Green Composites in Aviation: Optimizing Natural Fiber and Polymer Selection for Sustainable Aircraft Cabin Materials
Abstract
:1. Introduction
- -
- To conduct an in-depth investigation of the mechanical properties of twelve polymers and sixteen natural fibers in terms of tensile strength, Young’s modulus, density, and elongation at a break from the existing literature.
- -
- To examine and gather the chemical (micro-fibrillar angle, lignin, hemicellulose, cellulose, and moisture content) and physical (width of lumen, fiber length, thickness of a single cell wall, and fiber diameter) characteristics of sixteen natural fibers.
- -
- To determine the influence of data variation on the obtained mechanical properties on the performance score of each polymer.
- -
- To determine the influence of data variation on the obtained mechanical, physical, and chemical properties on the performance score of each natural fiber.
- -
- To assign weights to the criteria using the hierarchical strategy methodology to indicate the relative importance of the criteria.
- -
- To assess the performance scores of all the variants of the twelve polymers and sixteen natural fibers.
2. Materials and Methods
3. Results and Discussion
3.1. Data
3.2. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic hierarchy process; |
ANP | Analytical network process; |
CoCoSo | Combined compromise solution; |
FAHP | Fuzzy analytic hierarchy process; |
Fuzzy-TOPSIS | Fuzzy technique for order of preference by similarity to ideal solution; |
LOPCOW | Logarithmic percentage change-driven objective weighting; |
MEREC | Method based on the removal effects of criteria; |
MCDM | Multi-criteria decision making; |
MCRAT | Multiple criteria ranking by alternative trace; |
PSI | Preference selection index; |
PSI-CRITIC | Preference selection index-criteria importance through inter-criteria correlation; |
TODIM-SWARA | An acronym in Portuguese for iterative multi-criteria decision-making stepwise weight assessment ratio analysis; |
TOPSIS | Technique for order of preference by similarity to ideal solution; |
WPIM | Wavelet precise integration method; |
VIKOR | VlšeKriterijumska Optimizacija Kompromisno Resenje. |
Appendix A
References
- Parveez, B.; Kittur, M.I.; Badruddin, I.A.; Kamangar, S.; Hussien, M.; Umarfarooq, M.A. Scientific Advancements in Composite Materials for Aircraft Applications: A Review. Polymers 2022, 14, 5007. [Google Scholar] [CrossRef] [PubMed]
- Bryll, K.; Kostecka, E.; Scheibe, M.; Dobrzyńska, R.; Kostecki, T.; Ślączka, W.; Korczyńska, I. Evaluation of Fire Resistance of Polymer Composites with Natural Reinforcement as Safe Construction Materials for Small Vessels. Appl. Sci. 2023, 13, 5832. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Basri, M.S.M.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef] [PubMed]
- Fauzi, A.A.A.; Osman, A.F.; Alrashdi, A.A.; Mustafa, Z.; Halim, K.A.A. On the Use of Dolomite as a Mineral Filler and Co-Filler in the Field of Polymer Composites: A Review. Polymers 2022, 14, 2843. [Google Scholar] [CrossRef]
- Bhuvaneswari, V.; Devarajan, B.; Arulmurugan, B.; Mahendran, R.; Rajkumar, S.; Sharma, S.; Mausam, K.; Li, C.; Eldin, E.T. A Critical Review on Hygrothermal and Sound Absorption Behavior of Natural-Fiber-Reinforced Polymer Composites. Polymers 2022, 14, 4727. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M.; Berglin, L. Manufacture and characterization of thermoplastics composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos. Part A Appl. Sci. Manufact. 2013, 50, 93–101. [Google Scholar] [CrossRef]
- Mitra, A.; Majumdar, A.; Ghosh, A.; Majumdar, P.K.; Bannerjee, D. Selection of hand-loom fabrics for summer clothing using multi-criteria decision-making techniques. J. Nat. Fibers 2015, 12, 61–71. [Google Scholar] [CrossRef]
- Antil, R.; Ritesh, A.G. Applications of composite materials in aerospace. Int. J. Sci. Technol. Manag. 2015, 4, 11. [Google Scholar]
- Stec, W.; van Paassen, A.; Maziarz, A. Modelling the double skin façade with plants. Energy Build. 2005, 37, 419–427. [Google Scholar] [CrossRef]
- Ottelé, M.; Perini, K.; Fraaij, A.; Haas, E.; Raiteri, R. Comparative life cycle analysis for green façades and living wall systems. Energy Build. 2011, 43, 3419–3429. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, M.S.; Ishak, M.R.; Aziz, N.A. Selecting natural fibers for Bio-based materials with conflicting criteria. Am. J. Appl. Sci. 2015, 12, 64–71. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S.M.; Ishak, M.R.; Nuraini, A.A. Decision making model for optimal reinforcement condition of natural fiber composites. Fibers Polym. 2015, 16, 153–163. [Google Scholar] [CrossRef]
- Mansor, M.; Sapuan, S.; Zainudin, E.; Nuraini, A.; Hambali, A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013, 51, 484–492. [Google Scholar] [CrossRef]
- Neves, A.J.D.S.; Camanho, R. The use of AHP for IT project priorization—A case study for oil & gas company. Procedia Comput. Sci. 2015, 55, 1097–1105. [Google Scholar] [CrossRef]
- Chang, C.-W.; Wu, C.-R.; Lin, C.-T.; Chen, H.-C. An application of AHP and sensitivity analysis for selecting the best slicing machine. Comput. Ind. Eng. 2007, 52, 296–307. [Google Scholar] [CrossRef]
- Kumar, R.R.; Mishra, S.; Kumar, C. A Novel Framework for Cloud Service Evaluation and Selection Using Hybrid MCDM Methods. Arab. J. Sci. Eng. 2018, 43, 7015–7030. [Google Scholar] [CrossRef]
- Babu, K.A.; Venkataramaiah, P.; Yerrathota, S. Material Selection for Preparation of Aluminium Hybrid Mmcs. Mater. Today Proc. 2018, 5, 12209–12222. [Google Scholar] [CrossRef]
- Sun, X. Incorporating multicriteria decision analysis techniques in aircraft conceptual design process. J. Aircr. 2014, 51, 861–869. [Google Scholar] [CrossRef]
- Sun, X.; Gollnick, V. Intelligent Multicriteria Decision Support System for Systems Design. J. Aircr. 2014, 51, 1–11. [Google Scholar] [CrossRef]
- Ogrodnik, K. Multi-criteria analysis of design solutions in architecture and engineering: Review of applications and a case study. Buildings 2019, 9, 244. [Google Scholar] [CrossRef]
- Lee, D.; Lee, D.; Lee, M.; Kim, M.; Kim, T. Analytic hierarchy process-based construction material selection for performance improvement of building construction: The case of a concrete system form. Materials 2020, 13, 1738. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.H.; Dinh, T.H.; Götze, U. Integration of sustainability criteria and life cycle sustainability assessment method into construction material selection in developing countries: The case of Vietnam. Int. J. Sustain. Dev. Plann. 2020, 15, 1145–1156. [Google Scholar] [CrossRef]
