From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health
Abstract
:1. Introduction
1.1. The Cytotoxicity of Dyes
1.2. The Potential Toxicity of Textile Effluents
1.3. The Cytotoxicity of Textile Functionalization
1.4. The Potential Toxicity of End-of-Life Textile Residues
1.5. Micropollutants Released During Textile Supply Chain
2. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BT | Benzothiazole |
CuO | Copper Oxide |
CuO NPs | Copper Oxide Nanoparticles |
DNA | Deoxyribonucleic Acid |
EU | European Union |
HA | Hyaluronan |
HPLC | High-Performance Liquid Chromatography |
HQ | Hazard Quotient |
ISO | International Organization for Standardization |
MTT | [3-(4,5 dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide] |
NPs | Nanoparticles |
OECD | Organization for Economic Cooperation and Development |
PCL | Polycaprolactone |
PET | Polyethylene Terephthalate |
PLA | Polylactic |
QAC | Quaternary Ammonium Compounds |
REACH | Registration, Evaluation, Authorization and Restriction of Chemicals |
TNT | Non-woven Fabric |
UV | Ultraviolet |
ZnO NPs | Zinc Nanoparticles |
References
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2006. Available online: https://eur-lex.europa.eu/eli/reg/2006/1907/oj/eng (accessed on 20 January 2025).
- OECD Guidelines. Available online: https://mneguidelines.oecd.org/mneguidelines (accessed on 25 October 2024).
- OEKO-TEX® STANDARD 100, 3rd ed.; OEKO-TEX Service GmbH: Zurich, Switzerland, 2025.
- OEKO-TEX® Standards Enable Everyone to Make Responsible Decisions and Protect Natural Resources. Available online: https://www.oeko-tex.com/en/our-standards (accessed on 25 October 2024).
- Klemola, K. Textile Toxicity Cytotoxicity and Spermatozoa Motility Inhibition Resulting from Reactive Dyes and Dyed Fabrics. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, October 2008. [Google Scholar]
- Shah, M.A.; Pirzada, B.M.; Price, G.; Shibiru, A.L.; Qurashi, A. Applications of nanotechnology in smart textile industry: A critical review. J. Adv. Res. 2022, 38, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Omerogullari, B.Z.; Coskun, H. Enhancing Antibacterial and Water-Repellent Properties for the Production of High-Performance Fabrics in Home Textiles. Fibers. Polym. 2024, 25, 1789–1804. [Google Scholar] [CrossRef]
- Pakdel, E.; Wang, X. Thermoregulating textiles and fibrous materials for passive radiative cooling functionality. Mater. Des. 2023, 231, 112006. [Google Scholar] [CrossRef]
- Wang, S.-M.; Wu, J.-X.; Gunawan, H.; Tu, R.-Q. Highly Specialized Textiles with Antimicrobial Functionality—Advances and Challenges. Textiles 2023, 3, 219–245. [Google Scholar] [CrossRef]
- ISO 10993; Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Zhang, Y. Cell toxicity mechanism and biomarker. Clin. Transl. Med. 2018, 7, 34. [Google Scholar] [CrossRef]
- Petrachi, T.; Ganzerli, F.; Cuoghi, A.; Ferrari, A.; Resca, E.; Bergamini, V.; Accorsi, L.; Burini, F.; Pasini, D.; Arnaud, G.F.; et al. Assessing biocompatibility of face mask materials during COVID-19 pandemic by a rapid multi-assays strategy. Int. J. Environ. Res. Public. Health 2021, 18, 5387. [Google Scholar] [CrossRef]
- Meier, P.; Zabara, M.; Hirsch, C.; Gogos, A.; Tscherrig, D.; Richner, G.; Nowack, B.; Wick, P. Evaluation of fiber and debris release from protective COVID-19 mask textiles and in vitro acute cytotoxicity effects. Environ. Int. 2022, 167, 107364. [Google Scholar] [CrossRef]
