From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health
Abstract
1. Introduction
1.1. The Cytotoxicity of Dyes
1.2. The Potential Toxicity of Textile Effluents
1.3. The Cytotoxicity of Textile Functionalization
1.4. The Potential Toxicity of End-of-Life Textile Residues
1.5. Micropollutants Released During Textile Supply Chain
2. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BT | Benzothiazole |
CuO | Copper Oxide |
CuO NPs | Copper Oxide Nanoparticles |
DNA | Deoxyribonucleic Acid |
EU | European Union |
HA | Hyaluronan |
HPLC | High-Performance Liquid Chromatography |
HQ | Hazard Quotient |
ISO | International Organization for Standardization |
MTT | [3-(4,5 dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide] |
NPs | Nanoparticles |
OECD | Organization for Economic Cooperation and Development |
PCL | Polycaprolactone |
PET | Polyethylene Terephthalate |
PLA | Polylactic |
QAC | Quaternary Ammonium Compounds |
REACH | Registration, Evaluation, Authorization and Restriction of Chemicals |
TNT | Non-woven Fabric |
UV | Ultraviolet |
ZnO NPs | Zinc Nanoparticles |
References
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2006. Available online: https://eur-lex.europa.eu/eli/reg/2006/1907/oj/eng (accessed on 20 January 2025).
- OECD Guidelines. Available online: https://mneguidelines.oecd.org/mneguidelines (accessed on 25 October 2024).
- OEKO-TEX® STANDARD 100, 3rd ed.; OEKO-TEX Service GmbH: Zurich, Switzerland, 2025.
- OEKO-TEX® Standards Enable Everyone to Make Responsible Decisions and Protect Natural Resources. Available online: https://www.oeko-tex.com/en/our-standards (accessed on 25 October 2024).
- Klemola, K. Textile Toxicity Cytotoxicity and Spermatozoa Motility Inhibition Resulting from Reactive Dyes and Dyed Fabrics. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, October 2008. [Google Scholar]
- Shah, M.A.; Pirzada, B.M.; Price, G.; Shibiru, A.L.; Qurashi, A. Applications of nanotechnology in smart textile industry: A critical review. J. Adv. Res. 2022, 38, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Omerogullari, B.Z.; Coskun, H. Enhancing Antibacterial and Water-Repellent Properties for the Production of High-Performance Fabrics in Home Textiles. Fibers. Polym. 2024, 25, 1789–1804. [Google Scholar] [CrossRef]
- Pakdel, E.; Wang, X. Thermoregulating textiles and fibrous materials for passive radiative cooling functionality. Mater. Des. 2023, 231, 112006. [Google Scholar] [CrossRef]
- Wang, S.-M.; Wu, J.-X.; Gunawan, H.; Tu, R.-Q. Highly Specialized Textiles with Antimicrobial Functionality—Advances and Challenges. Textiles 2023, 3, 219–245. [Google Scholar] [CrossRef]
- ISO 10993; Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Zhang, Y. Cell toxicity mechanism and biomarker. Clin. Transl. Med. 2018, 7, 34. [Google Scholar] [CrossRef]
- Petrachi, T.; Ganzerli, F.; Cuoghi, A.; Ferrari, A.; Resca, E.; Bergamini, V.; Accorsi, L.; Burini, F.; Pasini, D.; Arnaud, G.F.; et al. Assessing biocompatibility of face mask materials during COVID-19 pandemic by a rapid multi-assays strategy. Int. J. Environ. Res. Public. Health 2021, 18, 5387. [Google Scholar] [CrossRef]
- Meier, P.; Zabara, M.; Hirsch, C.; Gogos, A.; Tscherrig, D.; Richner, G.; Nowack, B.; Wick, P. Evaluation of fiber and debris release from protective COVID-19 mask textiles and in vitro acute cytotoxicity effects. Environ. Int. 2022, 167, 107364. [Google Scholar] [CrossRef]
