Modeling the Potential Habitat Gained by Planting Sagebrush in Burned Landscapes
Abstract
:1. Introduction
2. Methods
2.1. Case Study and Location
2.2. Model Overview
2.3. Sagebrush Planting Scenarios
2.4. Vegetation Regrowth
2.5. Projecting Seasonal Habitat Recovery
2.6. Assessing Habitat Recovery
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arkle, R.S.; Pilliod, D.S.; Hanser, S.E.; Brooks, M.L.; Chambers, J.C.; Grace, J.B.; Knutson, K.C.; Pyke, D.A.; Welty, J.L.; Wirth, T.A. Quantifying Restoration Effectiveness Using Multi-Scale Habitat Models: Implications for Sage-Grouse in the Great Basin. Ecosphere 2014, 5, art31. [Google Scholar] [CrossRef]
- Knick, S.T.; Connelly, J.W. (Eds.) Greater Sage-Grouse: Ecology and Conservation of a Landscape Species and Its Habitats; Studies in Avian Biology Series; University of California Press: Berkeley, CA, USA, 2011; Volume 38. [Google Scholar]
- Crist, M.R. Rethinking the Focus on Forest Fires in Federal Wildland Fire Management: Landscape Patterns and Trends of Non-Forest and Forest Burned Area. J. Environ. Manag. 2023, 327, 116718. [Google Scholar] [CrossRef]
- Connelly, J.W.; Knick, S.T.; Braun, C.E.; Baker, W.L.; Beever, E.A.; Christiansen, T.; Doherty, K.E.; Garton, E.O.; Hanser, S.E.; Johnson, D.H.; et al. Conservation of Greater Sage-Grouse: A Synthesis of Current Trends and Future Management. Stud. Avian Biol. 2011, 38, 549–563. [Google Scholar]
- Connelly, J.W.; Rinkes, E.T.; Braun, C.E. Characteristics of Greater Sage-Grouse Habitats: A Landscape Species at Micro and Macro Scales. Stud. Avian Biol. 2011, 38, 69–83. [Google Scholar]
- Foster, L.J.; Dugger, K.M.; Hagen, C.A.; Budeau, D.A. Greater Sage-Grouse Vital Rates after Wildfire: Sage-Grouse Wildfire Response. J. Wildl. Manag. 2019, 83, 121–134. [Google Scholar] [CrossRef]
- Lockyer, Z.B.; Coates, P.S.; Casazza, M.L.; Espinosa, S.; Delehanty, D.J. Nest-Site Selection and Reproductive Success of Greater Sage-Grouse in a Fire-Affected Habitat of Northwestern Nevada. J. Wildl. Manag. 2015, 79, 785–797. [Google Scholar] [CrossRef]
- Fremgen-Tarantino, M.R.; Peña, J.J.; Connelly, J.W.; Forbey, J.S. Winter Foraging Ecology of Greater Sage-Grouse in a Post-Fire Landscape. J. Arid. Environ. 2020, 178, 104154. [Google Scholar] [CrossRef]
- Dudley, I.F.; Coates, P.S.; Prochazka, B.G.; Davis, D.M.; Gardner, S.C.; Delehanty, D.J. Maladaptive Nest-Stie Selection and Reduced Nest Survival in Female Sage-Grouse Following Wildfire. Ecosphere 2022, 13, e4282. [Google Scholar] [CrossRef]
- Anthony, C.R.; Foster, L.J.; Hagen, C.A.; Dugger, K.M. Acute and Lagged Fitness Consequences for a Sagebrush Obligate in a Post Mega-wildfire Landscape. Ecol. Evol. 2022, 12, e8488. [Google Scholar] [CrossRef]
- Knight, E.C.; Mahony, N.A.; Green, D.J. Effects of Agricultural Fragmentation on the Bird Community in Sagebrush Shrubsteppe. Agric. Ecosyst. Environ. 2016, 223, 278–288. [Google Scholar] [CrossRef]
