Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Projeto MapBiomas—Mapeamento Anual de Cobertura e Uso da Terra no Brasil–Coleção 7. Destaques do Mapeamento Anual da Cobertura e Uso da Terra no Brasil de 1985 a 2021: Pastagem. 2022. Available online: https://mapbiomas-br-site.s3.amazonaws.com/MapBiomas_Cole%C3%A7%C3%A3o7_2022_10.10.pdf (accessed on 24 February 2023).
- Projeto MapBiomas—Mapeamento Anual de Cobertura e Uso da Terra do Brasil–Coleção 6. A Evolução da Pastagem nos Último 36 Anos. Destaques do Mapeamento Anual e Qualidade de Pastagens no Brasil entre 1985 a 2020. 2021. Available online: https://mapbiomas-br-site.s3.amazonaws.com/Fact_Sheet_PASTAGEM_13.10.2021_ok_ALTA.pdf (accessed on 24 February 2023).
- Kaiser, D.R.; Reinert, D.J.; Reichert, J.M.; Collares, G.L.; Kunz, M. Intervalo hídrico ótimo no perfil explorado pelas raízes de feijoeiro em um latossolo sob diferentes níveis de compactação. Rev. Bras. Ciênc. Solo 2009, 33, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J.; de Lima, C.L.R. Degree of compactness and mechanical properties of a subtropical Alfisol with eucalyptus, native forest, and grazed pasture. For. Sci. 2015, 61, 716–722. [Google Scholar] [CrossRef] [Green Version]
- Gregory, A.S.; Ritz, K.; McGrath, S.P.; Quinton, J.N.; Goulding, K.W.T.; Jones, R.J.A.; Harris, J.A.; Bol, R.; Wallace, P.; Pilgrim, E.S.; et al. A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 2015, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.L.F. Compactação e seus efeitos sobre o funcionamento do solo e a absorção de nutrientes pelas plantas: Uma revisão bibliográfica. Meio Ambiente 2021, 3, 24–33. [Google Scholar] [CrossRef]
- Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Mastroberti, A.A.; Levien, R.; Leitner, D.; Schnepf, A. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res. 2020, 200, 104611. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Alves, M.C.; Reichert, J.M. Critical limits for soybean and black bean root growth, based on macroporosity and penetrability, for soils with distinct texture and management systems. Sustainability 2022, 14, 2958. [Google Scholar] [CrossRef]
- Nunes, M.R.; Pauletto, E.A.; Denardin, J.E.; Suzuki, L.E.A.S.; van Es, H.M. Dynamic changes in compressive properties and crop response after chisel tillage in a highly weathered soil. Soil Tillage Res. 2019, 186, 183–190. [Google Scholar] [CrossRef]
- Fullen, M.A. Compaction, hydrological processes and soil erosion on loamy sands in east Shropshire, England. Soil Tillage Res. 1985, 6, 17–29. [Google Scholar] [CrossRef]
- Zabrodskyi, A.; Šarauskis, E.; Kukharets, S.; Juostas, A.; Vasiliauskas, G.; Andriušis, A. Analysis of the impact of soil compaction on the environment and agricultural economic losses in Lithuania and Ukraine. Sustainability 2021, 13, 7762. [Google Scholar] [CrossRef]
- Keller, T.; Sandina, M.; Colombia, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Silva, V.R.; Reinert, D.J.; Reichert, J.M. Densidade do solo, atributos químicos e sistema radicular do milho afetados pelo pastejo e manejo do solo. Rev. Bras. Ciênc. Solo 2000, 24, 191–1990. [Google Scholar] [CrossRef] [Green Version]
- Lanzanova, M.E.; Nicoloso, R.S.; Lovato, T.; Eltz, F.L.F.; Amado, T.J.C.; Reinert, D.J. Atributos físicos do solo em sistema de integração lavoura-pecuária sob plantio direto. Rev. Bras. Ciênc. Solo 2007, 31, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Colares, G.L.; Reinert, D.J.; Reichert, J.M.; Kaiser, D.R. Compactação superficial de Latossolos sob integração lavoura—Pecuária de leite no noroeste do Rio Grande do Sul. Ciênc. Rural 2011, 41, 246–250. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Rodrigues Junior, D.J.; Sene, G.A.; Jaime, D.G.; Vieira, D.M.S. Resistência à penetração em área de pastagem de capim tifton, influenciada pelo pisoteio e irrigação. Biosci. J. 2012, 28 (Suppl. 1), 232–239. Available online: https://seer.ufu.br/index.php/biosciencejournal/article/view/12546 (accessed on 14 June 2023).
