress Environments for the Purpose of Stable Yielding Genotypes. Precis. Agric. 2022, 23, 622–642. [Google Scholar] [CrossRef]
- Al-Feel, M.A.; AL-Basheer, A.A.R. Economic Efficiency of Wheat Production in Gezira Scheme, Sudan. J. Saudi Soc. Agric. Sci. 2012, 11, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.; Srinivasan, P.V.; Landes, M.R. Indian Wheat and Rice Sector Policies and the Implications of Reform. USDA-ERS Economic Research Report 2007. No. 41. Available online: https://ssrn.com/abstract=1084557 (accessed on 20 May 2022).
- Elsheikh, O.E.; Elbushra, A.A.; Salih, A.A. Economic Impacts of Changes in Wheat’s Import Tariff on the Sudanese Economy. J. Saudi Soc. Agric. Sci. 2015, 14, 68–75. [Google Scholar] [CrossRef]
- Meyer, F.H.; Davids, T.; Westhuizen, D.; Gouse, M.; Burgh, G.; Delport, M.; Trapnell, L. Assessment of the Drivers Inluencing Wheat Producing in South Africa. Bureau for Food and Agriculture Policy (BFAP), University of Pretoria, Conference. 2015. Available online: https://www.researchgate.net/publication/317332694_An_assessment_of_the_drivers_influencing_wheat_production_in_South_Africa (accessed on 28 May 2022).
- Musa, A.I.; Tsubo, M.; Ali-Babiker, I.E.A.; Iizumi, T.; Kurosaki, Y.; Ibaraki, Y.; Tsujimoto, H. Relationship of Irrigated Wheat Yield with Temperature in Hot Environments of Sudan. Theor. Appl. Climatol. 2021, 145, 1113–1125. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Wang, W.; Zhang, Q.; Li, D.; Yao, X.; Tian, Y.; Cheng, T. Estimation of Nitrogen Nutrition Status in Winter Wheat from Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Front. Plant Sci. 2019, 10, 1601. [Google Scholar] [CrossRef] [Green Version]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Astaoui, G.; Dadaiss, J.E.; Sebari, I.; Benmansour, S.; Mohamed, E. Mapping Wheat Dry Matter and Nitrogen Content Dynamics and Estimation of Wheat Yield Using UAV Multispectral Imagery Machine Learning and a Variety-Based Approach: Case Study of Morocco. AgriEngineering 2021, 3, 29–49. [Google Scholar] [CrossRef]
- Guo, J.; Bai, Q.; Guo, W.; Bu, Z.; Zhang, W. Soil Moisture Content Estimation in Winter Wheat Planting Area for Multi-Source Sensing Data Using CNNR. Comput. Electron. Agric. 2022, 193, 106670. [Google Scholar] [CrossRef]
- Zhou, X.; Kono, Y.; Win, A.; Matsui, T.; Tanaka, T.S. Predicting Within-Field Variability in Grain Yield and Protein Content of Winter Wheat Using UAV-Based Multispectral Imagery and Machine Learning Approaches. Plant Prod. Sci. 2021, 24, 137–151. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J. Winter Wheat Canopy Height Extraction from UAV-Based Point Cloud Data with a Moving Cuboid Filter. Remote Sens. 2019, 11, 1239. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. Evaluation of Water Status of Wheat Genotypes to Aid Prediction of Yield on Sodic Soils Using UAV-Thermal Imaging and Machine Learning. Agric. For. Meteorol. 2021, 307, 108477. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Sobeih, T.; Lappin, L.; Lee, M.A.; Howard, A.; Kisdi, A. The Self-Supervised Spectral–Spatial Vision Transformer Network for Accurate Prediction of Wheat Nitrogen Status from UAV Imagery. Remote Sens. 2022, 14, 1400. [Google Scholar] [CrossRef]
- Quebrajo, L.; Perez-Ruiz, M.; Pérez-Urrestarazu, L.; Martínez, G.; Egea, G. Linking Thermal Imaging and Soil Remote Sensing to Enhance Irrigation Management of Sugar Beet. Biosyst. Eng. 2018, 165, 77–87. [Google Scholar] [CrossRef]