- Pereira-Lobato, C.; Echeverry-Rendón, M.; Fernández-Blázquez, J.; González, C.; Llorca, J. Mechanical properties, in vitro degradation and cytocompatibility of woven textiles manufactured from PLA/PCL commingled yarns. J. Mech. Behav. Biomed. Mater. 2024, 150, 106340. [Google Scholar] [CrossRef]
- Kubíčková, J.; Medek, T.; Husby, J.; Matonohová, J.; Vágnerová, H.; Marholdová, L.; Velebný, V.; Chmelař, J. Nonwoven textiles from hyaluronan for wound healing applications. Biomolecules 2022, 12, 16. [Google Scholar] [CrossRef]
- Zhong, W.; Xing, M.M.Q.; Pan, N.; Maibach, H.I. Textiles and human skin, microclimate, cutaneous reactions: An overview. Cutan. Ocul. Toxicol 2006, 25, 23–39. [Google Scholar] [CrossRef]
- Shen, D.; Fan, J.; Zhou, W.; Gao, B.; Yue, Q.; Kang, Q. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J. Hazard Mater. 2009, 172, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.H.; Das, P.K.; Roy, A.K.; Ibrahim, M. Cytotoxicity of Four Active Dyes Against Artemia Salina Leach. J. Eng. Sci. 2018, 9, 55–59. [Google Scholar]
- Domingues, G.; Düsman, E.; Vicentini, V.E.P. Cytotoxicity of Crude and Treated Liquid Effluents from Textile Industry Dyeing Using Bioindicator Allium cepa L. Water Air Soil Pollut. 2020, 231, 1–10. [Google Scholar] [CrossRef]
- Leme, D.M.; de Oliveira, G.A.R.; Meireles, G.; dos Santos, T.C.; Zanoni, M.V.B.; de Oliveira, D.P. Genotoxicological assessment of two reactive dyes extracted from cotton fibres using artificial sweat. Toxicol. Vitr. 2014, 28, 31–38. [Google Scholar] [CrossRef]
- Silva, E.Z.M.; Sehr, A.; Grummt, T.; de Oliveira, D.P.; Leme, D.M. The Evaluation of Reactive Textile Dyes Regarding their Potential to Cause Organ-Specific Cyto- and Geno-Toxicity. Ecotoxicol. Environ. Contam. 2022, 17, 60–66. [Google Scholar] [CrossRef]
- Klemola, K.; Pearson, J.; Lindstrom-Seppä, P. Evaluating the Toxicity of Reactive Dyes and Dyed Fabrics with the HaCaT Cytotoxicity Test. AUTEX Res. J. 2007, 7, 217–223. [Google Scholar] [CrossRef]
- Pizzicato, B.; Pacifico, S.; Cayuela, D.; Mijas, G.; Riba-Moliner, M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules 2023, 28, 5954. [Google Scholar] [CrossRef]
- Costa, E.M.; Silva, S.; Veiga, M.; Baptista, P.; Tavaria, F.K.; Pintado, M.E. Textile dyes loaded chitosan nanoparticles: Characterization, biocompatibility and staining capacity. Carbohydr. Polym. 2021, 251, 117120. [Google Scholar] [CrossRef]
- Lara, L.; Cabral, I.; Cunha, J. Ecological Approaches to Textile Dyeing: A Review. Sustainability 2022, 14, 8353. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. Toxics 2023, 11, 406. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Malik, A. Environmental and health effects of textile industry wastewater. In Environmental Deterioration and Human Health Natural and Anthropogenic Determinants; Malik, A., Grohmann, E., Akhtar, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–71. [Google Scholar]
- Iqbal, M.; Nisar, J. Cytotoxicity and mutagenicity evaluation of gamma radiation and hydrogen peroxide treated textile effluents using bioassays. J. Environ. Chem. Eng. 2015, 3, 1912–1917. [Google Scholar] [CrossRef]
- Jamee, R.; Siddique, R. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. Eur. J. Microbiol. Immunol. 2019, 9, 114–118. [Google Scholar] [CrossRef]
- Rima, S.A.J.; Paul, G.K.; Islam, S.; Ekram, A.E.; Zaman, S.; Saleh, A.; Uddin, S. Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: A combined study on molecular identification, growth optimization, and comparative degradation. J. Hazard. Mater. Lett. 2022, 3, 100068. [Google Scholar] [CrossRef]
