State of the Art in Textile Waste Management: A Review
Abstract
:1. Introduction
2. Policies on Textile Waste Management
3. Collection of Textile Waste
4. The Sorting of Textile Waste
5. The Recycling of Textile Waste
5.1. Mechanical Recycling
5.2. Chemical Recycling
5.3. Biochemical Recycling
5.4. Thermal Recycling
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, K.H.D.; Darwish, N.M.; Alkahtani, A.M.; AbdelGawwad, M.R.; Karácsony, P. Biological Removal of Dyes from Wastewater: A Review of Its Efficiency and Advances. Trop. Aquat. Soil Pollut. 2022, 2, 59–75. [Google Scholar] [CrossRef]
- Salman, M.; Demir, M.; Tang, K.H.D.; Cao, L.T.T.; Bunrith, S.; Chen, T.-W.; Darwish, N.M.; AlMunqedhi, B.M.; Hadibarata, T. Removal of cresol red by adsorption using wastepaper. Ind. Domest. Waste Manag. 2022, 2, 1–8. [Google Scholar] [CrossRef]
- Kasavan, S.; Yusoff, S.; Guan, N.C.; Zaman, N.S.K.; Fakri, M.F.R. Global trends of textile waste research from 2005 to 2020 using bibliometric analysis. Environ. Sci. Pollut. Res. 2021, 28, 44780–44794. [Google Scholar] [CrossRef] [PubMed]
- Huun, K. Textile Waste. Available online: https://www.colorado.edu/ecenter/2021/10/05/textile-waste (accessed on 5 November 2023).
- Stanescu, M.D. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. Environ. Sci. Pollut. Res. 2021, 28, 14253–14270. [Google Scholar] [CrossRef] [PubMed]
- Tomovska, E.; Jordeva, S.; Trajković, D.; Zafirova, K. Attitudes towards managing post-industrial apparel cuttings waste. J. Text. Inst. 2017, 108, 172–177. [Google Scholar] [CrossRef]
- Pensupa, N.; Leu, S.-Y.; Hu, Y.; Du, C.; Liu, H.; Jing, H.; Wang, H.; Lin, C.S.K. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. Top. Curr. Chem. 2017, 375, 76. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Tang, K.H.D. Agaricales (Gilled Mushrooms) as Biosorbents of Synthetic Dye. Malays. J. Med. Health Sci. 2020, 16 (Suppl. S11), 10–17. [Google Scholar]
- European Parliament. The Impact of Textile Production and Waste on the Environment (Infographics). Available online: https://www.europarl.europa.eu/pdfs/news/expert/2020/12/story/20201208STO93327/20201208STO93327_en.pdf (accessed on 5 November 2023).
- Yalcin-Enis, I.; Kucukali-Ozturk, M.; Sezgin, H. Risks and Management of Textile Waste. In Nanoscience and Biotechnology for Environmental Applications; Gothandam, K.M., Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 29–53. [Google Scholar] [CrossRef]
- Bick, R.; Halsey, E.; Ekenga, C.C. The global environmental injustice of fast fashion. Environ. Health 2018, 17, 92. [Google Scholar] [CrossRef]
- Dissanayake, D.G.K.; Weerasinghe, D.U. Fabric Waste Recycling: A Systematic Review of Methods, Applications, and Challenges. Mater. Circ. Econ. 2021, 3, 24. [Google Scholar] [CrossRef]
- Kamble, Z.; Behera, B.K. Upcycling textile wastes: Challenges and innovations. Text. Prog. 2021, 53, 65–122. [Google Scholar] [CrossRef]
- Tang, K.H.D. Microplastics in agricultural soils in China: Sources, impacts and solutions. Environ. Pollut. 2023, 322, 121235. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Enhanced plastic economy: A perspective and a call for international action. Environ. Sci. Adv. 2023, 2, 1011–1018. [Google Scholar] [CrossRef]
- Mishra, P.K.; Izrayeel, A.M.D.; Mahur, B.K.; Ahuja, A.; Rastogi, V.K. A comprehensive review on textile waste valorization techniques and their applications. Environ. Sci. Pollut. Res. 2022, 29, 65962–65977. [Google Scholar] [CrossRef] [PubMed]
- Juanga-Labayen, J.P.; Labayen, I.V.; Yuan, Q. A Review on Textile Recycling Practices and Challenges. Textiles 2022, 2, 174–188. [Google Scholar] [CrossRef]
- DEFRA. Government Unveils Plans for Wide-Ranging Waste Prevention Programme. Available online: https://www.gov.uk/government/news/government-unveils-plans-for-wide-ranging-waste-prevention-programme (accessed on 6 November 2023).
