Thermal Management of Fuel Cells in Hydrogen-Powered Unmanned Aerial Vehicles
Abstract
1. Introduction
2. Thermal Management Model for Hydrogen-Powered UAVs
2.1. Introduction to the Hydrogen-Powered UAV Model
2.2. Simulation Methodology
Governing Equations
2.3. Computational Grid Configuration
2.4. Assumptions and Boundary Conditions
2.5. Grid Independence and Model Validation
3. Research on Influential Factors of Hydrogen Fuel Cell Cooling Effectiveness
3.1. Effect of Fan Distribution Density on Fuel Cell Temperature at Constant Total Active Area
3.2. Effect of Inlet Height on Fuel Cell Temperature
3.3. Effect of Inlet Position on Fuel Cell Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giacoppo, G.; Barbera, O.; Briguglio, N.; Cipitì, F.; Ferraro, M.; Brunaccini, G.; Erdle, E.; Antonucci, V. Thermal Study of a SOFC System Integration in a Fuselage of a Hybrid Electric Mini UAV. Int. J. Hydrogen Energy 2017, 42, 28022–28033. [Google Scholar] [CrossRef]
- Santos, D.F.M.; Ferreira, R.B.; Falcão, D.S.; Pinto, A.M.F.R. Evaluation of a Fuel Cell System Designed for Unmanned Aerial Vehicles. Energy 2022, 253, 124099. [Google Scholar] [CrossRef]
- Chang, Z.; Fan, Y.; Jiang, W.; Zhang, J.; Zhang, J. Simulation Research on Thermal Management of Hydrogen Fuel Cell for UAV. In Proceedings of the 6GN for Future Wireless Networks; Shanghai, China, 7–8 October 2023, Springer: Cham, Switzerland, 2024; pp. 390–408. [Google Scholar]
- Bargal, M.H.; Abdelkareem, M.A.; Tao, Q.; Li, J.; Shi, J.; Wang, Y. Liquid Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks: A Detailed Survey. Alex. Eng. J. 2020, 59, 635–655. [Google Scholar] [CrossRef]
- Saeedan, M.; Afshari, E.; Ziaei-Rad, M. Modeling and Optimization of Turbulent Flow through PEM Fuel Cell Cooling Channels Filled with Metal Foam—A Comparison of Water and Air Cooling Systems. Energy Convers. Manag. 2022, 258, 115486. [Google Scholar] [CrossRef]
- Tolj, I.; Penga, Ž.; Vukičević, D.; Barbir, F. Thermal Management of Edge-Cooled 1 kW Portable Proton Exchange Membrane Fuel Cell Stack. Appl. Energy 2020, 257, 114038. [Google Scholar] [CrossRef]
- Peng, M.; Xia, Q.F.; Jiang, L.X.; Zhang, R.Y.; Guo, L.Y.; Chen, L.; Tao, W.S. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells. Chin. J. Chem. Eng. 2022, 73, 4625–4637. (In Chinese) [Google Scholar] [CrossRef]
- Afshari, E.; Ziaei-Rad, M.; Dehkordi, M.M. Numerical Investigation on a Novel Zigzag-Shaped Flow Channel Design for Cooling Plates of PEM Fuel Cells. J. Energy Inst. 2017, 90, 752–763. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, Y.; Hu, G.; Wang, Q. Numerical Analysis of the Influence of Cooling Design on Temperature Uniformity in the Large Proton Exchange Membrane Fuel Cell Stack. Int. J. Hydrogen Energy 2024, 93, 668–681. [Google Scholar] [CrossRef]
- Jung, W.; Kim, H.-S. Evaluating a 10 kW PEM Fuel Cell System for Unmanned Aerial Vehicles at Different Cruising Altitudes: A Thermal Analysis. J. Mech. Sci. Technol. 2024, 38, 4421–4430. [Google Scholar] [CrossRef]
- Shen, H.; Huang, Y.; Kang, H.; Shen, J.; Yu, J.; Zhang, J.; Li, Z. Effect of the Cooling Water Flow Direction on the Performance of PEMFCs. Int. J. Heat Mass Transf. 2022, 189, 122303. [Google Scholar] [CrossRef]
- Chen, X.; Chai, F.; Hu, S.; Tan, J.; Luo, L.; Xie, H.; Wan, Z.; Qu, Z. Design of PEMFC Bipolar Plate Cooling Flow Field Based on Fractal Theory. Energy Convers. Manag. X 2023, 20, 100445. [Google Scholar] [CrossRef]