- Pereira-Lobato, C.; Echeverry-Rendón, M.; Fernández-Blázquez, J.; González, C.; Llorca, J. Mechanical properties, in vitro degradation and cytocompatibility of woven textiles manufactured from PLA/PCL commingled yarns. J. Mech. Behav. Biomed. Mater. 2024, 150, 106340. [Google Scholar] [CrossRef]
- Kubíčková, J.; Medek, T.; Husby, J.; Matonohová, J.; Vágnerová, H.; Marholdová, L.; Velebný, V.; Chmelař, J. Nonwoven textiles from hyaluronan for wound healing applications. Biomolecules 2022, 12, 16. [Google Scholar] [CrossRef]
- Zhong, W.; Xing, M.M.Q.; Pan, N.; Maibach, H.I. Textiles and human skin, microclimate, cutaneous reactions: An overview. Cutan. Ocul. Toxicol 2006, 25, 23–39. [Google Scholar] [CrossRef]
- Shen, D.; Fan, J.; Zhou, W.; Gao, B.; Yue, Q.; Kang, Q. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J. Hazard Mater. 2009, 172, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.H.; Das, P.K.; Roy, A.K.; Ibrahim, M. Cytotoxicity of Four Active Dyes Against Artemia Salina Leach. J. Eng. Sci. 2018, 9, 55–59. [Google Scholar]
- Domingues, G.; Düsman, E.; Vicentini, V.E.P. Cytotoxicity of Crude and Treated Liquid Effluents from Textile Industry Dyeing Using Bioindicator Allium cepa L. Water Air Soil Pollut. 2020, 231, 1–10. [Google Scholar] [CrossRef]
- Leme, D.M.; de Oliveira, G.A.R.; Meireles, G.; dos Santos, T.C.; Zanoni, M.V.B.; de Oliveira, D.P. Genotoxicological assessment of two reactive dyes extracted from cotton fibres using artificial sweat. Toxicol. Vitr. 2014, 28, 31–38. [Google Scholar] [CrossRef]
- Silva, E.Z.M.; Sehr, A.; Grummt, T.; de Oliveira, D.P.; Leme, D.M. The Evaluation of Reactive Textile Dyes Regarding their Potential to Cause Organ-Specific Cyto- and Geno-Toxicity. Ecotoxicol. Environ. Contam. 2022, 17, 60–66. [Google Scholar] [CrossRef]
- Klemola, K.; Pearson, J.; Lindstrom-Seppä, P. Evaluating the Toxicity of Reactive Dyes and Dyed Fabrics with the HaCaT Cytotoxicity Test. AUTEX Res. J. 2007, 7, 217–223. [Google Scholar] [CrossRef]
- Pizzicato, B.; Pacifico, S.; Cayuela, D.; Mijas, G.; Riba-Moliner, M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules 2023, 28, 5954. [Google Scholar] [CrossRef]
- Costa, E.M.; Silva, S.; Veiga, M.; Baptista, P.; Tavaria, F.K.; Pintado, M.E. Textile dyes loaded chitosan nanoparticles: Characterization, biocompatibility and staining capacity. Carbohydr. Polym. 2021, 251, 117120. [Google Scholar] [CrossRef]
- Lara, L.; Cabral, I.; Cunha, J. Ecological Approaches to Textile Dyeing: A Review. Sustainability 2022, 14, 8353. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. Toxics 2023, 11, 406. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Malik, A. Environmental and health effects of textile industry wastewater. In Environmental Deterioration and Human Health Natural and Anthropogenic Determinants; Malik, A., Grohmann, E., Akhtar, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–71. [Google Scholar]
- Iqbal, M.; Nisar, J. Cytotoxicity and mutagenicity evaluation of gamma radiation and hydrogen peroxide treated textile effluents using bioassays. J. Environ. Chem. Eng. 2015, 3, 1912–1917. [Google Scholar] [CrossRef]
- Jamee, R.; Siddique, R. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. Eur. J. Microbiol. Immunol. 2019, 9, 114–118. [Google Scholar] [CrossRef]
- Rima, S.A.J.; Paul, G.K.; Islam, S.; Ekram, A.E.; Zaman, S.; Saleh, A.; Uddin, S. Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: A combined study on molecular identification, growth optimization, and comparative degradation. J. Hazard. Mater. Lett. 2022, 3, 100068. [Google Scholar] [CrossRef]