- Ahansal, Y.; Bouziani, M.; Yaagoubi, R.; Sebari, I.; Sebari, K.; Kenny, L. Towards Smart Irrigation: A Literature Review on the Use of Geospatial Technologies and Machine Learning in the Management of Water Resources in Arboriculture. Agronomy 2022, 12, 297. [Google Scholar] [CrossRef]
- Meng, Y.; Lan, Y.; Mei, G.; Guo, Y.; Song, J.; Wang, Z. Effect of Aerial Spray Adjuvant Applying on the Efficiency of Small Unmanned Aerial Vehicle for Wheat Aphids Control. Int. J. Agric. Biol. Eng. 2018, 11, 5432–5452. [Google Scholar]
- Wang, G.; Lan, Y.; Qi, H.; Chen, P.; Hewitt, A.; Han, Y. Field Evaluation of an Unmanned Aerial Vehicle (UAV) Sprayer: Effect of Spray Volume on Deposition and the Control of Pests and Disease in Wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef]
- Stroppiana, D.; Villa, P.; Sona, G.; Ronchetti, G.; Candiani, G.; Pepe, M.; Boschetti, M. Early Season Weed Mapping in Rice Crops Using Multi-Spectral UAV Data. Int. J. Remote Sens. 2018, 39, 5432–5452. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Li, J.; Lei, Y.; Li, C.; Manevski, K.; Shen, Y. Using NDVI Percentiles to Monitor Real-Time Crop Growth. Comput. Electron. Agric. 2019, 162, 357–363. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Nduku, L.; Kalumba, A.M.; Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Chirima, G.J.; Afuye, G.A.; Busayo, E.T. Earth Observation Systems and Pasture Modeling: A Bibliometric Trend Analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 793. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in Agriculture: A Review and Bibliometric Analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Eskandari, R.; Mahdianpari, M.; Mohammadimanesh, F.; Salehi, B.; Brisco, B.; Homayouni, S. Meta-Analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-Environmental Monitoring Using Machine Learning and Statistical Models. Remote Sens. 2020, 12, 3511. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Fu, Z.; Yu, S.; Zhang, J.; Xi, H.; Gao, Y.; Lu, R.; Liu, X. Combining UAV Multispectral Imagery and Ecological Factors to Estimate Leaf Nitrogen and Grain Protein Content of Wheat. Eur. J. Agron. 2022, 132, 126405. [Google Scholar] [CrossRef]
- Stewart, M.; Martin, S. Unmanned Aerial Vehicles: Fundamentals, Components, Mechanics, and Regulations; Nova Science Publishers: Hauppauge, NY, USA, 2021. [Google Scholar]
- Das, S.; Chapman, S.; Christopher, J.; Choudhury, M.R.; Menzies, N.W.; Apan, A.; Dang, Y.P. UAV-Thermal Imaging: A Technological Breakthrough for Monitoring and Quantifying Crop Abiotic Stress to Help Sustain Productivity on Sodic Soils—A Case Review on Wheat. Remote Sens. Appl. Soc. Environ. 2021, 23, 100583. [Google Scholar] [CrossRef]
- Schreiber, L.V.; Atkinson Amorim, J.G.; Guimarães, L.; Motta Matos, D.; Maciel da Costa, C.; Parraga, A. Above-Ground Biomass Wheat Estimation: Deep Learning with UAV-Based RGB Images. Appl. Artif. Intell. 2022, 36, 2055392. [Google Scholar] [CrossRef]
- Liu, W.; Cao, X.; Fan, J.; Wang, Z.; Yan, Z.; Luo, Y.; Zhou, Y. Detecting Wheat Powdery Mildew and Predicting Grain Yield Using Unmanned Aerial Photography. Plant Dis. 2018, 102, 1981–1988. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Guo, B.; Wang, Z.; Wang, J.; Fang, Q.; Wang, J. Optimized Spectral Index Models for Accurately Retrieving Soil Moisture (SM) of Winter Wheat under Water Stress. Agric. Water Manag. 2022, 261, 107333. [Google Scholar] [CrossRef]