- Gao, B.; Yan, H.; Jiang, Y.; Yu, F. Optimization Design of Proton Exchange Membrane Fuel Cells with Bio-Inspired Leaf Vein Flow Channels. Process Saf. Environ. Prot. 2024, 190, 645–664. [Google Scholar] [CrossRef]
- Woo, J.; Kim, Y.; Yu, S. Development of an Elaborated Fuel Cell Stack Model for Drone Fuel Cell System with Liquid Cooling. In ASME 2023 International Mechanical Engineering Congress and Exposition; Volume 7: Energy; American Society of Mechanical Engineers: New Orleans, LA, USA, 2023; p. V007T08A032. [Google Scholar]
- Liu, Q.; Xu, H.; Lin, Z.; Zhu, Z.; Wang, H.; Yuan, Y. Experimental Study of the Thermal and Power Performances of a Proton Exchange Membrane Fuel Cell Stack Affected by the Coolant Temperature. Appl. Therm. Eng. 2023, 225, 120211. [Google Scholar] [CrossRef]
- Huang, T.; Dingxun, Y.; Ren, X.; Ma, J.; Chen, X.; Ou, C.; Chen, Y.; Wang, X.-D.; Wan, Z. Effect of Operating Conditions of Unmanned Aerial Vehicle Powered by PEMFC on Water and Heat Distributions of Cell. Int. J. Green Energy 2024, 21, 1815–1828. [Google Scholar] [CrossRef]
- Qiu, D.; Peng, L.; Tang, J.; Lai, X. Numerical Analysis of Air-Cooled Proton Exchange Membrane Fuel Cells with Various Cathode Flow Channels. Energy 2020, 198, 117334. [Google Scholar] [CrossRef]
- Zhao, R.; Hu, M.; Pan, R.; Cao, G. Disclosure of the Internal Transport Phenomena in an Air-Cooled Proton Exchange Membrane Fuel Cell—Part I: Model Development and Base Case Study. Int. J. Hydrogen Energy 2020, 45, 23504–23518. [Google Scholar] [CrossRef]
- Yu, J.; Guan, R.; Li, M.; Liu, Z.; Yan, J. Steady-State Simulation Analysis of Proton Exchange Membrane Fuel Cell for UAV. Int. J. Electrochem. Sci. 2021, 16, 211025. [Google Scholar] [CrossRef]
- Lee, J.; Gundu, M.H.; Lee, N.; Lim, K.; Lee, S.W.; Jang, S.S.; Kim, J.Y.; Ju, H. Innovative Cathode Flow-Field Design for Passive Air-Cooled Polymer Electrolyte Membrane (PEM) Fuel Cell Stacks. Int. J. Hydrogen Energy 2020, 45, 11704–11713. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, C.; Deshpande, A.; Tan, K.; Han, M. Fixed Air Flow-Rate Selection by Considering the Self-Regulating Function of Low Power Air-Cooled PEMFC Stack. Int. J. Heat Mass Transf. 2020, 158, 119771. [Google Scholar] [CrossRef]
- Wu, J.; Galli, S.; Lagana, I.; Pozio, A.; Monteleone, G.; Yuan, X.Z.; Martin, J.; Wang, H. An Air-Cooled Proton Exchange Membrane Fuel Cell with Combined Oxidant and Coolant Flow. J. Power Sources 2009, 188, 199–204. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Santos, D.F.M.; Pinto, A.M.F.R.; Falcão, D.S. Development and Testing of a PEM Fuel Cell Stack Envisioning Unmanned Aerial Vehicles Applications. Int. J. Hydrogen Energy 2024, 51, 1345–1353. [Google Scholar] [CrossRef]
- Ling, C.; Cao, H.; Chen, Y.; Han, M.; Birgersson, E. Compact Open Cathode Feed System for PEMFCs. Appl. Energy 2016, 164, 670–675. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, C.; Huang, Z.; Li, M.; Chan, S.H.; Li, Q.; Wu, X. Experimental Investigation on the Mechanism of Variable Fan Speed Control in Open Cathode PEM Fuel Cell. Int. J. Hydrogen Energy 2019, 44, 24017–24027. [Google Scholar] [CrossRef]
- Wang, J.S.; Wang, S.X.; Zhu, Y. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance. Chin. J. Chem. Eng. 2024, 75, 2026–2035. (In Chinese) [Google Scholar] [CrossRef]
