Pectin Extraction from Citrus Waste: Structural Quality and Yield with Mineral and Organic Acids
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction of Pectin
2.2.2. Pectin Precipitation and Drying
2.2.3. Yield Determination
2.2.4. Colour and Solubility Assessment
2.2.5. Degree of Esterification (DE)
2.2.6. FTIR Analysis
2.2.7. 1H NMR Analysis
2.2.8. Statistical Analysis
3. Results
3.1. Pectin Yield Analysis
3.2. Colour of Extracted Pectin
3.3. Solubility and Degree of Esterification
3.4. FTIR Analysis of Extracted Pectin
3.5. 1H NMR Analysis of Extracted Pectin
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
A600 | Absorbance at 600 nm |
Aw | Water activity |
DE | Degree of esterification |
FTIR | Fourier-transform infrared spectroscopy |
HM | High-methoxyl |
LM | Low-methoxyl |
NMR | Nuclear magnetic resonance spectroscopy |
RT | Room temperature |
SD | Standard deviation |
References
- Dumont, M.; Lehner, A.; Bouton, S.; Kiefer-Meyer, M.C.; Voxeur, A.; Pelloux, J.; Lerouge, P.; Mollet, J.-C. The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: Implications of a putative sialyltransferase-like protein. Ann. Bot. 2014, 114, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Opanasopit, P.; Apirakaramwong, A.; Ngawhirunpat, T.; Rojanarata, T.; Ruktanonchai, U. Development and characterization of pectinate micro/nanoparticles for gene delivery. Aaps Pharmscitech 2008, 9, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Thibault, J.F.; Ralet, M.C. Pectins, their origin, structure and functions. In Advanced Dietary Fibre Technology; Wiley: Sussex, UK, 2000; pp. 367–378. [Google Scholar]
- Kaushik, P.; Priyadarshini, E.; Rawat, K.; Rajamani, P.; Bohidar, H. pH responsive doxorubucin loaded zein nanoparticle crosslinked pectin hydrogel as effective site-specific anticancer substrates. Int. J. Biol. Macromol. 2020, 152, 1027–1037. [Google Scholar] [CrossRef]
- Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef]
- Valdés, A.; Burgos, N.; Jiménez, A.; Garrigós, M.C. Natural pectin polysaccharides as edible coatings. Coatings 2015, 5, 865–886. [Google Scholar] [CrossRef]
- Thibault, J.-F.; Ralet, M.-C. Physico-chemical properties of pectins in the cell walls and after extraction. In Advances in Pectin and Pectinase Research; Springer: Berlin/Heidelberg, Germany, 2003; pp. 91–105. [Google Scholar]
- Bisht, B.; Lohani, U.; Kumar, V.; Gururani, P.; Sinhmar, R. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Crit. Rev. Food Sci. Nutr. 2022, 62, 693–725. [Google Scholar] [CrossRef]
- Ansari, Z.; Goomer, S. Natural gums and carbohydrate-based polymers: Potential encapsulants. Indo Glob. J. Pharm. Sci. 2022, 12, 01–20. [Google Scholar] [CrossRef]
- Ventura, I.; Jammal, J.; Bianco-Peled, H. Insights into the nanostructure of low-methoxyl pectin–calcium gels. Carbohydr. Polym. 2013, 97, 650–658. [Google Scholar] [CrossRef]
- El-Maraghy, C.M.; Saleh, S.S.; Ibrahim, M.S.; El-Naem, O.A. Green wastewater treatment of repurposed COVID-19 therapy (levofloxacin) using synthesized magnetite pectin nanoparticles, comparison with mesoporous silica nanoparticles. BMC Chem. 2023, 17, 134. [Google Scholar] [CrossRef]
- Lopez-Maldonado, E.A.; Abdellaoui, Y.; Elella, M.H.A.; Abdallah, H.M.; Pandey, M.; Anthony, E.T.; Ghimici, L.; Álvarez-Torrellas, S.; Pinos-Vélez, V.; Oladoja, N.A. Innovative biopolyelectrolytes-based technologies for wastewater treatment. Int. J. Biol. Macromol. 2024, 273, 132895. [Google Scholar] [CrossRef]
