Can Implicit Solvation Methods Capture Temperature Effects on the Infrared Features of Astrophysical Ices?
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Structural Properties of the Ice-Model CO2/H2O Clusters
3.2. CO2 Vibrational Frequencies: Implicit Versus Explicit Solvation
3.3. CO2 Band Strengths: Implicit Versus Explicit Solvation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zamirri, L.; Casassa, S.; Rimola, A.; Segado-Centellas, M.; Ceccarelli, C.; Ugliengo, P. IR Spectral Fingerprint of Carbon Monoxide in Interstellar Water–Ice Models. Mon. Not. R. Astron. Soc. 2018, 480, 1427–1444. [Google Scholar] [CrossRef]
- De Barros, A.L.F.; Mejía, C.; Duarte, E.S.; Domaracka, A.; Boduch, P.; Rothard, H.; da Silveira, E.F. Chemical Reactions in H2O:CO Interstellar Ice Analogues Promoted by Energetic Heavy-Ion Irradiation. Mon. Not. R. Astron. Soc. 2022, 511, 2491–2504. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Gudipati, M.S.; Sander, W.; Lignell, A. Photochemical Processes in CO2/H2O Ice Mixtures with Trapped Pyrene, a Model Polycyclic Aromatic Hydrocarbon. Astrophys. J. 2018, 864, 151. [Google Scholar] [CrossRef]
- Simon, A.; Rajappan, M.; Öberg, K.I. Entrapment of Hypervolatiles in Interstellar and Cometary H2O and CO2 Ice Analogs. Astrophys. J. 2023, 955, 5. [Google Scholar] [CrossRef]
- Mejía, C.; de Barros, A.L.F.; Rothard, H.; Boduch, P.; da Silveira, E.F. Radiolysis of Ices by Cosmic-Rays: CH4 and H2O Ices Mixtures Irradiated by 40 MeV 58Ni11+ Ions. Astrophys. J. 2020, 894, 132. [Google Scholar] [CrossRef]
- Mifsud, D.V.; Herczku, P.; Sulik, B.; Juhász, Z.; Vajda, I.; Rajta, I.; Ioppolo, S.; Mason, N.J.; Strazzulla, G.; Kaňuchová, Z. Proton and Electron Irradiations of CH4:H2O Mixed Ices. Atoms 2023, 11, 19. [Google Scholar] [CrossRef]
- Gerakines, P.A.; Yarnall, Y.Y.; Hudson, R.L. Direct Measurements of Infrared Intensities of HCN and H2O + HCN Ices for Laboratory and Observational Astrochemistry. Mon. Not. R. Astron. Soc. 2021, 509, 3515–3522. [Google Scholar] [CrossRef]
- Ozhiganov, M.; Medvedev, M.; Karteyeva, V.; Nakibov, R.; Sapunova, U.; Krushinsky, V.; Stepanova, K.; Tryastsina, A.; Gorkovenko, A.; Fedoseev, G.; et al. Infrared Spectra of Solid HCN Embedded in Various Molecular Environments for Comparison with the Data Obtained with JWST. Astrophys. J. Lett. 2024, 972, L10. [Google Scholar] [CrossRef]
- Escamilla-Roa, E.; Sainz-Díaz, C.I. Amorphous Ammonia–Water Ice Deposited onto Silicate Grain: Effect on Growth of Mantles Ice on Interstellar and Interplanetary Dust. J. Phys. Chem. C 2014, 118, 3554–3563. [Google Scholar] [CrossRef]
- Molpeceres, G.; Tsuge, M.; Furuya, K.; Watanabe, N.; San Andrés, D.; Rivilla, V.M.; Colzi, L.; Aikawa, Y. Carbon Atom Condensation on NH3–H2O Ices. An Alternative Pathway to Interstellar Methanimine and Methylamine. J. Phys. Chem. A 2024, 128, 3874–3889. [Google Scholar] [CrossRef]