- Bin Ruslan, A.A.; Al-Atesh, E.A.A.; Rahmawati, Y.; Utomo, C.; Zawawi, N.A.W.A.; Jahja, M.; Raflis; Elmansoury, A. A value-based decision-making model for selecting sustainable materials for buildings. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 6, 2279–2286. [Google Scholar] [CrossRef]
- Mayhoub, M.M.G.; El Sayad, Z.M.T.; Ali, A.A.M.; Ibrahim, M.G. Assessment of green building materials’ attributes to achieve sustainable building façades using AHP. Buildings 2021, 11, 474. [Google Scholar] [CrossRef]
- Janowska-Renkas, E.; Jakiel, P.; Fabianowski, D.; Matyjaszczyk, D. Optimal selection of high-performance concrete for post-tensioned girder bridge using advanced hybrid MCDA method. Materials 2021, 14, 6553. [Google Scholar] [CrossRef]
- Singh, A.K.; Avikal, S.; Kumar, K.N.; Kumar, M.; Thakura, P. A fuzzy-AHP and M—TOPSIS based approach for selection of composite materials used in structural applications. Mater. Today Proc. 2020, 26, 3119–3123. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, H.; Feng, Y.; Wang, D.; Peng, Y.; Jia, H. Green decoration materials selection under interior environment characteristics: A grey-correlational based hybrid MCDM method. Renew. Sustain. Energy Rev. 2018, 81, 682–692. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Olomolaiye, P.O.; Chinyio, E.A. Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom. Constr. 2013, 30, 113–125. [Google Scholar] [CrossRef]
- Figueiredo, K.; Pierott, R.; Hammad, A.W.; Haddad, A. Sustainable material choice for construction projects: A life cycle sustainability assessment framework based on BIM and Fuzzy-AHP. Build. Environ. 2021, 196, 107805. [Google Scholar] [CrossRef]
- Sadeghzadeh, K.; Salehi, M.B. Mathematical analysis of fuel cell strategic technologies development solutions in the automotive industry by the TOPSIS multi-criteria decision making method. Int. J. Hydrogen Energy 2011, 36, 13272–13280. [Google Scholar] [CrossRef]
- Rahman, S.; Odeyinka, H.; Perera, S.; Bi, Y. Product-cost modelling approach for the development of a decision support system for optimal roofing material selection. Expert Syst. Appl. 2012, 39, 6857–6871. [Google Scholar] [CrossRef]
- Lee, K.-L. Two-phase fuzzy approach for evaluating service strategies in an airport’s international logistic system. J. Chin. Inst. Ind. Eng. 2010, 27, 209–225. [Google Scholar] [CrossRef]
- Liu, H.-C.; Liu, L.; Wu, J. Material selection using an interval 2-tuple linguistic VIKOR method considering subjective and objective weights. Mater. Des. 2013, 52, 158–167. [Google Scholar] [CrossRef]
- Jahan, A.; Mustapha, F.; Ismail, Y.; Sapuan, S.; Bahraminasab, M. A comprehensive VIKOR method for material selection. Mater. Des. 2011, 32, 1215–1221. [Google Scholar] [CrossRef]
- Ulutaş, A.; Balo, F.; Topal, A. Identifying the most efficient natural fiber for common commercial building insulation materials with an integrated PSI, MEREC, LOPCOW and MCRAT model. Polymers 2023, 15, 1500. [Google Scholar] [CrossRef]
- Ulutaş, A.; Balo, F.; Sua, L.; Karabasevic, D.; Stanujkic, D.; Popovic, G. Selection of Insulation Materials with PSI-CRITIC based CoCoSo Method. Rev. Construcción 2021, 20, 382–392. [Google Scholar] [CrossRef]
- Aksakal, B.; Ulutaş, A.; Balo, F.; Karabasevic, D. A New Hybrid MCDM Model for Insulation Material Evaluation for Healthier Environment. Buildings 2022, 12, 655. [Google Scholar] [CrossRef]
- Balo, F. Evaluation of Ecological Insulation Material Manufacturing with Analytical Hierarchy Process (Ekolojik yalıtım malzemesi üretiminin analitik hiyerarşi prosesi ile değerlendirilmesi). J. Polytech. 2017, 20, 733–742. [Google Scholar]
- Dweiri, F.; Kumar, S.; Khan, S.A.; Jain, V. Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Syst. Appl. 2016, 62, 273–283, Erratum in 2017, 72, 467–468. [Google Scholar] [CrossRef]
- Tsita, K.G.; Pilavachi, P.A. Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process. Energy Policy 2012, 48, 677–686. [Google Scholar] [CrossRef]
- Rashid, K.; Razzaq, A.; Ahmad, M.; Rashid, T.; Tariq, S. Experimental and analytical selection of sustainable recycled concrete with ceramic waste aggregate. Constr. Build. Mater. 2017, 154, 829–840. [Google Scholar] [CrossRef]
- Mansor, M.; Sapuan, S.; Zainudin, E.; Nuraini, A.; Hambali, A. Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ–Morphological Chart–Analytic hierarchy process method. Mater. Des. 2014, 54, 473–482. [Google Scholar] [CrossRef]
- Azrin Hani, A.; Roslan, A.; Mariatti, J.; Maziah, M. Body armor technology: A review of materials, construction techniques and enhancement of ballistic energy absorption. Adv. Mater. Res. 2012, 488–489, 806–812. [Google Scholar] [CrossRef]
- Dalalah, D.; Al-oqla, F.; Hayajneh, M. Application of the analytic hierarchy process (ahp) in multi-criteria analysis of the selection of cranes. Jordan. J. Mech. Indust. Eng. 2010, 4, 567–578. [Google Scholar]
- Balo, F.; Sua, L.S. Chapter 1: Strategic Evaluation and Selection for Energy-Effective Natural Fibers as Alternative Sustainable Insulation Materials for Green Building Envelope. In Handbook of Sustainable Materials: Modelling, Characterization, and Optimization; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–17. ISBN 9781032286327. [Google Scholar]
- Balo, F.; Sua, L.S. Chapter 2: Application of Expert Decision System at the Optimal Fiber Selection for Green Building Design Components. In Emerald Publishing 2023 Book Series on Pragmatic Engineering and Lifestyle—Responsible Engineering for a Sustainable Future; Emerald Publishing Limited: Leeds, UK, 2023; pp. 21–38. ISBN 978-1-80262-998-9. [Google Scholar]
- Balo, F.; Sua, L.S. Hierarchical Model for Optimizing Natural Fiber Selection Process for Eco-design of Buildings. J. Nat. Fibers 2022, 19, 10897–10909. [Google Scholar] [CrossRef]
- Mondal, M.S.; Hussain, S.Z. Banana-Glass Fiber Composite for Acoustic Insulation and Prediction of Its Properties by Fuzzy Logic System. J. Nat. Fibers 2023, 20, 2212928. [Google Scholar] [CrossRef]
- Ucar, A.; Balo, F. Determination of environmental impact and optimum thickness of insulation for building walls. Environ. Prog. Sustain. Energy 2011, 30, 113–122. [Google Scholar] [CrossRef]
- Fragassa, C. Lightening structures by metal replacement: From traditional gym equipment to an advanced fiber-reinforced composite exoskeleton. Facta Univ. Ser. Mech. Eng. 2021, 19, 155–174. [Google Scholar] [CrossRef]
- Amarnath, K.; Babu, K.J.; Kumar, M.S. Selection of optimal flax fiber reinforced components for experimental investigation by using TOPSIS method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1057, 12055. [Google Scholar] [CrossRef]
- Salwa, H.N.; Sapuan, S.M.; Mastura, M.T.; Zuhri, M.Y.M. Analytic hierarchy process (AHP)-based materials selection system for natural fiber as reinforcement in biopolymer composites for food packaging. Bioresources 2019, 14, 10014–10046. [Google Scholar] [CrossRef]