- Goffart, D.; Dvorakova, K.; Crucil, G.; Curnel, Y.; Limbourg, Q.; Van Oost, K.; Castaldi, F.; Planchon, V.; Goffart, J.P.; van Wesemael, B. UAV Remote Sensing for Detecting Within-Field Spatial Variation of Winter Wheat Growth and Links to Soil Properties and Historical Management Practices. A Case Study on Belgian Loamy Soil. Remote Sens. 2022, 14, 2806. [Google Scholar] [CrossRef]
- Jhan, J.P.; Rau, J.Y.; Haala, N. Robust and Adaptive Band-to-Band Image Transform of UAS Miniature Multi-Lens Multispectral Camera. ISPRS J. Photogramm. Remote Sens. 2018, 137, 47–60. [Google Scholar] [CrossRef]
- Castaldi, F.; Pelosi, F.; Pascucci, S.; Casa, R. Assessing the Potential of Images from Unmanned Aerial Vehicles (UAV) to Support Herbicide Patch Spraying in Maize. Precis. Agric. 2017, 18, 76–94. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-Based Multispectral Remote Sensing for Precision Agriculture: A Comparison between Different Cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Kawamura, K.; Asai, H.; Yasuda, T.; Soisouvanh, P.; Phongchanmixay, S. Discriminating Crops/Weeds in an Upland Rice Field from UAV Images with the SLIC-RF Algorithm. Plant Prod. Sci. 2021, 24, 198–215. [Google Scholar] [CrossRef]
- Su, J.; Liu, C.; Chen, W.H. UAV Multispectral Remote Sensing for Yellow Rust Mapping: Opportunities and Challenges. In Unmanned Aerial Systems in Precision Agriculture; Zhang, Z., Liu, H., Yang, H., Ampatzidis, Y., Zhou, J., Jiang, Y., Eds.; Springer Nature: Singapore, 2022; pp. 107–122. [Google Scholar] [CrossRef]
- Wilke, N.; Siegmann, B.; Postma, J.A.; Muller, O.; Krieger, V.; Pude, R.; Rascher, U. Assessment of Plant Density for Barley and Wheat Using UAV Multispectral Imagery for High-Throughput Field Phenotyping. Comput. Electron. Agric. 2021, 189, 106380. [Google Scholar] [CrossRef]
- Mazhar, N.; Shirazi, S.A.; Stringer, L.C.; Manzoor, S. Using UAV imagery to measure plant and water stress in winter wheat fields of drylands, south Punjab, Pakistan. Pak. J. Agric. Sci. 2021, 58, 1041–1050. [Google Scholar]
- Murphy, M.E.; Boruff, B.; Callow, J.N.; Flower, K.C. Detecting Frost Stress in Wheat: A Controlled Environment Hyperspectral Study on Wheat Plant Components and Implications for Multispectral Field Sensing. Remote Sens. 2020, 12, 477. [Google Scholar] [CrossRef] [Green Version]
- Mozgeris, G.; Jonikavičius, D.; Jovarauskas, D.; Zinkevičius, R.; Petkevičius, S.; Steponavičius, D. Imaging from Manned Ultra-Light and Unmanned Aerial Vehicles for Estimating Properties of Spring Wheat. Precis. Agric. 2018, 19, 876–894. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Li, W.; Jiang, J.; Liu, Y.; Cheng, T.; Tian, Y.; Yao, X. A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 2026. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Rahimi-Eichi, V.; Haefele, S.; Garnett, T.; Miklavcic, S.J. Estimation of Vegetation Indices for High-Throughput Phenotyping of Wheat Using Aerial Imaging. Plant Methods 2018, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Gnädinger, F.; Schmidhalter, U. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs). Remote Sens. 2021, 9, 221–237. [Google Scholar]
- Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. UAV-Thermal Imaging and Agglomerative Hierarchical Clustering Techniques to Evaluate and Rank Physiological Performance of Wheat Genotypes on Sodic Soil. ISPRS J. Photogramm. Remote Sens. 2021, 173, 221–237. [Google Scholar]