- Mishra, R.; Soni, K.; Mehta, T. Mucoadhesive vaginal film of fluconazole using cross-linked chitosan and pectin: In vitro and in vivo study. J. Therm. Anal. Calorim. 2017, 130, 1683–1695. [Google Scholar] [CrossRef]
- Pratiksha; Adhikary, M. Industrial Production of Citrus By-products and Its Processing Techniques. In Citrus Fruits and Juice: Processing and Quality Profiling; Springer: Berlin/Heidelberg, Germany, 2024; pp. 391–417. [Google Scholar]
- Dubey, P.; Tripathi, G.; Mir, S.S.; Yousuf, O. Current scenario and global perspectives of citrus fruit waste as a valuable resource for the development of food packaging film. Trends Food Sci. Technol. 2023, 141, 104190. [Google Scholar] [CrossRef]
- de Oliveira, C.F.; Giordani, D.; Lutckemier, R.; Gurak, P.D.; Cladera-Olivera, F.; Marczak, L.D.F. Extraction of pectin from passion fruit peel assisted by ultrasound. LWT–Food Sci. Technol. 2016, 71, 110–115. [Google Scholar] [CrossRef]
- Gurev, A.; Cesko, T.; Dragancea, V.; Ghendov-Mosanu, A.; Pintea, A.; Sturza, R. Ultrasound-and microwave-assisted extraction of pectin from apple pomace and its effect on the quality of fruit bars. Foods 2023, 12, 2773. [Google Scholar] [CrossRef]
- Canteri-Schemin, M.H.; Fertonani, H.C.R.; Waszczynskyj, N.; Wosiacki, G. Extraction of pectin from apple pomace. Braz. Arch. Biol. Technol. 2005, 48, 259–266. [Google Scholar] [CrossRef]
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Brnčić, S.R. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Jong, S.H.; Abdullah, N.; Muhammad, N. Effect of acid type and concentration on the yield, purity, and esterification degree of pectin extracted from durian rinds. Results Eng. 2023, 17, 100974. [Google Scholar] [CrossRef]
- Haque, S.M.; Kabir, A.; Ratemi, E.; Elzagheid, M.; Appu, S.P.; Ghani, S.S.; Sarief, A. Greener pectin extraction techniques: Applications and challenges. Separations 2025, 12, 65. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Wang, P.; Liu, Z.; An, L.; Zhang, X.; Xie, Z.; Wang, Y.; Li, X.; Gao, W. Evaluation of citrus pectin extraction methods: Synergistic enhancement of pectin’s antioxidant capacity and gel properties through combined use of organic acids, ultrasonication, and microwaves. Int. J. Biol. Macromol. 2024, 266, 131164. [Google Scholar] [CrossRef]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current advancements in pectin: Extraction, properties and multifunctional applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Łopusiewicz, Ł.; Biswas, D.; Chandel, V.; Rhim, J.-W. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int. J. Biol. Macromol. 2023, 239, 124248. [Google Scholar] [CrossRef] [PubMed]
- Fakayode, O.A.; Abobi, K.E. Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: A response surface approach. J. Anal. Sci. Technol. 2018, 9, 20. [Google Scholar] [CrossRef]
- Akhter, M.J.; Sarkar, S.; Sharmin, T.; Mondal, S.C. Extraction of pectin from powdered citrus peels using various acids: An analysis contrasting orange with lime. Appl. Food Res. 2024, 4, 100614. [Google Scholar] [CrossRef]