- Rocchi, L.; Kadziński, M.; Menconi, M.; Grohmann, D.; Miebs, G.; Paolotti, L.; Boggia, A. Sustainability evaluation of retrofitting solutions for rural buildings through life cycle approach and multi-criteria analysis. Energy Build. 2018, 173, 281–290. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Zou, P.X.W.; Sanjayan, J.G.; Memon, R.A. Comparative analysis of building insulation material properties and performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Ruzgys, A.; Volvačiovas, R.; Ignatavičius, Č.; Turskis, Z. Integrated evaluation of external wall insulation in residential buildings using swara-todim mcdm method. J. Civ. Eng. Manag. 2014, 20, 103–110. [Google Scholar] [CrossRef]
- Sameer, H.; Bringezu, S. Life cycle input indicators of material resource use for enhancing sustainability assessment schemes of buildings. J. Build. Eng. 2018, 21, 230–242. [Google Scholar] [CrossRef]
- Saaty, T.L.; Peniwati, K. Group Decision Making: Drawing out and Reconciling Differences; RWS Publications: Pittsburgh, PA, USA, 2008; ISBN 978-1-888603-08-8. [Google Scholar]
- Rozann, S. (Ed.) Participant Names and Papers. In Proceedings of the 10th International Symposium on the Analytic Hierarchy/Network Process, Pittsburgh, PA, USA, 29 July–1 August 2009; ISAHP: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World; RWS Publications: Pittsburgh, PA, USA, 2008; ISBN 978-0-9620317-8-6. [Google Scholar]
- Saaty, T.L. Principia Mathematica Decernendi: Mathematical Principles of Decision Making; RWS Publications: Pittsburgh, PA, USA, 2010; ISBN 978-1-888603-10-1. [Google Scholar]
- Saaty, T.L. Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. Rev. R. Acad. Cien. Serie A. Mat. 2008, 102, 251–318. [Google Scholar] [CrossRef]
- Hruška, R.; Průša, P.; Babić, D. The use of ahp method for selectıon of supplier. Transport 2014, 29, 195–203. [Google Scholar] [CrossRef]
- Jabbarzadeh, A. Application of the AHP and TOPSIS in project management. J. Proj. Manag. 2018, 3, 125–130. [Google Scholar] [CrossRef]
- Kuo, R.; Chi, S.; Kao, S. A decision support system for locating convenience store through fuzzy AHP. Comput. Ind. Eng. 1999, 37, 323–326. [Google Scholar] [CrossRef]
- Jalaliyoon, N.; Bakar, N.A.; Taherdoost, H. Accomplishment of Critical Success Factor in Organization; Using Analytic Hierarchy Process. Int. J. Acad. Res. Manag. 2012, 1, 1–9. [Google Scholar]
- Lee, M.C.; Wang, H.W.; Wang, H.Y. A Method of Performance Evaluation by Using the Analytic Network Process and Balanced Score Car. In Proceedings of the 2007 International Conference on Convergence Information Technology (ICCIT 2007), Gyeongju, Republic of Korea, 21–23 November 2007; pp. 235–240. [Google Scholar]
- Ansah, R.H.; Sorooshian, S.; Mustafa, S. Analytic Hierarchy Process Decision Making Algorithm. Glob. J. Pure Appl. Math. 2015, 11, 2393–2400. [Google Scholar]
- Aprianti, E.; Shafigh, P.; Bahri, S.; Farahani, J.N. Supplementary cementitious materials origin from agricultural wastes—A review. Constr. Build. Mater. 2015, 74, 176–187. [Google Scholar] [CrossRef]
- Arjmandi, R.; Hassan, A.; Majeed, K.; Zakaria, Z. Rice husk filled polymer composites. Int. J. Polym. Sci. 2015, 2015, 1–32. [Google Scholar] [CrossRef]
- Available online: www.pig333.com (accessed on 1 May 2024).
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and its Applications. Int. J. Polym. Sci. 2015, 2015, 1–15. [Google Scholar] [CrossRef]
- Rohit, K.; Dixit, S. A Review—Future Aspect of Natural Fiber Reinforced Composite. Polym. Renew. Resour. 2016, 7, 43–59. [Google Scholar] [CrossRef]
- Tucker, M.P.S.N. Natural-fiber composites in structural applications. In Properties and Performance of Naturalfiber Composites; Pickering, K., Ed.; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Thiruchitrambalam, M.; Athijayamani, A.; Sathiyamurthy, S.; Thaheer, A.S.A. A Review on the Natural Fiber-Reinforced Polymer Composites for the Development of Roselle Fiber-Reinforced Polyester Composite. J. Nat. Fibers 2010, 7, 307–323. [Google Scholar] [CrossRef]
- Bharath, K.N.; Basavarajappa, S. Applications of biocomposite materials based on natural fibers from renewable resources: A review. Sci. Eng. Compos. Mater. 2016, 23, 123–133. [Google Scholar] [CrossRef]
- Chauhan, V.; Kärki, T.; Varis, J. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 2022, 35, 1169–1209. [Google Scholar] [CrossRef]
- Sen, T.; Reddy, H.J. Various industrial applications of hemp, kenaf, flax and ramie natural fibers. Int. J. Innov. Manag. Technol. 2011, 2, 192–198. [Google Scholar]
- Mwaikambo, L.Y. Review of the history, properties and application of plant fibers. Afr. J. Sci. Technol. 2006, 7, 120–133. [Google Scholar]
- Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Shuit, S.; Tan, K.; Lee, K.; Kamaruddin, A. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 2009, 34, 1225–1235. [Google Scholar] [CrossRef]
- Shinoj, S.; Visvanathan, R.; Panigrahi, S.; Kochubabu, M. Oil palm fiber (OPF) and its composites: A review. Ind. Crop. Prod. 2011, 33, 7–22. [Google Scholar] [CrossRef]
- Verma, D.; Sharma, S. Green biocomposites: A prospective utilization in automobile industry. In Green Biocomposites: Design and Applications; Jawaid, S.M., Alothman, O.Y., Eds.; Springer: Cham, Switzerland, 2017; pp. 167–191. [Google Scholar]
- Available online: https://www.fao.org/3/cc9120en/cc9120en.pdf (accessed on 1 May 2024).
- Gassan, A.K.B.J. Composite reinforced with cellulose-based fibers Prog. Pol. Sci. 1999, 24, 221–274. [Google Scholar]
- Li, Y.; Mai, Y.W.; Ye, L. Sisal fiber and its composites: A review of recent developments. Compos. Sci. Technol. 2000, 60, 2037–2055. [Google Scholar] [CrossRef]
- Reddy, Y.Y.N. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005, 23, 22–27. [Google Scholar] [CrossRef]
- Sen, T.; Reddy, H.J. Application of sisal, bamboo, coir and jute natural composites in structural upgradation. Int. J. Innov. Manag. Technol. 2011, 2, 186–191. [Google Scholar]
- Jawaid, M.; Khalil, H. Cellulosic/synthetic fiber reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Alves, C.; Ferrão, P.; Silva, A.; Reis, L.; Freitas, M.; Rodrigues, L.; Alves, D. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2009, 18, 313–327. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Y.; Shivkumar, S. Microstructure and tensile properties of various varieties of rice husk. J. Sci. Food Agric. 2017, 98, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.Y.N. Properties of high-quality long natural cellulose fibers from rice straw. J. Agric. Food Chem. 2006, 54, 8077–8081. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://worldpopulationreview.com/country-rankings/coconut-production-by-country (accessed on 1 May 2024).