- Dawson, L. ‘Our Waste, our Resources; A Strategy for England’–Switching to a circular economy through the use of extended producer responsibility. Environ. Law Rev. 2019, 21, 210–218. [Google Scholar] [CrossRef]
- Farmer, A. Developing the Circular Economy in the European Union. In Circular Economy: Global Perspective; Ghosh, S.K., Ed.; Springer: Singapore, 2020; pp. 389–412. [Google Scholar] [CrossRef]
- Petrie, L. Sustainability and Circularity in the Textile Value Chain: A Global Roadmap; UNEP: Paris, France, 2023; Available online: https://www.unep.org/resources/publication/sustainability-and-circularity-textile-value-chain-global-roadmap (accessed on 6 November 2023).
- United Nations. What Is the UN Alliance for Sustainable Fashion? Available online: https://unfashionalliance.org/ (accessed on 6 November 2023).
- RRS. White Paper: Textile Recovery in the U.S. Available online: https://recycle.com/white-paper-textile-recovery-in-the-us/ (accessed on 6 November 2023).
- Chand, S.; Chand, S.; Raula, B. Textile and apparel industries waste and its sustainable management approaches. J. Mater. Cycles Waste Manag. 2023, 25, 3132–3143. [Google Scholar] [CrossRef]
- Shamsuzzaman, M.; Hossain, I.; Saha, T.; Roy, A.; Das, D.; Ahmed, M.T.; Podder, S.K. Waste Management in Textile Industry BT—Advanced Technology in Textiles: Fibre to Apparel; Rahman, M.M., Mashud, M., Rahman, M.M., Eds.; Springer Nature: Singapore, 2023; pp. 279–299. [Google Scholar] [CrossRef]
- Tang, K.H.D. Valorization of Plastic Waste through Incorporation into Construction Materials. Civ. Sustain. Urban Eng. 2022, 2, 96–109. [Google Scholar] [CrossRef]
- Manglani, H.; Hodge, G.L.; Oxenham, W. Application of the Internet of Things in the textile industry. Text. Prog. 2019, 51, 225–297. [Google Scholar] [CrossRef]
- Padilla II, D.D. The Internet of Things (IoT): Making Waste Collection Part of a Smarter Future. Waste Advantage. Florida September 2021. Available online: https://wasteadvantagemag.com/the-internet-of-things-iot-making-waste-collection-part-of-a-smarter-future/ (accessed on 5 November 2023).
- Hack-Polay, D.; Rahman, M.; Billah, M.M.; Al-Sabbahy, H.Z. Big data analytics and sustainable textile manufacturing. Manag. Decis. 2020, 58, 1699–1714. [Google Scholar] [CrossRef]
- Dursun, E.; Ulker, Y.; Gunalay, Y. Blockchain’s potential for waste management in textile industry. Manag. Environ. Qual. Int. J. 2023, 34, 1174–1197. [Google Scholar] [CrossRef]
- Gökbunar, H.B.; Soylu, B. Blockchain Enabled Lateral Transshipment System for the Redistribution of Unsold Textile Products in a Circular Economy BT—Advances in Intelligent Manufacturing and Service System Informatics; Şen, Z., Uygun, Ö., Erden, C., Eds.; Springer Nature: Singapore, 2024; pp. 630–640. [Google Scholar]
- Samsukha, A. Role of Technologies and Mobile Apps in Waste Management. Forbes. September 2022. Available online: https://www.forbes.com/sites/forbestechcouncil/2022/09/09/role-of-technologies-and-mobile-apps-in-waste-management/?sh=39e124417d26 (accessed on 5 November 2023).