- Yarnall, Y.Y.; Hudson, R.L. A New Method for Measuring Infrared Band Strengths in H2O Ices: First Results for OCS, H2S, and SO2. Astrophys. J. Lett. 2022, 931, L4. [Google Scholar] [CrossRef]
- Mifsud, D.V.; Herczku, P.; Rahul, K.K.; Ramachandran, R.; Sundararajan, P.; Kovács, S.T.S.; Sulik, B.; Juhász, Z.; Rácz, R.; Biri, S.; et al. A Systematic Mid-Infrared Spectroscopic Study of Thermally Processed SO2 Ices. Phys. Chem. Chem. Phys. 2023, 25, 26278–26288. [Google Scholar] [CrossRef] [PubMed]
- Chaabouni, H.; Baouche, S.; Diana, S.; Minissale, M. Reactivity of Formic Acid (HCOOH) with H Atoms on Cold Surfaces of Interstellar Interest. Astron. Astrophys. 2020, 636, A4. [Google Scholar] [CrossRef]
- Giuliano, B.M.; Martín-Doménech, R.; Escribano, R.M.; Manzano-Santamaría, J.; Muñoz Caro, G.M. Interstellar Ice Analogs: H2O Ice Mixtures with CH3OH and NH3 in the Far-IR Region. Astron. Astrophys. 2016, 592, A81. [Google Scholar] [CrossRef]
- Müller, B.; Giuliano, B.M.; Goto, M.; Caselli, P. Spectroscopic Measurements of CH3OH in Layered and Mixed Interstellar Ice Analogues. Astron. Astrophys. 2021, 652, A126. [Google Scholar] [CrossRef]
- Ehrenfreund, P.; Charnley, S.B. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Annu. Rev. Astron. Astrophys. 2000, 38, 427–483. [Google Scholar] [CrossRef]
- Gibb, E.L.; Whittet, D.C.B.; Chiar, J.E. Searching for Ammonia in Grain Mantles toward Massive Young Stellar Objects. Astrophys. J. 2001, 558, 702–716. [Google Scholar] [CrossRef]
- Mifsud, D.V.; Herczku, P.; Ramachandran, R.; Sundararajan, P.; Rahul, K.K.; Kovács, S.T.S.; Sulik, B.; Juhász, Z.; Rácz, R.; Biri, S.; et al. A Systematic Mid-Infrared Spectroscopic Study of Thermally Processed H2S Ices. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 319, 124567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Muiña, A.T.; Mifsud, D.V.; Kaňuchová, Z.; Cielinska, K.; Herczku, P.; Rahul, K.K.; Kovács, S.T.S.; Rácz, R.; Santos, J.C.; et al. A Systematic IR and VUV Spectroscopic Investigation of Ion, Electron, and Thermally Processed Ethanolamine Ice. Mon. Not. R. Astron. Soc. 2024, 533, 826–840. [Google Scholar] [CrossRef]
- Wang, J.; Turner, A.M.; Marks, J.H.; Fortenberry, R.C.; Kaiser, R.I. Formation of Paraldehyde (C6H12O3) in Interstellar Analog Ices of Acetaldehyde Exposed to Ionizing Radiation. ChemPhysChem 2024, 25, e202400837. [Google Scholar] [CrossRef]
- McAnally, M.; Bocková, J.; Herath, A.; Turner, A.M.; Meinert, C.; Kaiser, R.I. Abiotic Formation of Alkylsulfonic Acids in Interstellar Analog Ices and Implications for Their Detection on Ryugu. Nat. Commun. 2024, 15, 4409. [Google Scholar] [CrossRef]
- Boogert, A.C.A.; Pontoppidan, K.M.; Lahuis, F.; Jorgensen, J.K.; Augereau, J.; Blake, G.A.; Brooke, T.Y.; Brown, J.; Dullemond, C.P.; Evans, N.J., II; et al. Spitzer Space Telescope Spectroscopy of Ices toward Low-Mass Embedded Protostars. Astrophys. J. Suppl. Ser. 2004, 154, 359–362. [Google Scholar] [CrossRef]