- Sasmito, A.P.; Shamim, T.; Birgersson, E.; Mujumdar, A.S. Computational Study of Edge Cooling for Open-Cathode Polymer Electrolyte Fuel Cell Stacks. J. Fuel Cell Sci. Technol. 2012, 9, 061008. [Google Scholar] [CrossRef]
- Zhu, K.-Q.; Ding, Q.; Xu, J.-H.; Yang, C.; Zhang, J.; Zhang, Y.; Huang, T.-M.; Wan, Z.-M.; Wang, X.-D. Dynamic Performance for a kW-Grade Air-Cooled Proton Exchange Membrane Fuel Cell Stack. Int. J. Hydrogen Energy 2022, 47, 35398–35411. [Google Scholar] [CrossRef]
- Yang, M.; Quan, Z.; Zhao, Y.; Wang, L.; Liu, Z.; Tang, S. Experimental and Numerical Study on Thermal Management of Air-Cooled Proton Exchange Membrane Fuel Cell Stack with Micro Heat Pipe Arrays. Energy Convers. Manag. 2023, 275, 116478. [Google Scholar] [CrossRef]
- Zakhvatkin, L.; Schechter, A.; Buri, E.; Avrahami, I. Edge Cooling of a Fuel Cell during Aerial Missions by Ambient Air. Micromachines 2021, 12, 1432. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Zhang, X.; Wu, X.; Cheng, A. Design and analysis of cabin model and breathing hole of hydrogen fuel cell UAV. Tactical Missile Technol. 2024, 5, 21–29+54. (In Chinese) [Google Scholar] [CrossRef]
- Gavrilovic, N.; Leng, Y.; Moschetta, J.-M. Thermal Control of a Hydrogen-Powered Uncrewed Aerial Vehicle for Crossing the Atlantic Ocean. Aerosp. Sci. Technol. 2024, 155, 109667. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, G.; Bai, H.; Wang, Y.; Qi, M.; Huang, J.; Liu, Z.; Yan, X. The Flight Verification of an Integrated Propulsion System Powered by PEMFCs with Direct Airflow Intake Design. Appl. Energy 2025, 377, 124432. [Google Scholar] [CrossRef]
- E, J.; Yue, M.; Chen, J.; Zhu, H.; Deng, Y.; Zhu, Y.; Zhang, F.; Wen, M.; Zhang, B.; Kang, S. Effects of the Different Air Cooling Strategies on Cooling Performance of a Lithium-Ion Battery Module with Baffle. Appl. Therm. Eng. 2018, 144, 231–241. [Google Scholar] [CrossRef]
- Shahid, S.; Agelin-Chaab, M. Development and Analysis of a Technique to Improve Air-Cooling and Temperature Uniformity in a Battery Pack for Cylindrical Batteries. Therm. Sci. Eng. Prog. 2018, 5, 351–363. [Google Scholar] [CrossRef]
- Van Der Spuy, S.J.; Von Backström T., W.; Kröger D., G. Using Computational Fluid Dynamics to Simulate Multiple Axial Flow Fans in Air-Cooled Steam Condensers. In ASME 2011 Power Conference Collocated with JSME ICOPE 2011; ASMEDC: Denver, CO, USA, 2011; Volume 1, pp. 375–383. [Google Scholar]
Specific Heat Capacity/(J∙(kg∙K)−1) | Density/(kg∙m−3) | Heat Conductivity Coefficient/(W∙(m∙K)−1) |
---|---|---|
710 | 1850 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xiang, J.; Bie, D.; Li, D.; Kan, Z.; Shao, L.; Geng, Z. Thermal Management of Fuel Cells in Hydrogen-Powered Unmanned Aerial Vehicles. Thermo 2025, 5, 40. https://doi.org/10.3390/thermo5040040
Zhang H, Xiang J, Bie D, Li D, Kan Z, Shao L, Geng Z. Thermal Management of Fuel Cells in Hydrogen-Powered Unmanned Aerial Vehicles. Thermo. 2025; 5(4):40. https://doi.org/10.3390/thermo5040040
Chicago/Turabian StyleZhang, Huibo, Jinwu Xiang, Dawei Bie, Daochun Li, Zi Kan, Lintao Shao, and Zhi Geng. 2025. "Thermal Management of Fuel Cells in Hydrogen-Powered Unmanned Aerial Vehicles" Thermo 5, no. 4: 40. https://doi.org/10.3390/thermo5040040
APA StyleZhang, H., Xiang, J., Bie, D., Li, D., Kan, Z., Shao, L., & Geng, Z. (2025). Thermal Management of Fuel Cells in Hydrogen-Powered Unmanned Aerial Vehicles. Thermo, 5(4), 40. https://doi.org/10.3390/thermo5040040