- Baker, W.L. Fire and Restoration of Sagebrush Ecosystems. Wildl. Soc. Bull. 2006, 34, 177–185. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Major, D.J. Mapping and Monitoring Cheatgrass Dieoff in Rangelands of the Northern Great Basin, USA. Rangel. Ecol. Manag. 2015, 68, 18–28. [Google Scholar] [CrossRef]
- McMahon, D.E.; Urza, A.K.; Brown, J.L.; Phelan, C.; Chambers, J.C. Modelling Species Distributions and Environmental Suitability Highlights Risk of Plant Invasions in Western United States. Divers. Distrib. 2021, 27, 710–728. [Google Scholar] [CrossRef]
- Pastick, N.J.; Wylie, B.K.; Rigge, M.B.; Dahal, D.; Boyte, S.P.; Jones, M.O.; Allred, B.W.; Parajuli, S.; Wu, Z. Rapid Monitoring of the Abundance and Spread of Exotic Annual Grasses in the Western United States Using Remote Sensing and Machine Learning. AGU Adv. 2021, 2, e2020AV000298. [Google Scholar] [CrossRef]
- Chambers, J.C.; Miller, R.F.; Board, D.I.; Pyke, D.A.; Roundy, B.A.; Grace, J.B.; Schupp, E.W.; Tausch, R.J. Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments. Rangel. Ecol. Manag. 2014, 67, 440–454. [Google Scholar] [CrossRef]
- D’Antonio, C.M.; Vitousek, P.M. Biological Invasions by Exotic Grasses, the Grass/Fire Cycle, and Global Change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gómez-Dans, J. Introduced Annual Grass Increases Regional Fire Activity across the Arid Western USA (1980–2009). Glob. Change Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Bradley, B.A.; Curtis, C.A.; Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Dadashi, S.; Tuanmu, M.-N. Cheatgrass (Bromus tectorum) Distribution in the Intermountain Western United States and Its Relationship to Fire Frequency, Seasonality, and Ignitions. Biol. Invasions 2018, 20, 1493–1506. [Google Scholar] [CrossRef]
- Beck, J.L.; Connelly, J.W.; Reese, K.P. Recovery of Greater Sage-Grouse Habitat Features in Wyoming Big Sagebrush Following Prescribed Fire. Restor. Ecol. 2009, 17, 393–403. [Google Scholar] [CrossRef]
- Ferguson, C.W. Annual Rings in Big Sagebrush (Artemisia Tridentata); The University of Arizona: Tucson, AZ, USA, 1960. [Google Scholar]
- Dettweiler-Robinson, E.; Bakker, J.D.; Evans, J.R.; Newsome, H.; Davies, G.M.; Wirth, T.A.; Pyke, D.A.; Easterly, R.T.; Salstrom, D.; Dunwiddie, P.W. Outplanting Wyoming Big Sagebrush Following Wildfire: Stock Performance and Economics. Rangel. Ecol. Manag. 2013, 66, 657–666. [Google Scholar] [CrossRef]
- Young, J.A.; Evans, R.A. Dispersal and Germination of Big Sagebrush (Artemisia tridentata) Seeds. Weed Sci. 1989, 37, 201–206. [Google Scholar] [CrossRef]
- Welch, B.L. Big Sagebrush: A Sea Fragmented into Lakes, Ponds, and Puddles; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005. [Google Scholar]
- Coates, P.S.; Ricca, M.A.; Prochazka, B.G.; Brooks, M.L.; Doherty, K.E.; Kroger, T.; Blomberg, E.J.; Hagen, C.A.; Casazza, M.L. Wildfire, Climate, and Invasive Grass Interactions Negatively Impact an Indicator Species by Reshaping Sagebrush Ecosystems. Proc. Natl. Acad. Sci. USA 2016, 113, 12745–12750. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.W.; Bates, J.D.; Clenet, D. Improving Restoration Success through Microsite Selection: An Example with Planting Sagebrush Seedlings after Wildfire. Restor. Ecol. 2020, 28, 859–868. [Google Scholar] [CrossRef]