- Bottinelli, S.; Boogert, A.C.A.; Bouwman, J.; Beckwith, M.; van Dishoeck, E.F.; Öberg, K.I.; Pontoppidan, K.M.; Linnartz, H.; Blake, G.A.; Evans, N.J.; et al. The C2d Spitzer Spectroscopic Survey of Ices around Low-Mass Young Stellar Objects. IV. NH3 and CH3OH. Astrophys. J. 2010, 718, 1100–1117. [Google Scholar] [CrossRef]
- Öberg, K.I.; Boogert, A.C.A.; Pontoppidan, K.M.; van den Broek, S.; van Dishoeck, E.F.; Bottinelli, S.; Blake, G.A.; Evans, N.J. The Spitzer Ice Legacy: Ice Evolution from Cores to Protostars. Astrophys. J. 2011, 740, 109. [Google Scholar] [CrossRef]
- Boogert, A.C.A.; Gerakines, P.A.; Whittet, D.C.B. Observations of the Icy Universe. Annu. Rev. Astron. Astrophys. 2015, 53, 541–581. [Google Scholar] [CrossRef]
- Terwisscha van Scheltinga, J.; Ligterink, N.F.W.; Boogert, A.C.A.; van Dishoeck, E.F.; Linnartz, H. Infrared Spectra of Complex Organic Molecules in Astronomically Relevant Ice Matrices. Astron. Astrophys. 2018, 611, A35. [Google Scholar] [CrossRef]
- Turner, A.M.; Bergantini, A.; Abplanalp, M.J.; Zhu, C.; Góbi, S.; Sun, B.-J.; Chao, K.-H.; Chang, A.H.H.; Meinert, C.; Kaiser, R.I. An Interstellar Synthesis of Phosphorus Oxoacids. Nat. Commun. 2018, 9, 3851. [Google Scholar] [CrossRef]
- Zhu, C.; Eckhardt, A.K.; Chandra, S.; Turner, A.M.; Schreiner, P.R.; Kaiser, R.I. Identification of a Prismatic P3N3 Molecule Formed from Electron Irradiated Phosphine-Nitrogen Ices. Nat. Commun. 2021, 12, 5467. [Google Scholar] [CrossRef]
- Rosa, C.A.; Bergantini, A.; Herczku, P.; Mifsud, D.V.; Lakatos, G.; Kovács, S.T.S.; Sulik, B.; Juhász, Z.; Ioppolo, S.; Quitián-Lara, H.M.; et al. Infrared Spectral Signatures of Nucleobases in Interstellar Ices I: Purines. Life 2023, 13, 2208. [Google Scholar] [CrossRef] [PubMed]
- Cuppen, H.M.; Linnartz, H.; Ioppolo, S. Laboratory and Computational Studies of Interstellar Ices. Annu. Rev. Astron. Astrophys. 2024, 62, 243–286. [Google Scholar] [CrossRef]
- McClure, M.K.; Rocha, W.R.M.; Pontoppidan, K.M.; Crouzet, N.; Chu, L.E.U.; Dartois, E.; Lamberts, T.; Noble, J.A.; Pendleton, Y.J.; Perotti, G.; et al. An Ice Age JWST Inventory of Dense Molecular Cloud Ices. Nat. Astron. 2023, 7, 431–443. [Google Scholar] [CrossRef]
- Collings, M.P.; Anderson, M.A.; Chen, R.; Dever, J.W.; Viti, S.; Williams, D.A.; McCoustra, M.R.S. A Laboratory Survey of the Thermal Desorption of Astrophysically Relevant Molecules. Mon. Not. R. Astron. Soc. 2004, 354, 1133–1140. [Google Scholar] [CrossRef]
- Kruczkiewicz, F.; Dulieu, F.; Ivlev, A.V.; Caselli, P.; Giuliano, B.M.; Ceccarelli, C.; Theulé, P. Comprehensive Laboratory Constraints on Thermal Desorption of Interstellar Ice Analogues. Astron. Astrophys. 2024, 686, A236. [Google Scholar] [CrossRef]
- Boogert, A.C.A.; Ehrenfreund, P. Interstellar Ices. In Astrophysics of Dust; Witt, A.N., Clayton, G.C., Draine, B.T., Eds.; APS Books: San Francisco, CA, USA, 2004; Volume 309, p. 547. [Google Scholar]
- Gerakines, P.A.; Bray, J.J.; Davis, A.; Richey, C.R. The Strengths of Near-Infrared Absorption Features Relevant to Interstellar and Planetary Ices. Astrophys. J. 2005, 620, 1140–1150. [Google Scholar] [CrossRef]