- Singha, A.S.; Thakur, V.K. Mechanical properties of natural fiber reinforced polymer composites. Bull. Mater. Sci. 2008, 31, 791–799. [Google Scholar] [CrossRef]
- Hoareau, W.; Trindade, W.G.; Siegmund, B.; Castellan, A.; Frollini, E. Sugar cane bagasse and curaua linens oXidized by chlorine di oXide and reacted with furfuryl alcohol: Characterization and stability. Polym. Degrad. Stabil. 2004, 86, 567–657. [Google Scholar] [CrossRef]
- Yıldızhan, Ş.; Çalık, A.; Özcanlı, M.; Serin, H. Bio-composite Materials: A Short Review of Recent Trends, Mechanical and Chemical Properties, and Applications. Eur. Mech. Sci. 2018, 2, 83–91. [Google Scholar] [CrossRef]
- Yeng, C.M.; Husseinsyah, S.; Ting, S.S. A comparative study of different crosslinking agent-modified chitosan/corn cob biocomposite films. Polym. Bull. 2015, 72, 791–808. [Google Scholar] [CrossRef]
- Fuqua, M.A.; Huo, S.; Ulven, C.A. Natural fiber reinforced composites. Polym. Rev. 2012, 52, 259–320. [Google Scholar] [CrossRef]
- Ahmad, F.; Choi, H.S.; Park, M.K. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol. Mater. Eng. 2014, 300, 10–24. [Google Scholar] [CrossRef]
- Kumar, R.; Obrai, S.; Sharma, A. Chemical Modifications of Natural Fiber for Composite Material. Der Chem. Sin. 2011, 2, 219–228. [Google Scholar]
- Angelini, L.G.; Scalabrelli, M.; Tavarini, S.; Cinelli, P.; Anguillesi, I.; Lazzeri, A. Ramie fibers in a comparison between chemical and micro biological retting proposed for application in biocomposites. Ind. Crop. Prod. 2015, 75, 178–184. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.A.; Hinrichsen, G.I. Biofibers, biodegradable polymers and biocomposites: An overview. Macro Mater. Eng. 2000, 276, 1–24. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant fiber based bio-composites: Sustainable and renewable green materials. Renew. Sustain. Energy Rev. 2017, 79, 558–584. [Google Scholar] [CrossRef]
- Akil, H.M.; Omar, M.F.; Mazuki, A.A.M.; Safiee, S.; Ishak, Z.A.M.; Abu Bakar, A. Kenaf fiber reinforced composites: A review. Mater. Des. 2011, 32, 4107–4121. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Julinawati, L.R.S. Preparation of chitosan composite film reinforced with cellulose isolated from oil palm emp ty fruit bunch and application in cadmium ions removal from aque ous solutions. Carbohydr. Polym. 2017, 170, 226–233. [Google Scholar]
- Jauhari, N.; Mishra, R.; Thakur, H. Natural fiber reinforced composite laminates—A review. Mater. Today Proc. 2015, 2, 2868–2877. [Google Scholar] [CrossRef]
- Srinivasan, V.S.; Boopathy, S.R.; Sangeetha, D.; Ramnath, B.V. Evaluation of mechanical and thermal properties of banana–flax based natural fiber composite. Mater. Des. 2014, 60, 620–627. [Google Scholar] [CrossRef]
- Rowell, R.M.; Sanadi, A.R.; Caulfield, D.F.; Jacobson, R.E. Utilization of Natural Fibers in Plastic Composite: Problems and Opportunities. Lignocellul. Plast. Compos 1997, 13, 23–51. [Google Scholar]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Compos. Part Appl. Sci. Manufact. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- El Boustani, M.; Lebrun, G.; Brouillette, F.; Belfkira, A. Effect of a solvent-free acetylation treatment on reinforcements permeability and tensile behaviour of flax/epoXy and flax/wood fiber/epoXy composites. Can. J. Chem. Eng. 2017, 95, 1082–1092. [Google Scholar] [CrossRef]
- Sun, R.; Fang, M.; Goodwin, A.; Lawther, J.M.; Bolton, A.J. Fractionation and characterization of polysaccharides from abaca fiber. Carbohydr. Polym. 1998, 37, 351–359. [Google Scholar] [CrossRef]
- Biagiotti, J.; Puglia, D.; Kenny, J.M. A Review on Natural Fibre-Based Composites-Part I: Structure, Processing and Properties of Vegetable Fibres. J. Nat. Fibers 2004, 1, 37–68. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Compos. Sci. Technol. 2006, 66, 1813–1824. [Google Scholar] [CrossRef]
- Biswas, S.B.R.D.S. Physical and mechanical behavior of unidirectional banana/jute fiber reinforced epoXy based hybrid compo sites. Polym. Compos. 2017, 38, 1396–1403. [Google Scholar]
- Bongarde, U.S.; Shinde, V. Review on natural fiber reinforcement polymer composites. Int. J. Eng. Sci. Inn. Tech. 2014, 3, 431–436. [Google Scholar]
- Senthilkumar, K.; Saba, N.; Rajini, N. Mechanical properties evaluation of sisal fiber reinforced polymer composites: A review. Construct. Build. Mater. 2018, 174, 713–729. [Google Scholar] [CrossRef]
- Bouzouita, S. Optimisation des Interfaces Fiber/Matrice de Composites à Renfort Naturel. Ph.D. Dissertation, E’cole Centrale de Lyon, Écully, France, 2011; p. 179. [Google Scholar]
- Sundararajan, G.R.T. Studies on the durability of natural fibers and the effect of corroded fibers on the strength of mortar. Cem. Concr. Compos 2005, 27, 575–582. [Google Scholar]
- Loiacono, S.; Morin-Crini, N.; Cosentino, C.; Torri, G.; Chanet, G.; Winterton, P.; Crini, G. Simultaneous removal of Cd, Co, Cu, Mn, Ni and Zn from synthetic solutions on a hemp-based felt: Experimental design. J. Appl. Polym. Sci. 2016, 134, 45138. [Google Scholar] [CrossRef]
- Santucci, B.S.; Bras, J.; Belgacem, M.N.; Curvelo, A.A.d.S.; Pimenta, M.T.B. Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Ind. Crop. Prod. 2016, 91, 238–248. [Google Scholar] [CrossRef]
- Prado, K.D.S.D.; Spinacé, M.A.D.S. Characterization of fibers from pineapple’s crown, rice husks and cotton textile residues. Mater. Res. 2015, 18, 530–537. [Google Scholar] [CrossRef]