- Wang, J.J.; Ge, H.; Dai, Q.; Ahmad, I.; Dai, Q.; Zhou, G.; Gu, C. Unsupervised Discrimination between Lodged and Non-Lodged Winter Wheat: A Case Study Using a Low-Cost Unmanned Aerial Vehicle. Int. J. Remote Sens. 2018, 39, 2079–2088. [Google Scholar] [CrossRef]
- Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W. Assimilating a Synthetic Kalman Filter Leaf Area Index Series into the WOFOST Model to Improve Regional Winter Wheat Yield Estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat Above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Hättenschwiler, S.; Olander, L.; Allison, S. Nitrogen and Nature. AMBIO J. Hum. Environ. 2002, 31, 97–101. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H.; Wang, P. Quantitative Modelling for Leaf Nitrogen Content of Winter Wheat Using UAV-Based Hyperspectral Data. Int. J. Remote Sens. 2017, 38, 2117–2134. [Google Scholar] [CrossRef]
- Humphrey, V.; Berg, A.; Ciais, P.; Gentine, P.; Jung, M.; Reichstein, M.; Seneviratne, S.I.; Frankenberg, C. Soil Moisture–Atmosphere Feedback Dominates Land Carbon Uptake Variability. Nature 2021, 592, 65–69. [Google Scholar] [CrossRef]
- Webb, H.; Barnes, N.; Powell, S.; Jones, C. Does Drone Remote Sensing Accurately Estimate Soil PH in a Spring Wheat Field in Southwest Montana? Precis. Agric. 2021, 22, 1803–1815. [Google Scholar] [CrossRef]
- Křížová, K.; Haberle, J.; Kroulík, M.; Kumhálová, J.; Lukáš, J. Assessment of Soil Electrical Conductivity Using Remotely Sensed Thermal Data. Agron. Res. 2018, 16, 3. [Google Scholar] [CrossRef]
- Schotten, M.; Meester, W.J.; Steiginga, S.; Ross, C.A. A brief history of Scopus: The world’s largest abstract and citation database of scientific literature. In Research Analytics; Auerbach Publications: Farnham, UK, 2017. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Ye, H.; Dong, Y.; Shi, Y.; Chen, S. Using Continous Wavelet Analysis for Monitoring Wheat Yellow Rust in Different Infestation Stages Based on Unmanned Aerial Vehicle Hyperspectral Images. Appl. Opt. 2020, 59, 8003. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf Area Index Estimation Model for UAV Image Hyperspectral Data Based on Wavelength Variable Selection and Machine Learning Methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef]
- Zhao, B.; Li, J.; Baenziger, P.S.; Belamkar, V.; Ge, Y.; Zhang, J.; Shi, Y. Automatic Wheat Lodging Detection and Mapping in Aerial Imagery to Support High-Throughput Phenotyping and In-Season Crop Management. Agronomy 2020, 10, 1762. [Google Scholar] [CrossRef]
- Zhang, Z.; Flores, P.; Igathinathane, C.; Naik, D.L.; Kiran, R.; Ransom, J.K. Wheat Lodging Detection from UAS Imagery Using Machine Learning Algorithms. Remote Sens. 1838, 12, 1838. [Google Scholar] [CrossRef]
- Chen, Z.; Miao, Y.; Lu, J.; Zhou, L.; Li, Y.; Zhang, H.; Liu, C. In-Season Diagnosis of Winter Wheat Nitrogen Status in Smallholder Farmer Fields Across a Village Using Unmanned Aerial Vehicle-Based Remote Sensing. Agronomy 2019, 9, 619. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, M.; Ibrahim, A.M.; Xue, Q.; Jung, J.; Chang, A.; Rudd, J.C.; Landivar, J. Assessing Winter Wheat Foliage Disease Severity Using Aerial Imagery Acquired from Small Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 176, 105665. [Google Scholar] [CrossRef]