- D’Hendecourt, L.B.; Allamandola, L.J. Time Dependent Chemistry in Dense Molecular Clouds. III—Infrared Band Cross Sections of Molecules in the Solid State at 10 K. Astron. Astrophys. Suppl. Ser. 1986, 64, 453–467. [Google Scholar]
- Kerkhof, O.; Schutte, W.A.; Ehrenfreund, P. The Infrared Band Strengths of CH3OH, NH3 and CH4 in Laboratory Simulations of Astrophysical Ice Mixtures. Astron. Astrophys. 1999, 346, 990–994. [Google Scholar]
- Draine, B.T. Interstellar Dust Grains. Annu. Rev. Astron. Astrophys. 2003, 41, 241–289. [Google Scholar] [CrossRef]
- Brunngräber, R.; Wolf, S.; Kirchschlager, F.; Ertel, S. The Influence of Dust Grain Porosity on the Analysis of Debris Disc Observations. Mon. Not. R. Astron. Soc. 2017, 464, 4383–4389. [Google Scholar] [CrossRef]
- Pilling, S.; Bonfim, V.S. The Influence of Molecular Vicinity (Expressed in Terms of Dielectric Constant) on the Infrared Spectra of Embedded Species in Ices and Solid Matrices. RSC Adv. 2020, 10, 5328–5338. [Google Scholar] [CrossRef]
- Moore, M.H.; Ferrante, R.F.; James Moore, W.; Hudson, R. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan’s Atmosphere. Astrophys. J. Suppl. Ser. 2010, 191, 96–112. [Google Scholar] [CrossRef]
- Hudson, R.L.; Ferrante, R.F.; Moore, M.H. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene. Icarus 2014, 228, 276–287. [Google Scholar] [CrossRef]
- Hudson, R.L.; Gerakines, P.A.; Ferrante, R.F. IR Spectra and Properties of Solid Acetone, an Interstellar and Cometary Molecule. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 33–39. [Google Scholar] [CrossRef]
- Bonfim, V.S.; Pilling, S. The Influence of Chemical Environment on the Infrared Spectra of Embedded Molecules in Astrophysical Ices. Proc. Int. Astron. Union 2017, 13, 346–352. [Google Scholar] [CrossRef]
- Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. New Developments in the Polarizable Continuum Model for Quantum Mechanical and Classical Calculations on Molecules in Solution. J. Chem. Phys. 2002, 117, 43–54. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, M.J. Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General Formalism. J. Chem. Phys. 2010, 132, 114110. [Google Scholar] [CrossRef] [PubMed]
- Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Woon, D.E. Pathways to Glycine and Other Amino Acids in Ultraviolet-Irradiated Astrophysical Ices Determined via Quantum Chemical Modeling. Astrophys. J. 2002, 571, L177–L180. [Google Scholar] [CrossRef]
- Park, J.-Y.; Woon, D.E. Theoretical Investigation of OCN− Charge-Transfer Complexes in Condensed-Phase Media: Spectroscopic Properties in Amorphous Ice. J. Phys. Chem. A 2004, 108, 6589–6598. [Google Scholar] [CrossRef]
- Woon, D.E.; Park, J. Photoionization of Benzene and Small Polycyclic Aromatic Hydrocarbons in Ultraviolet-processed Astrophysical Ices: A Computational Study. Astrophys. J. 2004, 607, 342–345. [Google Scholar] [CrossRef]