- Júnior, H.L.O.; Neves, R.M.; Monticeli, F.M.; Dall Agnol, L. Smart Fabric Textiles: Recent Advances and Challenges. Textiles 2022, 2, 582–605. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Yuen, C.W.M.; Kan, C.W.; Cheuk, K.K.L. Development of Cosmetic Textiles Using Microencapsulation Technology. Res. J. Text. Appar. 2008, 12, 41–51. [Google Scholar] [CrossRef]
- Ornaghi, H.L.; Bianchi, O. Temperature-Dependent Shape-Memory Textiles: Physical Principles and Applications. Textiles 2023, 3, 257–274. [Google Scholar] [CrossRef]
- Singha, K.; Maity, S.; Pandit, P.; Mondal, M.I.H. Introduction to protective textiles. In Protective Textiles from Natural Resources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–38. [Google Scholar]
- Kumar, S.M. Textiles Functionalization—A Review of Materials, Processes, and Assessment. In Textiles for Functional Applications; Kumar, B., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Becheri, A.; Dürr, M.; Lo Nostro, P.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res. 2008, 10, 679–689. [Google Scholar] [CrossRef]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces 2010, 79, 5–18. [Google Scholar] [CrossRef]
- Khandual, A.; Rout, N.; Verma, S.K.; Patel, P.; Pattanaik, P.; Luximon, Y.; Suar, M. Controlled nano-particle dyeing of cotton can ensure low cytotoxicity risk with multi-functional property enhancement. Mater. Today Chem. 2020, 17, 100345. [Google Scholar] [CrossRef]
- Fiandra, L.; Bonfanti, P.; Piunno, Y.; Nagvenkar, A.P.; Perlesthein, I.; Gedanken, A.; Saibene, M.; Colombo, A.; Mantecca, P. Hazard assessment of polymer-capped CuO and ZnO nanocolloids: A contribution to the safe-by-design implementation of biocidal agents. NanoImpact 2020, 17, 100195. [Google Scholar] [CrossRef]
- Shaheen, T.I.; Fouda, A.; Salem, S.S. Integration of Cotton Fabrics with Biosynthesized CuO Nanoparticles for Bactericidal Activity in the Terms of Their Cytotoxicity Assessment. Ind. Eng. Chem. Res. 2021, 60, 1553–1563. [Google Scholar] [CrossRef]
- Bengalli, R.; Colantuoni, A.; Perelshtein, I.; Gedanken, A.; Collini, M.; Mantecca, P.; Fiandra, L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact 2021, 21, 100282. [Google Scholar] [CrossRef]
- Najmi, Z.; Mlinarić, N.M.; Scalia, A.C.; Cochis, A.; Selmani, A.; Učakar, A.; Abram, A.; Zore, A.; Delač, I.; Jerman, I.; et al. Antibacterial evaluation of different prosthetic liner textiles coated by CuO nanoparticles. Heliyon 2024, 10, e23849. [Google Scholar] [CrossRef] [PubMed]
- Gulati, R.; Sharma, S.; Sharma, R.K. Antimicrobial textile: Recent developments and functional perspective. Polymer. Bull. 2022, 79, 5747–5771. [Google Scholar] [CrossRef]
- Granados, A.; Pleixats, R.; Vallribera, A. Recent advances on antimicrobial and anti-inflammatory cotton fabrics containing nanostructures. Molecules 2021, 26, 3008. [Google Scholar] [CrossRef]
- Hussein, U.A.-R.; Mahmoud, Z.H.; Alaziz, K.M.A.; Alid, M.L.; Yasin, Y.; Ali, F.K.; Faisal, A.N.; Abd, A.N.; Kianfar, E. Antimicrobial finishing of textiles using nanomaterials. Braz. J. Biol. 2023, 84, e264947. [Google Scholar] [CrossRef]