- Chen, P.; Ma, X.; Wang, F.; Li, J. A New Method for Crop Row Detection Using Unmanned Aerial Vehicle Images. Remote Sens. 2021, 13, 3526. [Google Scholar] [CrossRef]
- Choudhary, S.S.; Biswal, S.; Saha, R.; Chatterjee, C. A Non-Destructive Approach for Assessment of Nitrogen Status of Wheat Crop Using Unmanned Aerial Vehicle Equipped with RGB Camera. Arab. J. Geosci. 2021, 14, 1739. [Google Scholar] [CrossRef]
- Shvorov, S.; Lysenko, V.; Pasichnyk, N.; Opryshko, O.; Komarchuk, D.; Rosamakha, Y.; Martsyfei, A. The Method of Determining the Amount of Yield Based on the Results of Remote Sensing Obtained Using UAV on the Example of Wheat. In Proceedings of the 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 25–29 February 2020; pp. 245–248. [Google Scholar] [CrossRef]
- Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding. Front. Plant Sci. 2016, 7, 1131. [Google Scholar] [CrossRef]
- Jelev, G.; Dimitrov, P.; Roumenina, E. Within-Field Mapping of Winter Wheat Biophysical Variables Using Multispectral Images from UAV. Aerosp. Res. Bulg. 2022, 34, 13–28. [Google Scholar] [CrossRef]
- Battsengel, G.; Geetha, S.; Jeon, J. Analysis of Technological Trends and Technological Portfolio of Unmanned Aerial Vehicle. Journal of Open Innovation: Technology, Market, and Complexity 2020, 6, 48. [Google Scholar] [CrossRef]
- Aabid, A.; Parveez, B.; Parveen, N.; Khan, S.A.; Zayan, J.M.; Shabbir, O. Reviews on Design and Development of Unmanned Aerial Vehicle (Drone) for Different Applications. J. Mech. Eng. Res. Dev. 2022, 45, 53–69. [Google Scholar]
- Flores, C.C.; Tan, E.; Crompvoets, J. Governance Assessment of UAV Implementation in Kenyan Land Administration System. Technol. Soc. 2021, 66, 101664. [Google Scholar] [CrossRef]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a Data Source for Research on Scientific and Scholarly Activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Hook, D.W.; Porter, S.J.; Herzog, C. Dimensions: Building Context for Search and Evaluation. Front. Res. Metr. Anal. 2018, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; van Eck, N.J.; Waltman, L. Large-Scale Comparison of Bibliographic Data Sources: Scopus, Web of Science, Dimensions. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Sun, J. Research Trends and Status of Wheat (Triticum aestivum L.) Based on the Essential Science Indicators during 2010–2020: A Bibliometric Analysis. Cereal Res. Commun. 2021, 50, 335–346. [Google Scholar] [CrossRef]
- Siłuch, M.; Bartmiński, P.; Zgłobicki, W. Remote Sensing in Studies of the Growing Season: A Bibliometric Analysis. Remote Sens. 2022, 14, 1331. [Google Scholar] [CrossRef]
- Trinoskey, J.; Brahmi, F.A.; Gall, C. Zotero: A Product Review. J. Electron. Resour. Med. Libr. 2009, 6, 224–229. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual; Leiden Univeristeit: Leiden, The Netherlands, 2013; pp. 1–53. [Google Scholar]
- Cuccurullo, C.; Aria, M.; Sarto, F. Foundations and Trends in Performance Management. A Twenty-Five Years Bibliometric Analysis in Business and Public Administration Domains. Scientometrics 2016, 108, 595–611. [Google Scholar] [CrossRef]
- Aria, M. An R-Package to Gather Bibliographic Data from DS Dimenions. ai.dimensionsR: A Brief Example. 7 February 2022. Available online: https://cran.r-project.org/web/packages/dimensionsR/vignettes/A_Brief_Example.html (accessed on 30 May 2022).