- Malkapuram, R.; Kumar, V.; Negi, Y.S. Recent development in natural fiber reinforced polypropylene composites. J. Reinforc. Plast. Compos. 2009, 28, 1169–1189. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.V.A. Review on natural fiber reinforced composites. Mater. Today Proc. 2019, 16, 897–906. [Google Scholar]
- Li, X.; Tabil, L.G.; Panigrahi, S.; Crerar, W.J. The Influence of Fiber Content on Properties of Injection Molded Flax Fiber-HDPE Biocomposites. In Proceedings of the 2006 CSBE/SCGAB, Edmonton, AB, Canada, 16–19 July 2006; p. 1. [Google Scholar]
- Wambua, J.I.P.; Verpoest, I. Natural fibers: Can they replace glass in fiber reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- FAO. International Year of Natural Fibers; International year of Natural Fibers Coordinating Unit, Trade and Markets Division, FAO: Rome, Italy, 2009. [Google Scholar]
- Saheb, D.N.; Jog, J.P. Natural Fiber Polymer Composites: A Review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Cheung, H.Y.; Ho, M.P.; Lau, K.T.; Cardona, F.; Hui, D. Natural fiber-reinforced composites for bioengineering and environmental engineering applications. Compos. B Eng. 2009, 40, 655–663. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Harussani, M.M.; Aisyah, H.A.; Ilyas, R.A.; Norrrahim, M.N.F.; Khalina, A.; Abdullah, N. Treatments of Natural Fiber as Reinforcement in Polymer Composites-Short Review. Funct. Compos. Struct. 2021, 3, 024002. [Google Scholar] [CrossRef]
- Pandey, J.K.; Ahn, S.H.; Lee, C.S.; Mohanty, A.K.; Misra, M. Recent advances in the application of natural fiber based composites. Macromol. Mater. Eng. 2010, 295, 975–989. [Google Scholar] [CrossRef]
- Oztürk, S. Effect of fiber loading on the mechanical properties of kenaf and fiberfrax fiber-reinforced phenol-formaldehyde composites. J. Compos. Mater. 2010, 44, 2265–2288. [Google Scholar] [CrossRef]
- Anandjiwala, R.D.; Blouw, S. Composites from bast fibers—Prospects and potential in the changing market environment. J. Nat. Fibers 2007, 4, 91–901. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.R.; Yogesha, B. Study on mechanical properties of natural—Glass fiber reinforced polymer hybrid composites: A review. Mater. Today Proc. 2015, 2, 2959–2967. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M. Green composites: A review. Mater. Today Proc. 2018, 5, 2518–2526. [Google Scholar]
- Kamath, S.S.; Sampathkumar, D.; Bennehalli, B. A Review on Natural Areca Fiber Reinforced Polymer Composite Materials. Ciência Tecnol. Dos Mater. 2017, 29, 106–128. [Google Scholar] [CrossRef]
- Natural fiber-reinforced polymer composites and nanocomposites for automotive applications. In Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology; Njuguna, J.; Wambua, P.; Pielichowski, K.; Kalia, S.; Kaur, K.I. (Eds.) Springer: Berlin/Heidelberg, Germany, 2011; pp. 661–700. [Google Scholar]
- Mukherjee, T.; Kao, N. PLA based biopolymer reinforced with natural fiber: A review. J. Polym. Environ. 2011, 19, 714–725. [Google Scholar] [CrossRef]
- Deka, H.; Varghese, T.O.; Nayak, S.K. Recent development and future trends in coir fiber-reinforced green polymer composites: Review and evaluation. Polym. Compos. 2015, 37, 3296–3309. [Google Scholar] [CrossRef]
- Dai, D.; Fan, M. Wood fibers as reinforcements in natural fiber composites: Structure, properties, processing and applications. In Natural Fiber Composites; Woodhead: Cambridge, UK, 2014; pp. 3–65. [Google Scholar]
- John, M.J.; Francis, B.; Varughese, K.; Thomas, S. Effect of chemical modification on properties of hybrid fiber biocomposites. Compos. A 2007, 39, 352–363. [Google Scholar] [CrossRef]
- AL-Oqla, F.M.; Omari, M.A. Sustainable Biocomposites: Challenges, Potential and Barriers for Development. Green Biocompos. Manuf. Prop. 2017, 11, 13–29. [Google Scholar]
- Material profiles. In Materials and the Environment, 2nd ed.; Ashby, M.F. (Ed.) Butter-worth-Heinemann: Boston, MA, USA, 2013; pp. 459–595. [Google Scholar]
- Azom. Polybutylene Terephthalate (PBT)—Properties and Applications—Supplier Data by Goodfellow. Available online: https://www.azom.com/article.aspx?ArticleID=1998 (accessed on 1 May 2024).
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
Samples | Implementation |
---|---|
Storage silos, biogas containers, fuel containers, post boxes, etc. | Storage devices |
Snowboards, frames, bicycles, balls, tennis rackets | Leisure and sports goods |
Laptop cases, mobile cases | Electronics appliances |
Carpets, mats, sacking, Hessians, bags, ropes, pipes, covers, units, baths, showers, helmets, paperweights, suitcases, lampshades, partitions, food trays, profiles of doorframes, interior paneling, door panels, fencing elements, chairs, tables | Utility and household products |
Panels for false and partition ceilings, door and window frames, floors, walls, partition boards, roof tiles, bridges, railings, transportable buildings that are resilient to natural disasters | Construction and building sector |
Architectural moldings, interior paneling, boats, railway and automobile coach interiors, spare wheel pans, spare tire covers, parcel shelves, decking, trunk liners, pallets, car doors, dashboards, headliners, seat backs, door panels | Aviation, transportation, and automobile sector |
Applicability | Requirement | Effect |
---|---|---|
Overall programs for aerospace | Less weightage | Use of low-density materials Stiffened structures or thin-walled box Semi-monocoque construction composites High weight strain and weight/stiffness |
Every space program | Elevated dependability | Certification: evidence of design Ensure accurate data for tight quality control Extensive testing |