- Pilling, S.; Baptista, L.; Boechat-Roberty, H.M.; Andrade, D.P.P. Formation Routes of Interstellar Glycine Involving Carboxylic Acids: Possible Favoritism Between Gas and Solid Phase. Astrobiology 2011, 11, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Bonfim, V.S.; Castilho, R.B.; Baptista, L.; Pilling, S. SO3 Formation from the X-Ray Photolysis of SO2 Astrophysical Ice Analogues: FTIR Spectroscopy and Thermodynamic Investigations. Phys. Chem. Chem. Phys. 2017, 19, 26906–26917. [Google Scholar] [CrossRef] [PubMed]
- Woon, D.E. Benchmarking Time-Dependent Density Functional Theory for the Prediction of Electronic Absorption Spectra of Amorphous Ices for Astrochemical Applications. Mol. Phys. 2024, 122, e2254419. [Google Scholar] [CrossRef]
- Rudberg, E.; Rubensson, E.H.; Sałek, P.; Kruchinina, A. Ergo: An Open-Source Program for Linear-Scaling Electronic Structure Calculations. SoftwareX 2018, 7, 107–111. [Google Scholar] [CrossRef]
- Karssemeijer, L.J.; de Wijs, G.A.; Cuppen, H.M. Interactions of Adsorbed CO2 on Water Ice at Low Temperatures. Phys. Chem. Chem. Phys. 2014, 16, 15630. [Google Scholar] [CrossRef] [PubMed]
- Thanthiriwatte, K.S.; Duke, J.R.; Jackson, V.E.; Felmy, A.R.; Dixon, D.A. High-Level Ab Initio Predictions of the Energetics of mCO2·(H2O)n (n = 1–3, m = 1–12) Clusters. J. Phys. Chem. A 2012, 116, 9718–9729. [Google Scholar] [CrossRef] [PubMed]
- Geiger, P.; Dellago, C.; Macher, M.; Franchini, C.; Kresse, G.; Bernard, J.; Stern, J.N.; Loerting, T. Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations. J. Phys. Chem. C 2014, 118, 10989–10997. [Google Scholar] [CrossRef] [PubMed]
- Drechsel-Grau, C.; Marx, D. Collective Proton Transfer in Ordinary Ice: Local Environments, Temperature Dependence and Deuteration Effects. Phys. Chem. Chem. Phys. 2017, 19, 2623–2635. [Google Scholar] [CrossRef]
- Tanaka, H.; Okabe, I. Thermodynamic Stability of Hexagonal and Cubic Ices. Chem. Phys. Lett. 1996, 259, 593–598. [Google Scholar] [CrossRef]
- Moore, E.B.; Molinero, V. Is It Cubic? Ice Crystallization from Deeply Supercooled Water. Phys. Chem. Chem. Phys. 2011, 13, 20008. [Google Scholar] [CrossRef] [PubMed]
- Sandford, S.A.; Allamandola, L.J. The Physical and Infrared Spectral Properties of CO2 in Astrophysical Ice Analogs. Astrophys. J. 1990, 355, 357. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; von R.Schleyer, P. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Ramachandran, C.N.; Ruckenstein, E. Water Clustering in the Presence of a CO2 Molecule. Comput. Theor. Chem. 2011, 966, 84–90. [Google Scholar] [CrossRef]
- Schiltz, L.; Escribano, B.; Muñoz Caro, G.M.; Cazaux, S.; del Burgo Olivares, C.; Carrascosa, H.; Boszhuizen, I.; González Díaz, C.; Chen, Y.-J.; Giuliano, B.M.; et al. Characterization of Carbon Dioxide on Ganymede and Europa Supported by Experiments: Effects of Temperature, Porosity, and Mixing with Water. Astron. Astrophys. 2024, 688, A155. [Google Scholar] [CrossRef]