- Roth, C.L.; O’Neil, S.T.; Coates, P.S.; Ricca, M.A.; Pyke, D.A.; Aldridge, C.L.; Heinrichs, J.A.; Espinosa, S.P.; Delehanty, D.J. Targeting Sagebrush (Artemisia spp.) Restoration Following Wildfire with Greater Sage-Grouse (Centrocercus Urophasianus) Nest Selection and Survival Models. Environ. Manag. 2022, 70, 288–306. [Google Scholar] [CrossRef] [PubMed]
- Pyke, D.A.; Shriver, R.K.; Arkle, R.S.; Pilliod, D.S.; Aldridge, C.L.; Coates, P.S.; Germino, M.J.; Heinrichs, J.A.; Ricca, M.A.; Shaff, S.E. Postfire Growth of Seeded and Planted Big Sagebrush—Strategic Designs for Restoring Greater Sage-grouse Nesting Habitat. Restor. Ecol. 2020, 28, 1495–1504. [Google Scholar] [CrossRef]
- Doherty, K.E.; Beck, J.L.; Naugle, D.E. Comparing Ecological Site Descriptions to Habitat Characteristics Influencing Greater Sage-Grouse Nest Site Occurrence and Success. Rangel. Ecol. Manag. 2011, 64, 344–351. [Google Scholar] [CrossRef]
- Coates, P.S.; Casazza, M.L.; Brussee, B.E.; Ricca, M.A.; Gustafson, K.B.; Sanchez-Chopitea, E.; Mauch, K.; Niell, L.; Gardner, S.; Espinosa, S.; et al. Spatially Explicit Modeling of Annual and Seasonal Habitat for Greater Sage-Grouse (Centrocercus Urophasianus) in Nevada and Northeastern California—An Updated Decision-Support Tool for Management; U.S. Geological Survey Open-File Report 2016-1080; US Geological Survey: Reston, VA, USA, 2016; 160p. [Google Scholar]
- Coates, P.S.; Brussee, B.E.; Ricca, M.A.; Severson, J.P.; Casazza, M.L.; Gustafson, K.B.; Espinosa, S.P.; Gardner, S.C.; Delehanty, D. Spatially Explicit Models of Seasonal Habitat for Greater Sage-Grouse at Broad Spatial Scales: Informing Areas for Management in Nevada and Northeastern California. Ecol. Evol. 2020, 10, 104–118. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Rigge, M.; Shi, H.; Meyer, D. Characterization of Shrubland Ecosystem Components as Continuous Fields in the Northwest United States. Remote Sens. Environ. 2015, 168, 286–300. [Google Scholar] [CrossRef]
- SAS Institute Inc. JMP Statistical Discovery Software, Version 17.1; SAS Institute Inc.: Cary, NC, USA, 2023. [Google Scholar]
- Zar, J. Biostatistical Analysis, 4th ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Schuyler, E.M.; Hagen, C.A.; Anthony, C.R.; Foster, L.J.; Dugger, K.M. Temporal Mismatch in Space Use by a Sagebrush Obligate Species after Large-scale Wildfire. Ecosphere 2022, 13, e4179. [Google Scholar] [CrossRef]
- Conover, M.R.; Borgo, J.S.; Dritz, R.E.; Dinkins, J.B.; Dahlgren, D.K. Greater Sage-Grouse Select Nest Sites to Avoid Visual Predators but Not Olfactory Predators. Condor 2010, 112, 331–336. [Google Scholar] [CrossRef]