Vehicles for passengers | Safety of passengers | Comprehensive testing: reliability Using materials that are fire-retardant |
Reusable spacecraft aircraft | Durability: corrosion and fatigue vacuum radiation thermal degradation | High-integrity thin materials Thorough testing in the necessary setting Damage and safe-life, life extension issues Issues with damage, safe life, and life extension There is no fatigue limit for al (alloys) Thorough fatigue testing and analysis |
Reusable spaceship aircraft | Performance in aerodynamics | Machinability: N/C Milling and Molding Intricately curved shapes Dynamics Extremely intricate loading Deformed shape (aeroelasticity) Control surfaces and flexible, thin, wings |
Every aerospace initiative | Multiple functions or roles | Application: composites with useful characteristics Effective design |
Airplanes, primarily fighters but some passenger | Fly-by-wire system | EMI protection Prolonged usage of devices and computers Elevator servo Arrangement–control relationships |
Particular use in military aerospace | Stealth | Stealth coating Aircraft shape and specific surface |
Aircraft | Weather-related operations | Erosion resistance, lightning protection |
Thermosets | Thermo-Plastics | |||
---|---|---|---|---|
Creates Cross-Linked Networks During Heating-Curing Polymerization | No Alteration in Composition | |||
Polyimides | Polyester | Phenolics | Epoxies | PPS, PEEK |
Brittle Complicated to handle 300 °C high-temperature application | Recommended for general use at room temperature Simple to employ Low cost | Difficult to obtain composites of high quality Reduced viscosity High-temperature consumption Simple to operate Less expensive | Comparatively expensive Moderately high temperature Most often used (80% of all composites) | Process is challenging since a high temperature of 400–300 °C is needed High resilience to damage |
High shrinkage (about 7.5 percent) | Volatiles released while curing More shrinkage | No volatiles are released when curing Less shrinkage | ||
Low Temperature Brittle Broad spectrum of properties, albeit less so than epoxies Natural stability in the face of oxidation Strong resilience to chemicals | More brittle than epoxy Good resistance to fire and naming Natural stability in the face of Oxidations | May be polymerized in a number of ways, yielding a wide range of structures, morphologies, and characteristics | ||
Challenging to prepare | Less stable storage and challenging preparation | Sufficient storage stability for preparing | Endless existence in storage but challenging to prepare | |
Less moisture-sensitive than epoxy | Absorbs moisture, but molasses has no discernible impact on its operational range | Long-term ultraviolet degradation. Complete wetness (5–6%), which causes temperature pastries to expand and degrade | Absence of moisture absorption |
Fibers | Global Production (×103 t) | Region | Reference |
---|---|---|---|
Rice | 16,000,000 | China, India, Indonesia, Malaysia, Bangladesh | [68,69] |
Corn | 122,080 | USA, China, Brazil, Argentina, India | [70] |
Cotton | 21,400,000 | United States and Asia | [71] |
Ramie | 10,000 | India, China, Brazil, Philippines | [72,73,74,75,76,77,78,79,80,81,82] |
Kenaf | 97,000 | India, Bangladesh, United States | [72,73,74,75,76,77,78,79,82] |
Bamboo | 3000 | India, China, Indonesia, Malaysia, Philippines | [72,73,74,75,76,77,78,79] |
Oil palm | 4000 | Malaysia, Indonesia | [72,73,76,83,84] |
Flax | 83,000 | Canada, France, Belgium | [72,73,74,75,76,77,78,79,80] |
Abaca | 7000 | Philippines, Ecuador, Costa Rica | [72,73,74,75,76,77,85] |
Banana | 1920 | Latin America, the Caribbean, Africa, Asia | [86] |
Jute | 230,000 | India, China, Bangladesh | [72,73,74,75,76,77,78,79,87] |
Pineapple | 7400 | Philippines, Thailand, Indonesia | [72,73,77,78,79,81] |
Sisal | 37,800 | Tanzania, Brazil, Kenya | [72,73,74,75,76,77,78,79,81,87,88,89,90] |
Coir | 10,000 | India, Sri Lanka, Philippines, Malaysia | [72,73,74,75,76,77,78,79,91,92,93,94,95,96] |
Coconut | 7700 | Indonesia, Philippines, India, Sri Lanka | [95] |
Sugar can bagasse | 7,500,000 | India, Brazil, China | [72,73,74,75,76,77,78,79] |
Fiber Code | Fibers | Micro-Fibrillar Angle [°] | Lignin (wt%) | Hemicellulose (wt%) | Cellulose (wt%) | Moisture Content (%) | Reference |
---|---|---|---|---|---|---|---|
NF 1 | Rice | 20 | 19–28 | 35–45 | 7.9 | [72,73,74,75,78,79,85,96,97] | |
NF 2 | Corn | 7.4 | 46 | 41.7 | 8.5 | [98,99] | |
NF 3 | Cotton | 82.7–92 | 9.8 | [98,100] | |||
NF 4 | Ramie | 61.85–85 | 3–7.58 | 0.5–9.06 | 69–83 | 9 | [72,73,74,77,78,96,97,98,101,102,103] |
NF 5 | Kenaf | 2.2–6.2 | 9 8–21 | 20–33 | 31–72 | 9.2 | [72,73,74,76,77,78,79,85,86,96,97,98,101,104] |
NF 6 | Bamboo | - | 21–31 | 17.2–43.8 | 22.8–56.7 | 8.9 | [72,73,74,77,78,79,96,97,98] |
NF 7 | Oil palm | 24.45–29 | 19.06 | 47.91–65 | 11 | [72,73,74,96,97,98] | |
NF 8 | Flax | 5–10 | 2–5 | 10.37–20.6 | 64.1–75 | 7 | [72,73,74,76,77,78,79,85,86,98,99,101,105,106] |
NF 9 | Abaca | 20–25 | 7–12.4 | 20–25 | 56–63 | 15 | [72,73,74,76,77,78,79,85,96,97,98,100,101,105] |
NF 10 | Banana | 11–12 | 5–10 | 10–24 | 60–65 | 12.1 | [77,78,98,101] |
NF 11 | Jute | 8 | 5–13 | 13–20.4 | 61–71 | 12 | [72,73,74,76,77,78,79,85,86,96,97,98,101,104,105] |
NF 12 | Pineapple | 5–12.7 | 18 | 70–82 | 13 | [72,73,74,78,79,83,96,97,98] | |
NF 13 | Sisal | 10–25 | 8–14 | 10–38.2 | 60–78 | 11 | [72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,104,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121] |
NF 14 | Coir | 30.45 | 40–45 | 0.15–0.25 | 32–43 | 10 | [72,73,74,76,77,79,91,104,119,120,121,122,123,124,125] |