- Lima, R.P.; León, M.J.; Silva, A.R. Resistência mecânica à penetração sob diferentes sistemas de uso do solo. Sci. Plena 2013, 9, 1–7. Available online: https://www.scientiaplena.org.br/sp/article/download/1035/807 (accessed on 14 June 2023).
- Gurgel, A.L.C.; Santana, J.C.S.; Theodoro, G.F.; Difante, G.S.; Almeida, E.M.; Arcanjo, A.H.M.; Costa, C.M.; da Costa, A.B.G.; Fernandes, P.B. Compactação do solo: Efeitos na nutrição mineral e produtividade de plantas forrageiras. Rev. Cient. Rural 2020, 22, 13–29. [Google Scholar] [CrossRef]
- Parente, H.N.; Maia, M.O. Impacto do pastejo sobre a compactação dos solos com ênfase no Semiárido. Rev. Tróp.–Ciênc. Agrár. Biól. 2011, 5, 3–15. [Google Scholar] [CrossRef]
- Koppe, E.; Rupollo, C.Z.; Queiroz, R.; Puschmann, D.U.; Peth, S.; Reinert, D. Physical recovery of an oxisol subjected to four intensities of dairy cattle grazing. Soil Tillage Res. 2021, 206, 104813. [Google Scholar] [CrossRef]
- Pilon, C.; Moore, P.A., Jr.; Pote, D.H.; Pennington, J.H.; Martin, J.W.; Brauer, D.K.; Raper, R.L.; Dabney, S.M.; Lee, J. Long-term effects of grazing management and buffer strips on soil erosion from pastures. J. Environ. Qual. 2017, 46, 364–372. [Google Scholar] [CrossRef]
- Holtz, R.D.; Kovacs, W.D. An Introduction to Geotechnical Engineering; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981; 733p. [Google Scholar]
- Suzuki, L.E.A.S.; Reisser Júnior, C.; Miola, E.C.C.; Rostirolla, P.; Strieder, G.; Scherer, V.S.; Pauletto, E.A. Variabilidade da compressibilidade e do grau de compactação de um Argissolo cultivado com pessegueiro. Sci. Rural 2021, 1, 60–75. Available online: https://www.phantomstudio.com.br/index.php/ScientiaRural/article/view/1642/pdf (accessed on 14 June 2023).