- Schroeder, M.A.; Young, J.R.; Braun, C.E. Sage Grouse (Centrocercus urophasianus). In The Birds of North America; Pool, A., Gill, F., Eds.; Cornell Lab of Ornithology: Ithaca, NY, USA, 2020; Volume 425, p. 28. [Google Scholar]
- Bock, C.E.; Jones, Z.F. Avian Habitat Evaluation: Should Counting Birds Count? Front. Ecol. Envrion. 2004, 2, 403–410. [Google Scholar] [CrossRef]
- Aldridge, C.L.; Boyce, M.S. Linking Occurrence and Fitness to Persistence: Habitat-Based Approach for Endangered Greater Sage-Grouse. Ecol. Appl. 2007, 17, 508–526. [Google Scholar] [CrossRef] [PubMed]
- Foster, L. Resource Selection, and Demographic Rates of Female Greater Sage-Grouse Following Large-Scale Wildfire. Maters’s Thesis, Oregon State University, Corvallis, OR, USA, 2016. [Google Scholar]
- Lindell, C.A. The Value of Animal Behavior in Evaluations of Restoration Success. Restor. Ecol. 2008, 16, 197–203. [Google Scholar] [CrossRef]
- Robertson, G.A.; Hutto, R.L. A Framework for Understanding Ecological Traps and an Evaluation of Existing Evidence. Ecology 2006, 87, 1075–1085. [Google Scholar] [CrossRef]
- Smith, K.T.; Beck, J.L. Sagebrush Treatments Influence Annual Population Change for Greater Sage-Grouse: Treatments Influence Sage-Grouse Populations. Restor. Ecol. 2018, 26, 497–505. [Google Scholar] [CrossRef]
- Block, W.M.; Franklin, A.B.; Ward, J.P.; Ganey, J.L.; White, G.C. Design and Implementation of Monitoring Studies to Evaluate the Success of Ecological Restoration on Wildlife. Restor. Ecol. 2001, 9, 293–303. [Google Scholar] [CrossRef]
Factor | Condition | Alternative(s) |
---|---|---|
Planting Effort | Single year (350,000 plants) | Multi-year a (1.5 million plants) |
Spatial Targeting | Any burned site | Nesting habitat (burned) |
Transplant Density | Low (112 plants/30 m pixel) | High (235/30 m pixel) |
Patch Size | Several small (9 ha; 300 × 300 m) | Few large (71 ha; 843 × 843 m) |
Plant Survival | 30% | 70, 100% |
Spring | Summer | Winter | |||||||
---|---|---|---|---|---|---|---|---|---|
Covariate | Scale | Model-Averaged β | 95% CI | Scale | Model-Averaged β | 95% CI | Scale | Model-Averaged β | 95% CI |
Annual grass | 661.4 ha | −21.8 | −25.15, −18.45 | 661.4 ha | −83.2 | −90.05, −76.36 | 661.4 ha | −106.86 | −115.55, −98.17 |
Bare ground | 661.4 ha | −6.68 | −7.00, −6.36 | 661.4 ha | −14.93 | −15.31, −14.54 | - | - | - |
Cropland | - | - | - | 661.4 ha | 6.4 | 6.05, 6.74 | - | - | - |
Forest | 61.5 ha | −13.32 | −14.92, −11.71 | 61.5 ha | −22.23 | −23.61, −20.85 | 661.4 ha | −17.7 | −19.96, −15.44 |
Herbaceous | 8.7 ha | 7.77 | 7.37, 8.17 | 661.4 ha | −4.21 | −4.80, −3.62 | 661.4 ha | 15.62 | 14.69, 16.55 |
Non-sagebrush shrub | 8.7 ha | −25.41 | −26.44, −24.38 | - | - | - | 61.5 ha | −35.58 | −37.16, −34.00 |
Sagebrush * | 61.5 ha | 71.81 | 68.70, 74.93 | 661.4 ha | 119.19 | 113.65, 124.72 | 661.4 ha | 68.86 | 63.08, 74.63 |
Sagebrush height | - | - | - | - | - | - | 661.4 ha | 13.2 | 12.54, 13.86 |
Riparian | 8.7 ha | −3.18 | −3.68, −2.69 | 661.4 ha | −3.34 | −4.35, −2.34 | 61.5 ha | −10.51 | −11.71, −9.31 |