- Júnior, H.L.O.; Neves, R.M.; Monticeli, F.M.; Dall Agnol, L. Smart Fabric Textiles: Recent Advances and Challenges. Textiles 2022, 2, 582–605. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Yuen, C.W.M.; Kan, C.W.; Cheuk, K.K.L. Development of Cosmetic Textiles Using Microencapsulation Technology. Res. J. Text. Appar. 2008, 12, 41–51. [Google Scholar] [CrossRef]
- Ornaghi, H.L.; Bianchi, O. Temperature-Dependent Shape-Memory Textiles: Physical Principles and Applications. Textiles 2023, 3, 257–274. [Google Scholar] [CrossRef]
- Singha, K.; Maity, S.; Pandit, P.; Mondal, M.I.H. Introduction to protective textiles. In Protective Textiles from Natural Resources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–38. [Google Scholar]
- Kumar, S.M. Textiles Functionalization—A Review of Materials, Processes, and Assessment. In Textiles for Functional Applications; Kumar, B., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Becheri, A.; Dürr, M.; Lo Nostro, P.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res. 2008, 10, 679–689. [Google Scholar] [CrossRef]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces 2010, 79, 5–18. [Google Scholar] [CrossRef]
- Khandual, A.; Rout, N.; Verma, S.K.; Patel, P.; Pattanaik, P.; Luximon, Y.; Suar, M. Controlled nano-particle dyeing of cotton can ensure low cytotoxicity risk with multi-functional property enhancement. Mater. Today Chem. 2020, 17, 100345. [Google Scholar] [CrossRef]
- Fiandra, L.; Bonfanti, P.; Piunno, Y.; Nagvenkar, A.P.; Perlesthein, I.; Gedanken, A.; Saibene, M.; Colombo, A.; Mantecca, P. Hazard assessment of polymer-capped CuO and ZnO nanocolloids: A contribution to the safe-by-design implementation of biocidal agents. NanoImpact 2020, 17, 100195. [Google Scholar] [CrossRef]
- Shaheen, T.I.; Fouda, A.; Salem, S.S. Integration of Cotton Fabrics with Biosynthesized CuO Nanoparticles for Bactericidal Activity in the Terms of Their Cytotoxicity Assessment. Ind. Eng. Chem. Res. 2021, 60, 1553–1563. [Google Scholar] [CrossRef]
- Bengalli, R.; Colantuoni, A.; Perelshtein, I.; Gedanken, A.; Collini, M.; Mantecca, P.; Fiandra, L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact 2021, 21, 100282. [Google Scholar] [CrossRef]
- Najmi, Z.; Mlinarić, N.M.; Scalia, A.C.; Cochis, A.; Selmani, A.; Učakar, A.; Abram, A.; Zore, A.; Delač, I.; Jerman, I.; et al. Antibacterial evaluation of different prosthetic liner textiles coated by CuO nanoparticles. Heliyon 2024, 10, e23849. [Google Scholar] [CrossRef] [PubMed]
- Gulati, R.; Sharma, S.; Sharma, R.K. Antimicrobial textile: Recent developments and functional perspective. Polymer. Bull. 2022, 79, 5747–5771. [Google Scholar] [CrossRef]
- Granados, A.; Pleixats, R.; Vallribera, A. Recent advances on antimicrobial and anti-inflammatory cotton fabrics containing nanostructures. Molecules 2021, 26, 3008. [Google Scholar] [CrossRef]
- Hussein, U.A.-R.; Mahmoud, Z.H.; Alaziz, K.M.A.; Alid, M.L.; Yasin, Y.; Ali, F.K.; Faisal, A.N.; Abd, A.N.; Kianfar, E. Antimicrobial finishing of textiles using nanomaterials. Braz. J. Biol. 2023, 84, e264947. [Google Scholar] [CrossRef]