- Gama, B.; Silva, C.D.F.; Da Silva, L.O.; Abud, A.d.S. Extraction and characterization of pectin from citric waste. Chem. Eng. Trans. 2015, 44, 259–264. [Google Scholar]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Pattarapisitporn, A.; Noma, S. Alternative Solvents for Pectin Extraction: Effects of Extraction Agents on Pectin Structural Characteristics and Functional Properties. Foods 2025, 14, 2644. [Google Scholar] [CrossRef]
- Picot-Allain, M.C.N.; Ramasawmy, B.; Emmambux, M.N. Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: A review. Food Rev. Int. 2022, 38, 282–312. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Othman, S.I.; Allam, A.A.; Morsy, O.M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. [Google Scholar] [CrossRef]
- Bichara, L.C.; Alvarez, P.E.; Bimbi, M.V.F.; Vaca, H.; Gervasi, C.; Brandán, S.A. Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations. Infrared Phys. Technol. 2016, 76, 315–327. [Google Scholar] [CrossRef]
- Marcon, M.; Carneiro, P.; Wosiacki, G.; Beleski-Carneiro, E.; Petkowicz, C. Pectins from apple pomace–characterization by 13C and 1H NMR spectroscopy. Ann. Magn. Reson. 2005, 4, 56–63. [Google Scholar]
- Müller-Maatsch, J.; Caligiani, A.; Tedeschi, T.; Elst, K.; Sforza, S. Simple and validated quantitative 1H NMR method for the determination of methylation, acetylation, and feruloylation degree of pectin. J. Agric. Food Chem. 2014, 62, 9081–9087. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Yu, S.J.; Zheng, X.L.; Wang, X.X.; Bao, Q.D.; Guo, X.M. Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr. Polym. 2013, 98, 750–753. [Google Scholar] [CrossRef]
- Saberian, H.; Hamidi-Esfahani, Z.; Ahmadi Gavlighi, H.; Barzegar, M. Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chem. Eng. Process. Process Intensif. 2017, 117, 154–161. [Google Scholar] [CrossRef]
- Colodel, C.; Petkowicz, C.L.d.O. Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocoll. 2019, 86, 193–200. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Li, J.-F.; Li, D.-Q. Comparative Studies of Combined Influence of Variables on the Esterification Degree of Pectin Extracted by Sulfuric Acid and Citric Acid. Adv. Polym. Technol. 2019, 2019, 6313241. [Google Scholar] [CrossRef]
Acid Type | 60 Min | 90 Min | 120 Min |
---|---|---|---|
Sulphuric Acid | 27.2 ± 1.8 | 28.3 ± 2.9 | 28.0 ± 0.8 |
Hydrochloric Acid | 17.0 ± 1.1 | 19.0 ± 1.4 | 18.8 ± 1.0 |
Citric Acid | 5.2 ± 0.6 | 7.0 ± 2.3 | 8.0 ± 1.5 |
Acetic Acid | 2.1 ± 0.4 | 3.5 ± 0.2 | 3.9 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansor, M.H.; Williamson, L.; Ludwikowski, D.; Howard, F.; Muthana, M. Pectin Extraction from Citrus Waste: Structural Quality and Yield with Mineral and Organic Acids. Physchem 2025, 5, 32. https://doi.org/10.3390/physchem5030032
Mansor MH, Williamson L, Ludwikowski D, Howard F, Muthana M. Pectin Extraction from Citrus Waste: Structural Quality and Yield with Mineral and Organic Acids. Physchem. 2025; 5(3):32. https://doi.org/10.3390/physchem5030032
Chicago/Turabian StyleMansor, Muhamad Hawari, Lydia Williamson, Daniel Ludwikowski, Faith Howard, and Munitta Muthana. 2025. "Pectin Extraction from Citrus Waste: Structural Quality and Yield with Mineral and Organic Acids" Physchem 5, no. 3: 32. https://doi.org/10.3390/physchem5030032
APA StyleMansor, M. H., Williamson, L., Ludwikowski, D., Howard, F., & Muthana, M. (2025). Pectin Extraction from Citrus Waste: Structural Quality and Yield with Mineral and Organic Acids. Physchem, 5(3), 32. https://doi.org/10.3390/physchem5030032