- Suzuki, L.E.A.S.; Reinert, D.J.; Fenner, P.T.; Secco, D.; Reichert, J.M. Prevention of additional compaction in eucalyptus and pasture land uses, considering soil moisture and bulk density. J. S. Am. Earth Sci. 2022, 120, 104113. [Google Scholar] [CrossRef]
- Mary, B.; Recous, S.; Darwis, D.; Robin, D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 1996, 181, 71–82. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Reichert, J.M.; Lima, C.L.R. Estimativa da suscetibilidade à compactação e do suporte de carga do solo com base em propriedades físicas de solos do Rio Grande do Sul. Rev. Bras. Ciênc. Solo 2008, 32, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Tassinari, D.; Dias Junior, M.S.; Casagrande, D.R.; Pais, P.S.M.; Souza, Z.R. Short term changes on soil physical quality after different pasture renovation methods on a clayey oxidic Red Latosol. Rev. Bras. Ciênc. Agrár. 2015, 10, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.C.C.; Dias Junior, M.S.; Ajayi, A.E.; Takahashi, E.N.; Tassinari, D. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests. Ciênc. Agrotecnologia 2018, 42, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, E.A.S.; Lima, R.P.; Dantas, D.C.; Batista, P.H.D.; Giarola, N.F.B.; Rolim, M.M. Precompression stress in response to water content and bulk density under no-till Oxisols in southern Brazil. Geoderma Reg. 2020, 21, e00261. [Google Scholar] [CrossRef]
- Lacerda, K.S.; Vargas, R.C.; Ribeiro, K.M.; Dias Junior, M.S.; Ribeiro, K.D.; Abreu, D. Load-bearing capacity and critical water content of the coffee plantation soil with management in full sun and shaded. Rev. Bras. Ciênc. Solo 2022, 46, e0220051. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, N.; An, J.; Zou, H.; Zhang, Y. Soil compressibility and resilience based on uniaxial compression loading test in response to soil water suction and soil organic matter content in Northeast China. Sustainability 2022, 14, 2620. [Google Scholar] [CrossRef]
- Canarache, A.; Horn, R.; Colibas, I. Compressibility of soils in a long term field experiment with intensive deep ripping in Romania. Soil Tillage Res. 2000, 56, 185–196. [Google Scholar] [CrossRef]
- Imhoff, S.; Silva, A.P.; Fallow, D. Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Sci. Soc. Am. J. 2004, 68, 17–24. [Google Scholar] [CrossRef]
- Carter, M.R. Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Can. J. Soil Sci. 1990, 70, 425–433. [Google Scholar] [CrossRef]
- Håkansson, I. A method for characterizing the state of compactness of the plough layer. Soil Tillage Res. 1990, 16, 105–120. [Google Scholar] [CrossRef]
- Lipiec, J.; Håkansson, I.; Tarkiewicz, S.; Kossowski, J. Soil physical properties and growth of spring barley related to the degree-of-compactness of two soils. Soil Tillage Res. 1991, 19, 307–317. [Google Scholar] [CrossRef]
- Silva, A.P.; Kay, B.D.; Perfect, E. Management versus inherent soil properties effects on bulk density and relative compaction. Soil Tillage Res. 1997, 44, 81–93. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J. Degree of compactness, soil physical properties and yield of soybean in six soils under no-tillage. Soil Res. 2013, 51, 311–321. [Google Scholar] [CrossRef]
- Twedorff, D.A.; Chanasyk, D.S.; Mapfumo, E.; Naeth, M.A.; Baron, V.S. Impacts of forage grazing and cultivation on near-surface relative compaction. Can. J. Soil Sci. 1999, 79, 465–471. [Google Scholar] [CrossRef]
- Reichert, J.M.; Brandt, A.A.; Rodrigues, M.F.; da Veiga, M.; Reinert, D.J. Is chiseling or inverting tillage required to improve mechanical and hydraulic properties of sandy clay loam soil under long-term no-tillage? Geoderma 2017, 301, 72–79. [Google Scholar] [CrossRef]
- Dong, L.; Zheng, Y.; Martinsen, V.; Liang, C.; Mulder, J. Effect of grazing exclusion and rotational grazing on soil aggregate stability in typical grasslands in Inner Mongolia, China. Front. Environ. Sci. 2022, 10, 844151. [Google Scholar] [CrossRef]
- Pandolfo, C.; Braga, H.J.; Da Silva, V.P., Jr.; Massignam, A.M.; Pereira, E.S.; Thomé, V.M.R.; Valci, F.V. Atlas Climatológico do Estado de Santa Catarina; Epagri: Florianópolis, Brasil, 2002.
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; E-book: Il. Color; Embrapa: Brasília, Brazil, 2018; Available online: https://www.embrapa.br/solos/sibcs (accessed on 5 October 2022).
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf (accessed on 11 April 2023).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 11 April 2023).
- Bitencourt Junior, D. Produção e Qualidade de Milho-Silagem na Safra e Safrinha, Num Sistema de Integração Lavoura-Pecuária, em Plantio Direto. Tese (Doutorado em Zootecnia), Universidade Federal de Pelotas, Pelotas. 2010. 75p. Available online: http://guaiaca.ufpel.edu.br/bitstream/123456789/2630/1/Tese_Darcy_Bitencourt_Junior.pdf (accessed on 10 April 2023).