- Rabel, A.M.; Namasivayam, S.K.R.; Prasanna, M.; Bharani, R.S.A. A green chemistry to produce iron oxide—Chitosan nanocomposite (CS-IONC) for the upgraded bio-restorative and pharmacotherapeutic activities—Supra molecular nanoformulation against drug-resistant pathogens and malignant growth. Int. J. Biol. Macromol. 2019, 138, 1109–1129. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Y.; Thappeta, K.R.V.; Subramanian, J.T.L.; Pranantyo, D.; Kang, E.-T.; Duan, H.; Kline, K.; Chan-Park, M.B. In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. ACS Appl. Mater. Interfaces 2017, 9, 36269–36280. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, S.; Zhang, C.; Li, Z.; Li, X.; Shen, Z.; Zhu, W. Facile and Versatile Modification of Cotton Fibers for Persistent Antibacterial Activity and Enhanced Hygroscopicity. ACS Appl. Mater. Interfaces 2018, 10, 38506–38516. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, J.; Yang, X.; Liu, H.; Xu, X.; Ma, L.; Shang, S.; Song, Z. Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. Int. J. Biol. Macromol. 2020, 150, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Melin, V.; Potineni, H.; Hunt, P.; Griswold, J.; Siems, B.; Werre, S.; Hrubec, T. Exposure to common quaternary ammonium disinfectants decreases fertility in mice. Reprod. Toxicol. 2014, 50, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Christen, V.; Faltermann, S.; Brun, N.R.; Kunz, P.Y.; Fent, K. Cytotoxicity and molecular effects of biocidal disinfectants (Quaternary ammonia, glutaraldehyde, poly (Hexamethylene biguanide) hydrochloride PHMB) and their mixtures in vitro and in zebrafish eleuthero-embryos. Sci. Total Environ. 2017, 586, 1204–1218. [Google Scholar] [CrossRef]
- Maráková, N.; Humpolíček, P.; Kašpárková, V.; Capáková, Z.; Martinková, L.; Bober, P.; Trchová, M.; Stejskal, J. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl. Surf. Sci. 2017, 396, 169–176. [Google Scholar] [CrossRef]
- Bertuccioli, A.; Cannataro, R.; Gervasi, M.; Benelli, P.; Gregoretti, A.; Ragazzini, M.; Neri, M.; Palazzi, C.M.; Cardinali, M.; Zonzini, G. Preliminary Assessment of the Acute Effects of Far Infrared-Emitting Garments: What Are the Possible Implications for Recovery and Performance? Life 2023, 13, 1998. [Google Scholar] [CrossRef]
- Wang, H.S.A.; Ewens, D.A.; Garner, S.C.; Lunn, R.M.; Mehta, S.S.; Peters, A.F.; Trgovcich, J.; Witt, K.L. Report on Carcinogens Monograph on Antimony Trioxide; National Toxicology Program: Research Triangle Park, NC, USA, 2018. [Google Scholar] [CrossRef]
- Biver, M.; Turner, A.; Filella, M. Antimony release from polyester textiles by artificial sweat solutions: A call for a standardized procedure. Regul. Toxicol. Pharmacol. 2021, 119, 104824. [Google Scholar] [CrossRef] [PubMed]
- Tariq, Z.; Zhang, H.-T.; Wang, R.-Q.; Zeng, Q.; Wang, X.; Wang, X.; Deng, S.-Q.; Wang, X. Enhancing the durability of mosquito repellent textiles through microencapsulation of lavender oil. J. Pest. Sci. 2024, 98, 477–492. [Google Scholar] [CrossRef]
- Sathasivam, T.; Sugiarto, S.; Yew, M.P.Y.; Oh, X.Y.; Chan, S.Y.; Chan, B.Q.Y.; Tim, M.J.; Kai, D. Transforming textile waste into nanocellulose for a circular future. Nanoscale 2024, 16, 14168–14194. [Google Scholar] [CrossRef]
- Villar, L.; Schlapp-Hackl, I.; Sánchez, P.B.; Hummel, M. High-Quality Cellulosic Fibers Engineered from Cotton-Elastane Textile Waste. Biomacromolecules 2024, 25, 1942–1949. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Matter, I.A.; Al-Balakocy, N.G.; Abo-Alkasem, M.I. Circular economy reinforcement through molecular fabrication of textile wastes with microbial synthesized ZnO nanoparticles to have multifunctional properties. Sci. Rep. 2024, 14, 16660. [Google Scholar] [CrossRef]