- Ruiz-Rosero, J.; Ramírez-González, G.; Viveros-Delgado, J. Software Survey: ScientoPy, a Scientometric Tool for Topics Trend Analysis in Scientific Publications. Scientometrics 2019, 121, 1165–1188. [Google Scholar] [CrossRef]
- Price, D.D.S. A General Theory of Bibliometric and Other Cumulative Advantage Processes. J. Am. Soc. Inf. Sci. 1976, 27, 292–306. [Google Scholar] [CrossRef] [Green Version]
- Lelong, C.C.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef]
- Echchakoui, S. Why and How to Merge Scopus and Web of Science during Bibliometric Analysis: The Case of Sales Force Literature from 1912 to 2019. J. Mark. Anal. 2020, 8, 165–184. [Google Scholar]
- Agbo, F.J.; Sanusi, I.T.; Oyelere, S.S.; Suhonen, J. Application of Virtual Reality in Computer Science Education: A Systemic Review Based on Bibliometric and Content Analysis Methods. Educ. Sci. 2021, 11, 142. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A Multidisciplinary Comparison of Coverage via Citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Tadesse, W.; Bishaw, Z.; Assefa, S. Wheat Production and Breeding in Sub-Saharan Africa: Challenges and Opportuni-ties in the Face of Climate Change. Int. J. Clim. Change Strateg. Manag. 2019, 11, 696–715. [Google Scholar] [CrossRef] [Green Version]
- Bradford, S.C. Sources of Information on Specific Subjects 1934. J. Inf. Sci. 1985, 10, 176–180. [Google Scholar] [CrossRef]
- Noyons, E.; Moed, H.; Raan, A.V. Integrating Research Performance Analysis and Science Mapping. Scientometrics 1999, 46, 591–604. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R., Jr.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.; McCarty, G.W. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Pavek, M.J. Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field Crop Phenotyping: A Review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of Plant Density of Wheat Crops at Emergence from Very Low Altitude UAV Imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; López-Granados, F.; Pena, J.M. An Automatic Object-Based Method for Optimal Thresholding in UAV Images: Application for Vegetation Detection in Herbaceous Crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2021, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Raheem, D.; Dayoub, M.; Birech, R.; Nakiyemba, A. The Contribution of Cereal Grains to Food Security and Sustainability in Africa: Potential Application of UAV in Ghana, Nigeria, Uganda, and Namibia. Urban Sci. 2021, 5, 8. [Google Scholar] [CrossRef]
- Haula, K.; Agbozo, E. A Systematic Review on Unmanned Aerial Vehicles in Sub-Saharan Africa: A Socio-Technical Perspective. Technol. Soc. 2020, 63, 101357. [Google Scholar] [CrossRef]
- Huajun, T. Progress and Prospect of Agricultural Remote Sensing Research. J. Agric. 2018, 8, 175. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A Review of Unmanned Aerial Vehicle Low-Altitude Remote Sensing (UAV-LARS) Use in Agricultural Monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Hardin, P.J.; Jensen, R.R. Small-Scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities. GIScience Remote Sens. 2011, 48, 99–111. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft. Off. J. Eur. Union 2019, 152, 40–70. [Google Scholar]
- Saygitov, R.T. The Impact of Grant Funding on the Publication Activity of Awarded Applicants: A Systematic Review of Comparative Studies and Meta-Analytical Estimates. Sci. Commun. Educ. 2018, preprint. [Google Scholar] [CrossRef]
- Li, W.; Clark, B.; Taylor, J.A.; Kendall, H.; Jones, G.; Li, Z.; Frewer, L.J. A Hybrid Modelling Approach to Understanding Adoption of Precision Agriculture Technologies in Chinese Cropping Systems. Comput. Electron. Agric. 2020, 172, 105305. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, M.; Qing, X.; Li, G.; Tian, C. Bibliometric Analysis of Global Remote Sensing Research during 2010–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 332. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. UAV-Thermal Imaging: A Robust Technology to Evaluate in-Field Crop Water Stress and Yield Variation of Wheat Genotypes. In Proceedings of the 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Ahmedabad, India, 1–4 December 2020; pp. 138–141. [Google Scholar] [CrossRef]
- Mashaba, Z. Modelling Dryland Winter Wheat Yield Using Remotely Sensed Imagery and Agrometeorological Parameters. University of Pretoria. 2017. Available online: https://repository.up.ac.za/handle/2263/60634 (accessed on 29 May 2022).