- Damayanti, D.; Wulandari, L.A.; Bagaskoro, A.; Rianjanu, A.; Wu, H.-S. Possibility Routes for Textile Recycling Technology. Polymers 2021, 13, 3834. [Google Scholar] [CrossRef]
- Du, W.; Zheng, J.; Li, W.; Liu, Z.; Wang, H.; Han, X. Efficient Recognition and Automatic Sorting Technology of Waste Textiles Based on Online Near infrared Spectroscopy and Convolutional Neural Network. Resour. Conserv. Recycl. 2022, 180, 106157. [Google Scholar] [CrossRef]
- Cura, K.; Rintala, N.; Kamppuri, T.; Saarimäki, E.; Heikkilä, P. Textile Recognition and Sorting for Recycling at an Automated Line Using Near Infrared Spectroscopy. Recycling 2021, 6, 11. [Google Scholar] [CrossRef]
- Recyclinginside. Recycling Post-industrial Waste in the Textile Industry: A Circular Future. Available online: https://recyclinginside.com/separation-and-sorting-technology/recycling-post-industrial-waste-in-the-textile-industry-a-circular-future/ (accessed on 7 November 2023).
- Wastex. Textile Sorting Technologies. Available online: https://www.wastexrecycling.com/ (accessed on 7 November 2023).
- Wu, Y.; Xu, Z.; Yang, W.; Ning, Z.; Dong, H. Review on the Application of Hyperspectral Imaging Technology of the Exposed Cortex in Cerebral Surgery. Front. Bioeng. Biotechnol. 2022, 10, 906728. Available online: https://www.frontiersin.org/articles/10.3389/fbioe.2022.906728 (accessed on 7 November 2023). [CrossRef]
- Payne, A. Open- and closed-loop recycling of textile and apparel products. In Woodhead Publishing Series in Textiles; Muthu, S.S.B.T.-H., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 103–123. [Google Scholar] [CrossRef]
- Wang, S.; Salmon, S. Progress toward Circularity of Polyester and Cotton Textiles. Sustain. Chem. 2022, 3, 376–403. [Google Scholar] [CrossRef]
- Tedesco, S.; Montacchini, E. From Textile Waste to Resource: A Methodological Approach of Research and Experimentation. Sustainability 2020, 12, 10667. [Google Scholar] [CrossRef]
- Portal, N.W.; Lundgren, K.; Wallbaum, H.; Malaga, K. Sustainable Potential of Textile-Reinforced Concrete. J. Mater. Civ. Eng. 2015, 27, 4014207. [Google Scholar] [CrossRef]
- Broda, J.; Przybyło, S.; Gawłowski, A.; Grzybowska-Pietras, J.; Sarna, E.; Rom, M.; Laszczak, R. Utilisation of textile wastes for the production of geotextiles designed for erosion protection. J. Text. Inst. 2019, 110, 435–444. [Google Scholar] [CrossRef]
- Sankauskaitė, A.; Stygienė, L.; Tumėnienė, M.D.; Krauledas, S.; Jovaisienė, L.; Puodziunienė, R. Investigation of cotton component destruction in cotton/polyester blended textile waste materials. Mater. Sci. 2014, 20, 189–192. [Google Scholar] [CrossRef]
- Costa, C.; Viana, A.; Silva, C.; Marques, E.F.; Azoia, N.G. Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials. Waste Manag. 2022, 153, 99–109. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, H.; Kong, W.; Chen, L.; Zuo, W. Closed-loop utilization of polyester in the textile industry. Green Chem. 2023, 25, 4429–4437. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, S.H. Poly (ethylene terephthalate) recycling for high value added textiles. Fash. Text. 2014, 1, 1. [Google Scholar] [CrossRef]
- Uekert, T.; Singh, A.; DesVeaux, J.S.; Ghosh, T.; Bhatt, A.; Yadav, G.; Afzal, S.; Walzberg, J.; Knauer, K.M.; Nicholson, S.R.; et al. Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics. ACS Sustain. Chem. Eng. 2023, 11, 965–978. [Google Scholar] [CrossRef]
- Li, X.; Hu, Y.; Du, C.; Lin, C.S.K. Recovery of Glucose and Polyester from Textile Waste by Enzymatic Hydrolysis. Waste Biomass Valorization 2019, 10, 3763–3772. [Google Scholar] [CrossRef]