- Dartois, E.; D’Hendecourt, L. Search for NH3 Ice in Cold Dust Envelopes around YSOs. Astron. Astrophys. 2001, 365, 144–156. [Google Scholar] [CrossRef]
- Pilling, S.; Duarte, E.S.; da Silveira, E.F.; Balanzat, E.; Rothard, H.; Domaracka, A.; Boduch, P. Radiolysis of Ammonia-Containing Ices by Energetic, Heavy, and Highly Charged Ions inside Dense Astrophysical Environments. Astron. Astrophys. 2010, 509, A87. [Google Scholar] [CrossRef]
- Pilling, S.; Duarte, E.S.; Domaracka, A.; Rothard, H.; Boduch, P.; Silveira, E.F. da Radiolysis of Astrophysical Ice Analogs by Energetic Ions: The Effect of Projectile Mass and Ice Temperature. Phys. Chem. Chem. Phys. 2011, 13, 15755. [Google Scholar] [CrossRef] [PubMed]
- Pilling, S.; Andrade, D.P.P.; da Silveira, E.F.; Rothard, H.; Domaracka, A.; Boduch, P. Formation of Unsaturated Hydrocarbons in Interstellar Ice Analogues by Cosmic Rays. Mon. Not. R. Astron. Soc. 2012, 423, 2209–2221. [Google Scholar] [CrossRef]
- Maté, B. Infrared Optical Constants and Band Strengths of Ices. In Laboratory Astrophysics; Astrophysics and Space Science Library, Volume 451; Muñoz Caro, G., Escribano, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 71–86. [Google Scholar]
- Schmitt, B.; Quirico, E.; Trotta, F.; Grundy, W.M. Optical Properties of Ices From UV to Infrared. In Solar System Ices; Astrophysics and Space Science Library, Volume 227; Schmitt, B., De Bergh, C., Festou, M., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 199–240. [Google Scholar]
- Luna, R.; Molpeceres, G.; Ortigoso, J.; Satorre, M.A.; Domingo, M.; Maté, B. Densities, Infrared Band Strengths, and Optical Constants of Solid Methanol. Astron. Astrophys. 2018, 617, A116. [Google Scholar] [CrossRef]
- Bossa, J.-B.; Isokoski, K.; de Valois, M.S.; Linnartz, H. Thermal Collapse of Porous Interstellar Ice. Astron. Astrophys. 2012, 545, A82. [Google Scholar] [CrossRef]
- Strazzulla, G.; Baratta, G.A.; Leto, G.; Foti, G. Ion-Beam–Induced Amorphization of Crystalline Water Ice. Europhys. Lett. 1992, 18, 517–522. [Google Scholar] [CrossRef]
- Leto, G.; Baratta, G.A. Ly-α Photon Induced Amorphization of Ic Water Ice at 16 Kelvin. Astron. Astrophys. 2003, 397, 7–13. [Google Scholar] [CrossRef]
- Mejía, C.; de Barros, A.L.F.; Duarte, E.S.; da Silveira, E.F.; Dartois, E.; Domaracka, A.; Rothard, H.; Boduch, P. Compaction of Porous Ices Rich in Water by Swift Heavy Ions. Icarus 2015, 250, 222–229. [Google Scholar] [CrossRef]
- Pilling, S.; Bergantini, A. The Effect of Broadband Soft X-Rays in SO2-Containing Ices: Implications on the Photochemistry of Ices toward Young Stellar Objects. Astrophys. J. 2015, 811, 151. [Google Scholar] [CrossRef]
- Baragiola, R.A.; Famá, M.A.; Loeffler, M.J.; Palumbo, M.E.; Raut, U.; Shi, J.; Strazzulla, G. Gudipati, M., Castillo-Rogez, J., Eds.; Radiation Effects in Water Ice in the Outer Solar System. In The Science of Solar System Ices; Astrophysics and Space Science Library, Volume 356; Springer: New York, NY, USA, 2013; pp. 527–549. [Google Scholar]