- Rabel, A.M.; Namasivayam, S.K.R.; Prasanna, M.; Bharani, R.S.A. A green chemistry to produce iron oxide—Chitosan nanocomposite (CS-IONC) for the upgraded bio-restorative and pharmacotherapeutic activities—Supra molecular nanoformulation against drug-resistant pathogens and malignant growth. Int. J. Biol. Macromol. 2019, 138, 1109–1129. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Y.; Thappeta, K.R.V.; Subramanian, J.T.L.; Pranantyo, D.; Kang, E.-T.; Duan, H.; Kline, K.; Chan-Park, M.B. In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. ACS Appl. Mater. Interfaces 2017, 9, 36269–36280. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, S.; Zhang, C.; Li, Z.; Li, X.; Shen, Z.; Zhu, W. Facile and Versatile Modification of Cotton Fibers for Persistent Antibacterial Activity and Enhanced Hygroscopicity. ACS Appl. Mater. Interfaces 2018, 10, 38506–38516. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, J.; Yang, X.; Liu, H.; Xu, X.; Ma, L.; Shang, S.; Song, Z. Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. Int. J. Biol. Macromol. 2020, 150, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Melin, V.; Potineni, H.; Hunt, P.; Griswold, J.; Siems, B.; Werre, S.; Hrubec, T. Exposure to common quaternary ammonium disinfectants decreases fertility in mice. Reprod. Toxicol. 2014, 50, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Christen, V.; Faltermann, S.; Brun, N.R.; Kunz, P.Y.; Fent, K. Cytotoxicity and molecular effects of biocidal disinfectants (Quaternary ammonia, glutaraldehyde, poly (Hexamethylene biguanide) hydrochloride PHMB) and their mixtures in vitro and in zebrafish eleuthero-embryos. Sci. Total Environ. 2017, 586, 1204–1218. [Google Scholar] [CrossRef]
- Maráková, N.; Humpolíček, P.; Kašpárková, V.; Capáková, Z.; Martinková, L.; Bober, P.; Trchová, M.; Stejskal, J. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl. Surf. Sci. 2017, 396, 169–176. [Google Scholar] [CrossRef]
- Bertuccioli, A.; Cannataro, R.; Gervasi, M.; Benelli, P.; Gregoretti, A.; Ragazzini, M.; Neri, M.; Palazzi, C.M.; Cardinali, M.; Zonzini, G. Preliminary Assessment of the Acute Effects of Far Infrared-Emitting Garments: What Are the Possible Implications for Recovery and Performance? Life 2023, 13, 1998. [Google Scholar] [CrossRef]
- Wang, H.S.A.; Ewens, D.A.; Garner, S.C.; Lunn, R.M.; Mehta, S.S.; Peters, A.F.; Trgovcich, J.; Witt, K.L. Report on Carcinogens Monograph on Antimony Trioxide; National Toxicology Program: Research Triangle Park, NC, USA, 2018. [Google Scholar] [CrossRef]
- Biver, M.; Turner, A.; Filella, M. Antimony release from polyester textiles by artificial sweat solutions: A call for a standardized procedure. Regul. Toxicol. Pharmacol. 2021, 119, 104824. [Google Scholar] [CrossRef] [PubMed]
- Tariq, Z.; Zhang, H.-T.; Wang, R.-Q.; Zeng, Q.; Wang, X.; Wang, X.; Deng, S.-Q.; Wang, X. Enhancing the durability of mosquito repellent textiles through microencapsulation of lavender oil. J. Pest. Sci. 2024, 98, 477–492. [Google Scholar] [CrossRef]
- Sathasivam, T.; Sugiarto, S.; Yew, M.P.Y.; Oh, X.Y.; Chan, S.Y.; Chan, B.Q.Y.; Tim, M.J.; Kai, D. Transforming textile waste into nanocellulose for a circular future. Nanoscale 2024, 16, 14168–14194. [Google Scholar] [CrossRef]
- Villar, L.; Schlapp-Hackl, I.; Sánchez, P.B.; Hummel, M. High-Quality Cellulosic Fibers Engineered from Cotton-Elastane Textile Waste. Biomacromolecules 2024, 25, 1942–1949. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Matter, I.A.; Al-Balakocy, N.G.; Abo-Alkasem, M.I. Circular economy reinforcement through molecular fabrication of textile wastes with microbial synthesized ZnO nanoparticles to have multifunctional properties. Sci. Rep. 2024, 14, 16660. [Google Scholar] [CrossRef]
- Bour, A.; Christensen, T.B.; Hunka, A.D.; Palmqvist, A.; Skjold, E.; Syberg, K. Implications of circular textile policies for the future regulation of hazardous substances in textiles in the European Union. Sci. Total Environ. 2023, 896, 165153. [Google Scholar] [CrossRef] [PubMed]