- Kaabel, S.; Arciszewski, J.; Borchers, T.H.; Therien, J.P.D.; Friščić, T.; Auclair, K. Solid-State Enzymatic Hydrolysis of Mixed PET/Cotton Textiles**. ChemSusChem 2023, 16, e202201613. [Google Scholar] [CrossRef]
- Zebec, Ž.; Poberžnik, M.; Lobnik, A. Enzymatic Hydrolysis of Textile and Cardboard Waste as a Glucose Source for the Production of Limonene in Escherichia coli. Life 2022, 12, 1423. [Google Scholar] [CrossRef]
- Wojnowska-Baryła, I.; Bernat, K.; Zaborowska, M. Strategies of Recovery and Organic Recycling Used in Textile Waste Management. Int. J. Environ. Res. Public Health 2022, 19, 5859. [Google Scholar] [CrossRef]
- Kumar, P.; Samuchiwal, S.; Malik, A. Anaerobic digestion of textile industries wastes for biogas production. Biomass Convers. Biorefin. 2020, 10, 715–724. [Google Scholar] [CrossRef]
- Hasanzadeh, E.; Mirmohamadsadeghi, S.; Karimi, K. Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel 2018, 218, 41–48. [Google Scholar] [CrossRef]
- Kuzmanova, E.; Zhelev, N.; Akunna, J.C. Effect of liquid nitrogen pre-treatment on various types of wool waste fibres for biogas production. Heliyon 2018, 4, e00619. [Google Scholar] [CrossRef]
- Wang, H.; Kaur, G.; Pensupa, N.; Uisan, K.; Du, C.; Yang, X.; Lin, C.S.K. Textile waste valorization using submerged filamentous fungal fermentation. Process Saf. Environ. Prot. 2018, 118, 143–151. [Google Scholar] [CrossRef]
- Hu, Y.; Du, C.; Leu, S.-Y.; Jing, H.; Li, X.; Lin, C.S.K. Valorisation of textile waste by fungal solid state fermentation: An example of circular waste-based biorefinery. Resour. Conserv. Recycl. 2018, 129, 27–35. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Luo, J.; Zhang, S.; Yang, X.; Igalavithana, A.D.; Ok, Y.S.; Tsang, D.C.W.; Lin, C.S.K. Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. Biochem. Eng. J. 2019, 149, 107249. [Google Scholar] [CrossRef]
- Cho, E.J.; Lee, Y.G.; Song, Y.; Kim, H.Y.; Nguyen, D.-T.; Bae, H.-J. Converting textile waste into value-added chemicals: An integrated bio-refinery process. Environ. Sci. Ecotechnol. 2023, 15, 100238. [Google Scholar] [CrossRef]
- Hustvedt, G.; Meier, E.; Waliczek, T. The Feasibility of Large-Scale Composting of Waste Wool BT—Green Fashion; Muthu, S.S., Gardetti, M.A., Eds.; Springer: Singapore, 2016; Volume 1, pp. 95–107. [Google Scholar] [CrossRef]
- Liu, T.; Miao, P.; Shi, Y.; Tang, K.H.D.; Yap, P.-S. Recent advances, current issues and future prospects of bioenergy production: A review. Sci. Total Environ. 2022, 810, 152181. [Google Scholar] [CrossRef]
- Wen, C.; Wu, Y.; Chen, X.; Jiang, G.; Liu, D. The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere. J. Therm. Anal. Calorim. 2017, 128, 581–591. [Google Scholar] [CrossRef]
- Kwon, D.; Yi, S.; Jung, S.; Kwon, E.E. Valorization of synthetic textile waste using CO2 as a raw material in the catalytic pyrolysis process. Environ. Pollut. 2021, 268, 115916. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Zakarauskas, K.; Striūgas, N.; Mohamed, A. A new strategy for using lint-microfibers generated from clothes dryer as a sustainable source of renewable energy. Sci. Total Environ. 2021, 762, 143107. [Google Scholar] [CrossRef]
- Xu, Z.; Gu, S.; Sun, Z.; Zhang, D.; Zhou, Y.; Gao, Y.; Qi, R.; Chen, W. Synthesis of char-based adsorbents from cotton textile waste assisted by iron salts at low pyrolysis temperature for Cr(VI) removal. Environ. Sci. Pollut. Res. 2020, 27, 11012–11025. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striūgas, N.; Tatariants, M.; Abdelnaby, M.A.; Tuckute, S.; Kliucininkas, L. A sustainable bioenergy conversion strategy for textile waste with self-catalysts using mini-pyrolysis plant. Energy Convers. Manag. 2019, 196, 688–704. [Google Scholar] [CrossRef]