- Bouwman, J.; Ludwig, W.; Awad, Z.; Öberg, K.I.; Fuchs, G.W.; van Dishoeck, E.F.; Linnartz, H. Band Profiles and Band Strengths in Mixed H2O:CO Ices. Astron. Astrophys. 2007, 476, 995–1003. [Google Scholar] [CrossRef]
Structure | Energy a.u. (kcal mol−1) | Frequency (as) cm−1 | Strength (as) arb. Units | Frequency (δ) cm−1 | Strength (δ) arb. Units |
---|---|---|---|---|---|
gas phase | |||||
CO2 (calcd) | −188.526940 | 2455.9 | 715.69 | 663.3 | 72.32 |
CO2 (exp) † | - | 2348.0 | - | 667.7 | - |
scaling factor | - | 0.9561 | - | 1.0066 | - |
cold ice (explicit model) | |||||
c1 | −7448.216883 (0.0) | 2338.7 | 750.23 | 618.4 | 188.37 |
c2 | −7448.202834 (8.8) | 2345.9 | 721.31 | 659.7 | 102.11 |
c3 | −7448.201316 (9.8) | 2345.9 | 642.29 | 659.0 | 98.47 |
c4 | −7448.201026 (10.0) | 2345.9 | 654.71 | 664.8 | 79.46 |
c5 | −7448.203651 (8.3) | 2347.8 | 716.81 | 658.8 | 94.03 |
c6 | −7448.200589 (10.2) | 2348.6 | 736.73 | 664.4 | 81.79 |
c7 | −7448.208324 (5.4) | 2339.7 | 569.41 | 651.5 | 111.40 |
average | - | 2344.6 | 684.50 | 653.8 | 107.95 |
warm ice (explicit model) | |||||
w1 | −5079.200727 (20.8) | 2343.4 | 548.85 | 650.1 | 160.00 |
w2 | −5079.233846 (0.0) | 2345.2 | 702.54 | 656.9 | 104.98 |
w3 | −5079.200839 (20.7) | 2343.6 | 551.42 | 651.3 | 160.12 |
w4 | −5079.227835 (3.8) | 2351.1 | 798.32 | 657.7 | 113.02 |
w5 | −5079.207617 (16.5) | 2336.7 | 634.71 | 651.3 | 153.36 |
w6 | −5079.192575 (25.9) | 2344.4 | 505.67 | 652.9 | 168.48 |
w7 | −5079.207590 (16.5) | 2336.6 | 634.53 | 651.2 | 153.45 |
average | - | 2343.0 | 625.15 | 653.1 | 144.77 |
implicit model | |||||
ic (ε = 3.0) | −188.528601 | 2327.5 | 937.12 | 663.9 | 84.61 |
iw (ε = 180.0) | −188.529923 | 2311.5 | 1132.96 | 661.9 | 95.20 |
experimental data † | |||||
ec (10 K) | - | 2341.5 | 1.00 | 653.4 | 1.00 |
ew (150 K) | - | 2339.3 | 0.93 | 654.2 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, D.A.B.; Bonfim, V.S.A.; Fantuzzi, F.; Pilling, S. Can Implicit Solvation Methods Capture Temperature Effects on the Infrared Features of Astrophysical Ices? Photochem 2025, 5, 5. https://doi.org/10.3390/photochem5010005
Oliveira DAB, Bonfim VSA, Fantuzzi F, Pilling S. Can Implicit Solvation Methods Capture Temperature Effects on the Infrared Features of Astrophysical Ices? Photochem. 2025; 5(1):5. https://doi.org/10.3390/photochem5010005
Chicago/Turabian StyleOliveira, Daniel A. B., Víctor S. A. Bonfim, Felipe Fantuzzi, and Sergio Pilling. 2025. "Can Implicit Solvation Methods Capture Temperature Effects on the Infrared Features of Astrophysical Ices?" Photochem 5, no. 1: 5. https://doi.org/10.3390/photochem5010005
APA StyleOliveira, D. A. B., Bonfim, V. S. A., Fantuzzi, F., & Pilling, S. (2025). Can Implicit Solvation Methods Capture Temperature Effects on the Infrared Features of Astrophysical Ices? Photochem, 5(1), 5. https://doi.org/10.3390/photochem5010005