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576830/pdf/MMJ2403-0069.pdf (accessed on 14 June 2023).
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Pimentel-Gomes, F.; Garcia, C.H. Estatística Aplicada a Experimentos Agronômicos e Florestais: Exposição com Exemplos e Orientações para Uso de Aplicativos; FEALQ: Piracicaba, Brazil, 2002; 309p. [Google Scholar]
- Silva, V.R.; Reinert, D.J.; Reichert, J.M. Suscetibilidade à compactação de um Latossolo Vermelho-Escuro e de um Podzólico Vermelho-Amarelo. Rev. Bras. Ciênc. Solo 2000, 4, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, R.; Figueiredo, G.C.; Silva, A.P.; Neves, J.C.L.; Oliveira, T.S. Soil compressibility under irrigated perennial and annual crops in a semi-arid environment. Rev. Bras. Ciênc. Solo 2017, 41, e0160206. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.M.; Mentges, M.I.; Rodrigues, M.F.; Cavalli, J.P.; Awe, G.O.; Mentges, L.R. Compressibility and elasticity of subtropical no-till soils varying in granulometry organic matter, bulk density and moisture. Catena 2018, 165, 345–357. [Google Scholar] [CrossRef]
- Gholamreza, S.; Hossein, G.; Cyril, C.; Bofu, Y. Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in Southeast Queensland. Aust. J. Soil Res. 2008, 46, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Bitencourt Junior, D.; Suzuki, L.E.A.S.; Pauletto, E.A.; Bamberg, A.L.; Nunes, M.R.; Perazzoli, D. Estrutura e água disponível de um Cambissolo submetido a períodos de pastejo rotacionado. Rev. Agron. Amazôn. Agroamazon 2021, 1, 50–59. [Google Scholar] [CrossRef]
- Horn, R.; Lebert, M. Soil compactability and compressibility. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 45–69. [Google Scholar]
- Capurro, E.P.G.; Secco, D.; Reichert, J.M.; Reinert, D.J. Compressibilidade e elasticidade de um Vertissolo afetado pela intensidade de pastejo bovino. Ciência Rural 2014, 44, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.A.; Oliveira, G.C.; Kliemann, H.J.; Balbino, L.C.; França, A.F.S.; Carvalho, E.R. Influence of different grazing systems on physical properties and aggregation in savannah soils. Pesq. Agropec. Trop. 2010, 40, 274–282. Available online: https://repositorio.bc.ufg.br/bitstream/ri/13593/5/Artigo%20-%20Silvano%20Alves%20Pereira%20-%202010.pdf (accessed on 14 June 2023).
- Horn, R.; Fleige, H. A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Tillage Res. 2003, 73, 89–99. [Google Scholar] [CrossRef]
- Lima, C.L.R.; Silva, A.P.; Imhoff, S.; Leão, T.P. Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado. Rev. Bras. Ciênc. Solo 2004, 28, 945–951. [Google Scholar] [CrossRef] [Green Version]
- Horn, R.; Vossbrink, J.; Becker, S. Modern forestry vehicles and their impacts on soil physical properties. Soil Tillage Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- Oliveira, G.C.; Dias Junior, M.S.; Curi, N.; Resck, D.V.S. Compressibilidade de um Latossolo Vermelho argilosos de acordo com a tensão de água no solo, uso e manejo. Rev. Bras. Ciênc. Solo 2003, 27, 773–781. [Google Scholar] [CrossRef]
- Guérif, J. Effects of compaction on soil strength parameters. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 191–214. [Google Scholar]