- Yasin, S.; Curti, M.; Rovero, G.; Hussain, M.; Sun, D. Spouted-Bed Gasification of Flame Retardant Textiles as a Potential Non-Conventional Biomass. Appl. Sci. 2020, 10, 946. [Google Scholar] [CrossRef]
- Vela, I.C.; Maric, J.; Seemann, M. Valorisation of textile waste via steam gasification in a fluidized bed reactor. Div. Energy Technol. Chalmers Univ. Technol. Göteborg 2019. Available online: http://uest.ntua.gr/heraklion2019/proceedings/pdf/HERAKLION2019_CaneteVela_etal.pdf (accessed on 8 November 2023).
- Matayeva, A.; Biller, P. Hydrothermal liquefaction of post-consumer mixed textile waste for recovery of bio-oil and terephthalic acid. Resour. Conserv. Recycl. 2022, 185, 106502. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, W.; Liu, F.; Zhao, P. Hydrothermal pretreatment of cotton textile wastes: Biofuel characteristics and biochar electrocatalytic performance. Fuel 2022, 316, 123327. [Google Scholar] [CrossRef]
- Hongthong, S.; Leese, H.S.; Allen, M.J.; Chuck, C.J. Assessing the Conversion of Various Nylon Polymers in the Hydrothermal Liquefaction of Macroalgae. Environments 2021, 8, 34. [Google Scholar] [CrossRef]
- Yayalık, İ.; Koyun, A.; Akgün, M. Gasification of Municipal Solid Wastes in Plasma Arc Medium. Plasma Chem. Plasma Process. 2020, 40, 1401–1416. [Google Scholar] [CrossRef]
Technology | Advantages | Disadvantages |
---|---|---|
Mechanical recycling | Recovers polymer from fibers | Reduces the quality and strength of fibers |
Mechanical—conversion into insulation/building materials | Utilizes waste fibers as fillers or reinforcements | Limits the end-use applications |
Chemical recycling | Retrieves monomers from waste fibers | Requires high capital and chemical inputs |
Biochemical recycling—microbial fermentation | Converts waste fibers into biofuels or bioplastics | Depends on the availability of suitable microorganisms |
Biochemical recycling—anaerobic digestion | Decomposes waste fibers into biogas or compost | Requires pretreatment of fibers to enhance biodegradability |
Biochemical recycling—composting | Transforms waste fibers into organic fertilizer | Only applicable to natural fibers |
Chemical and biochemical recycling—fiber regeneration | Produces new fibers from cellulose- or protein-based waste | Involves complex and costly processes |
Thermal recycling—pyrolysis | Produces char, oil and gas products | Releases greenhouse gases and toxic emissions; requires high energy input |
Thermal recycling—gasification | Converts textile into hydrogen-rich syngas; enhances the conversion of carbon dioxide | Requires high temperatures and oxygen supply; requires high energy input |
Thermal recycling—hydrothermal liquefaction | Converts textile into bio-oil or biochar | Requires high pressure and water consumption; requires high energy input |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.H.D. State of the Art in Textile Waste Management: A Review. Textiles 2023, 3, 454-467. https://doi.org/10.3390/textiles3040027
Tang KHD. State of the Art in Textile Waste Management: A Review. Textiles. 2023; 3(4):454-467. https://doi.org/10.3390/textiles3040027
Chicago/Turabian StyleTang, Kuok Ho Daniel. 2023. "State of the Art in Textile Waste Management: A Review" Textiles 3, no. 4: 454-467. https://doi.org/10.3390/textiles3040027