- Zhang, S.; Zhao, G.; Lang, K.; Su, B.; Chen, X.; Xi, X.; Zhang, H. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Sensors 2019, 19, 1485. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yan, W.; An, S.; Gao, W.; Jia, J.; Tao, S.; Wang, W. A Spatio-Temporal Fusion Framework of UAV and Satellite Imagery for Winter Wheat Growth Monitoring. Drones 2022, 7, 23. [Google Scholar] [CrossRef]
Sensor | Reference |
---|---|
Thermal sensors | [2,15,30,46] |
RGB | [2,13,29,47] |
Multispectral sensors | [15,24,26,44] |
Hyperspectral sensors | [16,48,49,50] |
Software Tools | Reference |
---|---|
Pix4Dmapper | [2,15,55] |
Agisoft Metashape | [13,47,56] |
Drone Deploy | [57,58] |
EnsoMOSAIC | [59,60] |
ENVI/IDL environment | [24,30,44,61] |
MATLAB | [46,62,63] |
ERDAS Imagine 2018 | [48,64] |
Adobe Photoshop | [63,65] |
Description | Results |
---|---|
Time Span | 2005–2021 |
Documents | 398 |
Sources (Journals, Books, etc.) | 165 |
Keywords Plus (ID) | 1071 |
Author’s Keywords (DE) | 447 |
Average citations per document | 20.49 |
Authors | 1257 |
Author Appearances | 2018 |
Authors of Multi-Authored Documents | 1251 |
Single-Authored Documents | 6 |
Documents per Author | 0.317 |
Authors per Document | 3.16 |
Co-Authors per Documents | 5.58 |
Annual Growth per Documents | 23.94 |
Collaboration Index | 3.23 |
Document Types | |
Article | 329 |
Conference Paper | 50 |
Conference Review | 6 |
Review | 3 |
Book Chapter | 2 |
Rank | Country | TCP (%) | TC | ADC | SCP | MCP |
---|---|---|---|---|---|---|
1 | China | 7% | 352 | 12.57 | 25 | 3 |
2 | USA | 2.8% | 545 | 49.55 | 11 | 0 |
3 | Germany | 2.3% | 156 | 17.33 | 9 | 0 |
4 | Australia | 1.5% | 106 | 17.67 | 6 | 1 |
5 | Spain | 1.5% | 417 | 69.50 | 6 | 0 |
6 | United Kingdom | 1.3% | 61 | 12.20 | 5 | 0 |
7 | Canada | 1% | 27 | 6.75 | 4 | 0 |
8 | Italy | 1% | 38 | 9.50 | 4 | 0 |
9 | Denmark | 0.8% | 12 | 4.00 | 3 | 0 |
10 | Finland | 0.8% | 388 | 129.33 | 3 | 0 |
Rank | Sources | N | IF of JCR (WoS) | IF of SJR (Scopus) |
---|---|---|---|---|
1 | Remote Sensing | 76 | 5.349 (Q1) | 1.283(Q1) |
2 | Computer and Electronics in Agriculture | 19 | 6.757(Q1) | 1.6(Q1) |
3 | Frontiers in Plant Science | 17 | 6.627 (Q1) | 1.36(Q1) |
4 | Sensors | 16 | 3.847 (Q2) | 0.8(Q1) |
5 | International Journal of Remote Sensing | 12 | 3.531 (Q2) | 0.87(Q1) |
6 | Precision Agriculture | 6 | 5.767 (Q1) | 1.17(Q1) |
7 | Agronomy | 6 | 3.949 (Q1) | 0.65(Q1) |
8 | Agronomy Journal | 6 | 2.650 (Q2) | 0.69(Q1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nduku, L.; Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Kalumba, A.M.; Chirima, G.J.; Masiza, W.; De Villiers, C. Global Research Trends for Unmanned Aerial Vehicle Remote Sensing Application in Wheat Crop Monitoring. Geomatics 2023, 3, 115-136. https://doi.org/10.3390/geomatics3010006
Nduku L, Munghemezulu C, Mashaba-Munghemezulu Z, Kalumba AM, Chirima GJ, Masiza W, De Villiers C. Global Research Trends for Unmanned Aerial Vehicle Remote Sensing Application in Wheat Crop Monitoring. Geomatics. 2023; 3(1):115-136. https://doi.org/10.3390/geomatics3010006
Chicago/Turabian StyleNduku, Lwandile, Cilence Munghemezulu, Zinhle Mashaba-Munghemezulu, Ahmed Mukalazi Kalumba, George Johannes Chirima, Wonga Masiza, and Colette De Villiers. 2023. "Global Research Trends for Unmanned Aerial Vehicle Remote Sensing Application in Wheat Crop Monitoring" Geomatics 3, no. 1: 115-136. https://doi.org/10.3390/geomatics3010006