NF 15 | Coconut | 8–13.1 | 4–20 | 70–77.6 | 8.2 | [98,100,120,121,122,123,124] | |
NF 16 | Sugar can bagasse | 22.3–25.3 | 16.8–31.8 | 41.1–55.2 | 8.8 | [72,73,74,97,98,99,125,126] |
Code | Fiber Source | Elongation at Break (%) | Young’s Modulus (GPa) | Tensile Strength | Density (g/cm3) | References |
---|---|---|---|---|---|---|
NF 1 | Rice | 2.2 | 0.3–2.6 | 19–135 | 1.4 | [72,77,78,79,126] |
NF 2 | Corn | 3–4.7 | 10.1–16.3 | 355–580 | 1.2–1.4 | [73,74,82,98,113,127,128,129,130,131,132,133] |
NF 3 | Cotton | 3–10 | 5.5–12.6 | 45.5–1000 | 1.5–1.6 | [73,74,82,98,112,127,128,129,130,131,132] |
NF 4 | Ramie | 1.2–8 | 24.5–128 | 348–938 | 1.45–1.5 | [72,74,82,98,112,127,128,129,130,131,132,133] |
NF 5 | Kenaf | 1.6–6.9 | 2.86–60 | 215.4–1191 | 0.6–1.5 | [72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146] |
NF 6 | Bamboo | 1.5–11 | 11–17 | 140–230 | 0.6–11 | [98,142] |
NF 7 | Oil palm | 8–25 | 1–9 | 92–1200 | 0.7–1.55 | [98] |
NF 8 | Flax | 1.2–10 | 24–80 | 88–1600 | 0.6–1.5 | [81,91,93,94,95,104,123,124,129,137,138,144,145] |
NF 9 | Abaca | 3–10 | 3–12 | 220–980 | 1.5 | [91,95,98,104,106,119,126,127,128,129,139,140,141] |
NF 10 | Banana | 3–53 | 12–33.8 | 350–980 | 1.35 | [91,95,98,104,106,119,126,127,128,129,139,140,141] |
NF 11 | Jute | 1.16–8 | 10–55 | 385–850 | 1.3–1.5 | [91,95,98,104,106,119,126,127,128,129,139,140,141] |
NF 12 | Pineapple | 1–14.5 | 60–82 | 170–1672 | 0.8–1.6 | [73,74,82,91,98,144,145,146,147] |
NF 13 | Sisal | 2–25 | 9–38 | 80–840 | 1.3–1.5 | [73,74,82,91,98,144,145,146,147] |
NF 14 | Coir | 14.21–59.9 | 1.27–6 | 106–593 | 1.1–1.6 | [73,74,82,91,98,144,145,146,147] |
NF 15 | Coconut | 10–23 | 21.1 | 150 | 0.43 | |
NF 16 | Sugar can bagasse | 1.1 | 17–27.1 | 20–290 | 1.2–1.5 | [73,74,91,104,118,125,126,127,128,129,144] |
Code | Fibers | Width of Lumen (micron) | Thickness of Single Cell Wall (micron) | Fiber Diameter (mm) | Fiber Length (mm) |
---|---|---|---|---|---|
NF 1 | Rice | 8.7 | 1.2 | 15.5 | 8.7 |
NF 2 | Corn | 20.1 | 1.4 | 26.7 | 20.1 |
NF 3 | Cotton | 16.4 | 56.0 | 45.0 | 16.4 |
NF 4 | Ramie | 13.0 | 60.4 | 80.0 | 13.0 |
NF 5 | Kenaf (core) | 22.7 | 1.1 | 37.0 | 22.7 |
NF 6 | Bamboo | 8.6 | 9.0 | 17.8 | 3.0 |
NF 7 | Oil palm | 9.8 | 11 | 25.0 | 1.4 |
NF 8 | Flax | 6.42 | 20.0 | 38.0 | 65.0 |
NF 9 | Areca | 18.1 | 1.2 | 476 | 60 |
NF 10 | Banana | 22.4 | 1.5 | 30.0 | 4.2 |
NF 11 | Jute | 7.6 | 11.3 | 30.0 | 6.0 |
NF 12 | Pineapple | 3 | 18.3 | 80.0 | 9.0 |
NF 13 | Sisal | 12.0 | 25.0 | 47.0 | 8.0 |
NF 14 | Coir | 21 | 0.06 | 12.0 | 0.3 |
NF 15 | Coconut | 3.2 | 8.0 | 14.0 | 1.0 |
NF 16 | Sugar can bagasse | 19.1 | 9.4 | 40.0 | 2.8 |
Criteria | % |
---|---|
Physical | 16.98 |
Mechanical | 44.29 |
Chemical | 38.73 |
Micro-Fibrillar Angle | Lignin | Hemicellulose | Cellulose | Moisture Content | Normalized Principal Eigenvector | |||
---|---|---|---|---|---|---|---|---|
Chemical Features | 1 | 2 | 3 | 4 | 5 | |||
Micro-fibrillar angle | 1 | 1/3 | 1/3 | 1/4 | 1/2 | 7.92% | ||
Lignin | 3 | 1 | 1 | 1/2 | 1/2 | 16.02% | ||
Hemicellulose | 3 | 1 | 1 | 1/2 | 1/2 | 16.02% | ||
Cellulose | 4 | 2 | 2 | 1 | 1/3 | 24.69% | ||
Moisture content | 2 | 2 | 2 | 3 | 1 | 35.34% | ||
Mechanical Features | Elongation at break | Young’s modulus | Tensile strength | Density | Normalized Principal Eigenvector | |||
Elongation at break | 1 | 2 | 3 | 1 | 36.32% | |||
Young’s modulus | 1/2 | 1 | 1/2 | 1/2 | 13.82% | |||
Tensile strength | 1/3 | 2 | 1 | 1/2 | 17.88% | |||
Density | 1 | 2 | 2 | 1 | 31.98% | |||
Physical Features | Width of lumen | Thickness of single cell wall | Fiber diameter | Fiber length | Normalized Principal Eigenvector | |||
Width of lumen | 1 | 1/3 | 1/2 | 1/4 | 9.97% | |||
Thickness of single cell wall | 3 | 1 | 2 | 1 | 34.52% | |||
Fiber diameter | 2 | 1/2 | 1 | 1/2 | 18.50% | |||
Fiber length | 4 | 1 | 2 | 1 | 37.01% |
Normalized | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NF 1 | NF 2 | NF 3 | NF 4 | NF 5 | NF 6 | NF 7 | NF 8 | NF 9 | NF 10 | NF 11 | NF 12 | NF 13 | NF 14 | NF 15 | NF 16 | |
Micro-fibrillar Angle | 0.062 | 0.062 | 0.062 | 0.224 | 0.013 | 0.062 | 0.062 | 0.023 | 0.069 | 0.035 | 0.025 | 0.027 | 0.054 | 0.093 | 0.062 | 0.062 |
Ligning | 0.081 | 0.030 | 0.062 | 0.021 | 0.060 | 0.105 | 0.107 | 0.014 | 0.039 | 0.030 | 0.036 | 0.062 | 0.044 | 0.171 | 0.042 | 0.094 |
Hemicel. | 0.073 | 0.144 | 0.062 | 0.016 | 0.083 | 0.094 | 0.060 | 0.047 | 0.070 | 0.053 | 0.052 | 0.056 | 0.075 | 0.001 | 0.038 | 0.076 |
Cellulose | 0.042 | 0.044 | 0.091 | 0.080 | 0.054 | 0.041 | 0.059 | 0.073 | 0.062 | 0.066 | 0.069 | 0.080 | 0.072 | 0.039 | 0.077 | 0.050 |
Moisture Content | 0.049 | 0.053 | 0.061 | 0.056 | 0.057 | 0.055 | 0.068 | 0.043 | 0.093 | 0.075 | 0.074 | 0.081 | 0.068 | 0.062 | 0.051 | 0.055 |
Elong. | 0.013 | 0.023 | 0.039 | 0.027 | 0.025 | 0.037 | 0.098 | 0.033 | 0.039 | 0.166 | 0.053 | 0.046 | 0.080 | 0.218 | 0.098 | 0.007 |
Young’s Modulus | 0.004 | 0.033 | 0.022 | 0.188 | 0.076 | 0.036 | 0.012 | 0.128 | 0.018 | 0.055 | 0.080 | 0.175 | 0.058 | 0.009 | 0.052 | 0.054 |
Tensile Strength | 0.010 | 0.061 | 0.010 | 0.085 | 0.081 | 0.024 | 0.085 | 0.111 | 0.096 | 0.087 | 0.083 | 0.121 | 0.060 | 0.046 | 0.020 | 0.020 |
Density | 0.057 | 0.053 | 0.063 | 0.060 | 0.042 | 0.235 | 0.045 | 0.042 | 0.061 | 0.055 | 0.057 | 0.049 | 0.057 | 0.055 | 0.017 | 0.055 |
Width of Lumen | 0.041 | 0.095 | 0.077 | 0.061 | 0.107 | 0.041 | 0.046 | 0.030 | 0.085 | 0.106 | 0.036 | 0.014 | 0.057 | 0.099 | 0.015 | 0.090 |
Thickness | 0.005 | 0.006 | 0.238 | 0.257 | 0.005 | 0.038 | 0.047 | 0.085 | 0.005 | 0.006 | 0.048 | 0.078 | 0.106 | 0.000 | 0.034 | 0.040 |