- Iadaresta, F.; Manniello, M.D.; Östman, C.; Crescenzi, C.; Holmbäck, J.; Russo, P. Chemicals from textiles to skin: An in vitro permeation study of benzothiazole. Environ. Sci. Pollut. Res. 2018, 25, 24629–24638. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Rovira, J.; González, N.; Marquès, M.; Barbosa, F.; Sierra, J.; Domingo, J.L.; Nadal, M.; Souza, M.C.O. Clothing as a potential exposure source of trace elements during early life. Environ. Res. 2023, 233, 116479. [Google Scholar] [CrossRef]
- Lopes-Ferreira, M.; Farinha, L.; Costa, Y.; Pinto, F.; Disner, G.; Rosa, J.; Lima, C. Pesticide-Induced Inflammation at a Glance. Toxics 2023, 11, 896. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Jeong, H.; Jung, Y.; Nam, K.; Lim, K. Skin irritation and inhalation toxicity of biocides evaluated with reconstructed human epidermis and airway model. Food Chem. Toxicol. 2021, 150, 112064. [Google Scholar] [CrossRef]
- Seidu, R.; Ofori, E.; Eghan, B.; Fobiri, G.; Afriyie, A.; Acquaye, R. A systematic review of work-related health problems of factory workers in the textile and fashion industry. J. Occup. Health 2024, 66, uiae007. [Google Scholar] [CrossRef]
- Maceira, A.; Marcé, R.; Borrull, F. Occurrence of benzothiazole, benzotriazole and benzenesulfonamide derivates in outdoor air particulate matter samples and human exposure assessment. Chemosphere 2018, 193, 557–566. [Google Scholar] [CrossRef]
- Rovira, J.; Domingo, J. Human health risks due to exposure to inorganic and organic chemicals from textiles: A review. Environ. Res. 2018, 168, 62–69. [Google Scholar] [CrossRef]
- Mekala, K.; Malki, A.; Amarasinghe, D.; Ishara, G. Occupational Health and Safety in the textile industry. J. Res. Technol. Eng. 2023, 4, 127–140. [Google Scholar] [CrossRef]
- Badmus, S.; Amusa, H.; Oyehan, T.; Saleh, T. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation technique. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef]
- Frantz, A. Chronic quaternary ammonium compound exposure during the COVID-19 pandemic and the impact on human health. Toxicol. Environ. Health Sci. 2023, 15, 199–206. [Google Scholar] [CrossRef]
- Papavasilopoulos, R.; Kang, S. Bibliometric Analysis: The Effects of Triclosan on Human Health. Toxics 2022, 10, 523. [Google Scholar] [CrossRef] [PubMed]
Textile Process Stage | Main Associated Micropollutants | Potential Human Health Impacts | Reference |
---|---|---|---|
Fiber Production |
|
| [64,65,66,67] |
Finishing |
|
| [67,68,69,70] |
Industrial treatments |
|
| [69,71,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, V.; Marinho, A.; Vieira de Castro, P.; Silva, T. From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health. Textiles 2025, 5, 16. https://doi.org/10.3390/textiles5020016
Machado V, Marinho A, Vieira de Castro P, Silva T. From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health. Textiles. 2025; 5(2):16. https://doi.org/10.3390/textiles5020016
Chicago/Turabian StyleMachado, Vera, Andréa Marinho, Paula Vieira de Castro, and Teresa Silva. 2025. "From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health" Textiles 5, no. 2: 16. https://doi.org/10.3390/textiles5020016
APA StyleMachado, V., Marinho, A., Vieira de Castro, P., & Silva, T. (2025). From Fabric to Finish: The Cytotoxic Impact of Textile Chemicals on Humans Health. Textiles, 5(2), 16. https://doi.org/10.3390/textiles5020016