Land cover b | 8.7 ha | −0.17 | −0.20, −0.15 | 61.5 ha | −0.04 | −0.06, −0.01 | 61.5 ha | −0.46 | −0.49, −0.43 |
Dist. to cropland | Exp. decay | 0.57 | 0.45, 0.69 | - | - | - | Linear | −0.26 | −0.28, −0.23 |
Dist. to nearest stream | Linear | 3.55 | 3.39, 3.73 | - | - | - | Linear | 4.12 | 3.89, 4.35 |
Dist. to spring | Linear | 0.08 | 0.05, 0.10 | Linear | 0.08 | 0.05, 0.10 | Linear | −0.51 | −0.55, −0.47 |
Dist. to water body | Exp. decay | −2.90 | −3.08, −2.73 | Exp. decay | −0.87 | −1.03, −0.71 | Exp. decay | −3.25 | −3.49, −3.01 |
Dist. to wet meadow | Linear | −0.19 | −0.20, −0.18 | Linear | −0.184 | −0.19, −0.18 | Linear | −0.15 | −0.16, −0.14 |
Elevation | Linear | −6.67 | −6.95, −6.38 | - | - | - | Linear | −3.9 | −4.19, −3.61 |
Roughness index c | 1 ha | −12.60 | −13.12, −12.09 | 1 ha | −13.39 | −13.88, −12.91 | 1 ha | −18.73 | −19.50, −17.95 |
TPI d | 510 m | 0.01 | 0.01, 0.02 | - | - | - | 2010 m | −0.003 | −0.004, −0.002 |
Estimate | Std. Error | T Ratio | Pr (>|t|) | Standardized Estimate | Rank | |
---|---|---|---|---|---|---|
Spring a | ||||||
Intercept | 70.749 | 0.126 | 560.80 | <0.001 | 71.100 | |
Non-targeted | 0.153 | 0.029 | 5.34 | <0.001 | 0.152 | 1 |
Survival | 0.003 | <0.001 | 3.05 | 0.004 | 0.106 | 2 |
Total plants | 1.42 × 10−7 | <0.001 | 2.81 | 0.008 | 0.082 | 3 |
Summer b | ||||||
Intercept | 48.558 | 0.518 | 93.67 | <0.001 | 51.560 | |
Total plants | 2.24 × 10−6 | <0.001 | 10.73 | <0.001 | 1.289 | 1 |
Survival | 0.029 | 0.004 | 6.84 | <0.001 | 1.003 | 2 |
Non-targeted | 0.545 | 0.120 | 4.53 | <0.001 | 0.545 | 3 |
Plant density | −0.004 | 0.002 | −2.05 | 0.047 | −0.246 | 4 |
Winter c | ||||||
Intercept | 45.997 | 0.342 | 134.49 | <0.001 | 47.142 | |
Total plants | 6.16 × 10−7 | <0.001 | 4.71 | <0.001 | 0.354 | 1 |
Patch area | 0.011 | 0.002 | 4.63 | <0.001 | 0.334 | 2 |
Survival | 0.007 | 0.003 | 2.60 | 0.0129 | 0.233 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinrichs, J.A.; O’Donnell, M.S.; Orning, E.K.; Pyke, D.A.; Ricca, M.A.; Coates, P.S.; Aldridge, C.L. Modeling the Potential Habitat Gained by Planting Sagebrush in Burned Landscapes. Conservation 2024, 4, 364-377. https://doi.org/10.3390/conservation4030024
Heinrichs JA, O’Donnell MS, Orning EK, Pyke DA, Ricca MA, Coates PS, Aldridge CL. Modeling the Potential Habitat Gained by Planting Sagebrush in Burned Landscapes. Conservation. 2024; 4(3):364-377. https://doi.org/10.3390/conservation4030024
Chicago/Turabian StyleHeinrichs, Julie A., Michael S. O’Donnell, Elizabeth K. Orning, David A. Pyke, Mark A. Ricca, Peter S. Coates, and Cameron L. Aldridge. 2024. "Modeling the Potential Habitat Gained by Planting Sagebrush in Burned Landscapes" Conservation 4, no. 3: 364-377. https://doi.org/10.3390/conservation4030024
APA StyleHeinrichs, J. A., O’Donnell, M. S., Orning, E. K., Pyke, D. A., Ricca, M. A., Coates, P. S., & Aldridge, C. L. (2024). Modeling the Potential Habitat Gained by Planting Sagebrush in Burned Landscapes. Conservation, 4(3), 364-377. https://doi.org/10.3390/conservation4030024