Fiber D. | 0.015 | 0.026 | 0.044 | 0.079 | 0.036 | 0.018 | 0.025 | 0.037 | 0.469 | 0.030 | 0.030 | 0.079 | 0.046 | 0.012 | 0.014 | 0.039 |
Fiber Length | 0.036 | 0.083 | 0.068 | 0.054 | 0.094 | 0.012 | 0.006 | 0.269 | 0.248 | 0.017 | 0.025 | 0.037 | 0.033 | 0.001 | 0.004 | 0.012 |
Priorities | ||||||||||||||||
Micro-fibrillar Angle | 0.005 | 0.005 | 0.005 | 0.018 | 0.001 | 0.005 | 0.005 | 0.002 | 0.005 | 0.003 | 0.002 | 0.002 | 0.004 | 0.007 | 0.005 | 0.005 |
Ligning | 0.013 | 0.005 | 0.010 | 0.003 | 0.010 | 0.017 | 0.017 | 0.002 | 0.006 | 0.005 | 0.006 | 0.010 | 0.007 | 0.027 | 0.007 | 0.015 |
Hemicel. | 0.012 | 0.023 | 0.010 | 0.003 | 0.013 | 0.015 | 0.010 | 0.008 | 0.011 | 0.009 | 0.008 | 0.009 | 0.012 | 0.000 | 0.006 | 0.012 |
Cellulose | 0.010 | 0.011 | 0.023 | 0.020 | 0.013 | 0.010 | 0.015 | 0.018 | 0.015 | 0.016 | 0.017 | 0.020 | 0.018 | 0.010 | 0.019 | 0.012 |
Moisture Content | 0.017 | 0.019 | 0.021 | 0.020 | 0.020 | 0.019 | 0.024 | 0.015 | 0.033 | 0.026 | 0.026 | 0.028 | 0.024 | 0.022 | 0.018 | 0.019 |
Elong. | 0.005 | 0.008 | 0.014 | 0.010 | 0.009 | 0.013 | 0.036 | 0.012 | 0.014 | 0.060 | 0.019 | 0.017 | 0.029 | 0.079 | 0.036 | 0.002 |
Young’s Modulus | 0.000 | 0.005 | 0.003 | 0.026 | 0.011 | 0.005 | 0.002 | 0.018 | 0.003 | 0.008 | 0.011 | 0.024 | 0.008 | 0.001 | 0.007 | 0.007 |
Tensile Strength | 0.002 | 0.011 | 0.002 | 0.015 | 0.014 | 0.004 | 0.015 | 0.020 | 0.017 | 0.016 | 0.015 | 0.022 | 0.011 | 0.008 | 0.004 | 0.004 |
Density | 0.018 | 0.017 | 0.020 | 0.019 | 0.014 | 0.075 | 0.014 | 0.014 | 0.019 | 0.017 | 0.018 | 0.016 | 0.018 | 0.017 | 0.006 | 0.017 |
Width of Lumen | 0.004 | 0.009 | 0.008 | 0.006 | 0.011 | 0.004 | 0.005 | 0.003 | 0.009 | 0.011 | 0.004 | 0.001 | 0.006 | 0.010 | 0.002 | 0.009 |
Thickness | 0.002 | 0.002 | 0.082 | 0.089 | 0.002 | 0.013 | 0.016 | 0.029 | 0.002 | 0.002 | 0.017 | 0.027 | 0.037 | 0.000 | 0.012 | 0.014 |
Fiber D. | 0.003 | 0.005 | 0.008 | 0.015 | 0.007 | 0.003 | 0.005 | 0.007 | 0.087 | 0.005 | 0.005 | 0.015 | 0.009 | 0.002 | 0.003 | 0.007 |
Fiber Length | 0.013 | 0.031 | 0.025 | 0.020 | 0.035 | 0.005 | 0.002 | 0.100 | 0.092 | 0.006 | 0.009 | 0.014 | 0.012 | 0.000 | 0.002 | 0.004 |
Total Weighted Score | 0.104 | 0.150 | 0.231 | 0.263 | 0.159 | 0.189 | 0.165 | 0.247 | 0.313 | 0.185 | 0.157 | 0.204 | 0.195 | 0.185 | 0.124 | 0.129 |
Polymer Code | Polymer Material | Elongation at Break (%) | Modulus of Elasticity (GPa) | Tensile Strength (MPa) | Density (g/cm3) | References |
---|---|---|---|---|---|---|
P 1 | Vinyl ester resin | 2 | 2–4.5 | 40–90 | 1.2–1.5 | [145,146,147] |
P 2 | Polystyrene | 1–3.6 | 1.2–2.6 | 35.9–56.6 | 1.04–1.06 | [77,78,79,118] |
P 3 | Epoxy | 1–6 | 3–6 | 35–100 | 1.1–1,4 | [139,140] |
P 4 | Polybutylene terephthalate | 250 | 1.93–3 | 50–60 | 1.30–1.38 | [115] |
P 5 | Polyethylene terephthalate | 30–300 | 2.76–4.14 | 48.3–72.4 | 1.29–1.40 | [77,78,79,118] |
P 6 | Polycarbonate | 70–150 | 2–2.44 | 60–72.4 | 1.14–1.21 | [77,78,79,118] |
P 7 | Nylon 6 | 20–150 | 2.9 | 43–79 | 1.12–1.14 | [145,146,147] |
P 8 | Polyamide | 30–100 | 1.2–3.2 | 90–165 | 1.12–1.14 | [77,78,79,118] |
P 9 | High density polyethylene (HDPE) | 2.0–130 | 0.4–1.5 | 14.5–38 | 0.94–0.96 | [145,146,147] |
P 10 | Low-density polyethylene (LDPE) | 90–800 | 0.055–0.38 | 40–78 | 0.910–0.925 | [145,146,147] |
P 11 | Acrylonitrile b utadiene styrene | 1.5–100 | 1.1–2.9 | 27.6–55.2 | 1–1.2 | [77,78,79,127] |
P 12 | PP | 15–700 | 0.95–1.77 | 26–41.4 | 0.899–0.920 | [145,146,147] |
Normalized | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P 1 | P 2 | P 3 | P 4 | P 5 | P 6 | P 7 | P 8 | P 9 | P 10 | P 11 | P 12 | |
Elongation at break | 0.001 | 0.001 | 0.002 | 0.143 | 0.094 | 0.063 | 0.049 | 0.094 | 0.066 | 0.254 | 0.029 | 0.204 |
Young’s modulus | 0.115 | 0.067 | 0.159 | 0.088 | 0.123 | 0.078 | 0.102 | 0.078 | 0.032 | 0.007 | 0.067 | 0.085 |
Tensile strength | 0.092 | 0.064 | 0.092 | 0.078 | 0.085 | 0.094 | 0.087 | 0.181 | 0.038 | 0.084 | 0.058 | 0.048 |
Density | 0.099 | 0.077 | 0.092 | 0.096 | 0.099 | 0.086 | 0.083 | 0.083 | 0.070 | 0.067 | 0.081 | 0.066 |
Priorities | ||||||||||||
Elongation at break | 0.000 | 0.000 | 0.001 | 0.052 | 0.034 | 0.023 | 0.018 | 0.034 | 0.024 | 0.092 | 0.010 | 0.074 |
Young’s modulus | 0.016 | 0.009 | 0.022 | 0.012 | 0.017 | 0.011 | 0.014 | 0.011 | 0.004 | 0.001 | 0.009 | 0.012 |
Tensile strength | 0.016 | 0.011 | 0.016 | 0.014 | 0.015 | 0.017 | 0.015 | 0.032 | 0.007 | 0.015 | 0.010 | 0.009 |
Density | 0.032 | 0.025 | 0.029 | 0.031 | 0.032 | 0.028 | 0.027 | 0.027 | 0.022 | 0.021 | 0.026 | 0.021 |
Total weighted score | 0.065 | 0.046 | 0.069 | 0.109 | 0.098 | 0.078 | 0.074 | 0.104 | 0.058 | 0.130 | 0.056 | 0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balo, F.; Sua, L.S. Green Composites in Aviation: Optimizing Natural Fiber and Polymer Selection for Sustainable Aircraft Cabin Materials. Textiles 2024, 4, 561-581. https://doi.org/10.3390/textiles4040033
Balo F, Sua LS. Green Composites in Aviation: Optimizing Natural Fiber and Polymer Selection for Sustainable Aircraft Cabin Materials. Textiles. 2024; 4(4):561-581. https://doi.org/10.3390/textiles4040033
Chicago/Turabian StyleBalo, Figen, and Lutfu S. Sua. 2024. "Green Composites in Aviation: Optimizing Natural Fiber and Polymer Selection for Sustainable Aircraft Cabin Materials" Textiles 4, no. 4: 561-581. https://doi.org/10.3390/textiles4040033
APA StyleBalo, F., & Sua, L. S. (2024). Green Composites in Aviation: Optimizing Natural Fiber and Polymer Selection for Sustainable Aircraft Cabin Materials. Textiles, 4(4), 561-581. https://doi.org/10.3390/textiles4040033