- Bour, A.; Christensen, T.B.; Hunka, A.D.; Palmqvist, A.; Skjold, E.; Syberg, K. Implications of circular textile policies for the future regulation of hazardous substances in textiles in the European Union. Sci. Total Environ. 2023, 896, 165153. [Google Scholar] [CrossRef] [PubMed]
- Iadaresta, F.; Manniello, M.D.; Östman, C.; Crescenzi, C.; Holmbäck, J.; Russo, P. Chemicals from textiles to skin: An in vitro permeation study of benzothiazole. Environ. Sci. Pollut. Res. 2018, 25, 24629–24638. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Rovira, J.; González, N.; Marquès, M.; Barbosa, F.; Sierra, J.; Domingo, J.L.; Nadal, M.; Souza, M.C.O. Clothing as a potential exposure source of trace elements during early life. Environ. Res. 2023, 233, 116479. [Google Scholar] [CrossRef]
- Lopes-Ferreira, M.; Farinha, L.; Costa, Y.; Pinto, F.; Disner, G.; Rosa, J.; Lima, C. Pesticide-Induced Inflammation at a Glance. Toxics 2023, 11, 896. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Jeong, H.; Jung, Y.; Nam, K.; Lim, K. Skin irritation and inhalation toxicity of biocides evaluated with reconstructed human epidermis and airway model. Food Chem. Toxicol. 2021, 150, 112064. [Google Scholar] [CrossRef]
- Seidu, R.; Ofori, E.; Eghan, B.; Fobiri, G.; Afriyie, A.; Acquaye, R. A systematic review of work-related health problems of factory workers in the textile and fashion industry. J. Occup. Health 2024, 66, uiae007. [Google Scholar] [CrossRef]
- Maceira, A.; Marcé, R.; Borrull, F. Occurrence of benzothiazole, benzotriazole and benzenesulfonamide derivates in outdoor air particulate matter samples and human exposure assessment. Chemosphere 2018, 193, 557–566. [Google Scholar] [CrossRef]
- Rovira, J.; Domingo, J. Human health risks due to exposure to inorganic and organic chemicals from textiles: A review. Environ. Res. 2018, 168, 62–69. [Google Scholar] [CrossRef]
- Mekala, K.; Malki, A.; Amarasinghe, D.; Ishara, G. Occupational Health and Safety in the textile industry. J. Res. Technol. Eng. 2023, 4, 127–140. [Google Scholar] [CrossRef]
- Badmus, S.; Amusa, H.; Oyehan, T.; Saleh, T. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation technique. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef]
- Frantz, A. Chronic quaternary ammonium compound exposure during the COVID-19 pandemic and the impact on human health. Toxicol. Environ. Health Sci. 2023, 15, 199–206. [Google Scholar] [CrossRef]
- Papavasilopoulos, R.; Kang, S. Bibliometric Analysis: The Effects of Triclosan on Human Health. Toxics 2022, 10, 523. [Google Scholar] [CrossRef] [PubMed]
Textile Process Stage | Main Associated Micropollutants | Potential Human Health Impacts | Reference |
---|---|---|---|
Fiber Production |
|
| [64,65,66,67] |
Finishing |
|
| [67,68,69,70] |
Industrial treatments |
|
| [69,71,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, V.; Marinho, A.; Vieira de Castro, P.; Silva, T. From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health. Textiles 2025, 5, 16. https://doi.org/10.3390/textiles5020016
Machado V, Marinho A, Vieira de Castro P, Silva T. From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health. Textiles. 2025; 5(2):16. https://doi.org/10.3390/textiles5020016
Chicago/Turabian StyleMachado, Vera, Andréa Marinho, Paula Vieira de Castro, and Teresa Silva. 2025. "From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health" Textiles 5, no. 2: 16. https://doi.org/10.3390/textiles5020016
APA StyleMachado, V., Marinho, A., Vieira de Castro, P., & Silva, T. (2025). From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health. Textiles, 5(2), 16. https://doi.org/10.3390/textiles5020016