- Batista, P.H.D.; Almeida, G.L.P.; Silva, J.L.B.; Lins, F.A.C.; Silva, M.V.; Cordeiro Junior, J.F. Hydro-physical properties of soil and pasture vegetation coverage under animal trampling. Rev. Bras. Eng. Agríc. Ambient. 2020, 24, 854–860. [Google Scholar] [CrossRef]
Correlation Coefficient | Interpretation |
---|---|
0.00–0.10 | Negligible correlation |
0.10–0.39 | Weak correlation |
0.40–0.69 | Moderate correlation |
0.70–0.89 | Strong correlation |
0.90–1.00 | Very strong correlation |
2-Times Grazing | 3-Times Grazing | |||
---|---|---|---|---|
Grazing | No Grazing | Grazing | No Grazing | |
Mean | 0.23 | 0.22 | 0.25 | 0.23 |
Maximum | 0.41 | 0.30 | 0.34 | 0.26 |
Minimum | 0.11 | 0.13 | 0.19 | 0.22 |
CV (%) | 34.53 | 28.69 | 10.94 | 5.37 |
CI | BDPPC, Mg/m3 | BD, Mg/m3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Number of Grazing | Number of Grazing | Number of Grazing | |||||||
2-Times | 3-Times | Mean | 2-Times | 3-Times | Mean | 2-Times | 3-Times | Mean | |
Grazing | 0.23 Aa | 0.23 Aa | 0.23 | 1.46 | 1.41 | 1.43 | 1.46 | 1.44 | 1.45 |
No grazing | 0.25 Aa | 0.20 Ab | 0.22 | 1.47 | 1.50 | 1.48 | 1.47 | 1.52 | 1.50 |
Mean | 0.24 | 0.21 | 1.46 | 1.45 | 1.46 | 1.48 |
PPC, kPa | DC, % | |||||
---|---|---|---|---|---|---|
Number of Grazing | Number of Grazing | |||||
Layer, m | 2-Times | 3-Times | Mean | 2-Times | 3-Times | Mean |
0.00–0.05 | 193.48 | 200.48 | 196.98 B | 81.4 | 82.1 | 81.8 B |
0.05–0.10 | 219.22 | 232.45 | 225.84 A | 83.3 | 84.9 | 84.1 A |
0.10–0.15 | 230.67 | 240.00 | 235.34 A | 83.7 | 85.1 | 84.4 A |
0.15–0.20 | 235.82 | 236.47 | 236.15 A | 83.0 | 84.5 | 83.7 A |
Mean | 219.80 | 227.35 | 82.9 b | 84.2 a |
1 Variables | ||||||
---|---|---|---|---|---|---|
BD | GM | Def | CI | PPC | DC | |
TP | −0.98 ** | 0.79 ** | 0.77 ** | 0.20 ** | −0.51 ** | −0.77 ** |
BD | - | −0.83 ** | −0.74 ** | −0.19 * | 0.50 ** | 0.74 ** |
GM | - | - | 0.43 ** | ns | −0.27 ** | −0.43 ** |
Def | - | - | - | 0.56 ** | −0.66 ** | −0.99 ** |
CI | - | - | - | - | ns | −0.56 ** |
PPC | - | - | - | - | - | 0.66 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, L.E.A.S.; Bitencourt Junior, D.; Pauletto, E.A.; Miola, E.C.C.; Rostirolla, P.; Strieder, G. Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction. Conservation 2023, 3, 334-345. https://doi.org/10.3390/conservation3030023
Suzuki LEAS, Bitencourt Junior D, Pauletto EA, Miola ECC, Rostirolla P, Strieder G. Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction. Conservation. 2023; 3(3):334-345. https://doi.org/10.3390/conservation3030023
Chicago/Turabian StyleSuzuki, Luis Eduardo Akiyoshi Sanches, Darcy Bitencourt Junior, Eloy Antonio Pauletto, Ezequiel Cesar Carvalho Miola, Pablo Rostirolla, and Gilberto Strieder. 2023. "Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction" Conservation 3, no. 3: 334-345. https://doi.org/10.3390/conservation3030023
APA StyleSuzuki, L. E. A. S., Bitencourt Junior, D., Pauletto, E. A., Miola, E. C. C., Rostirolla, P., & Strieder, G. (2023). Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction. Conservation, 3(3), 334-345. https://doi.org/10.3390/conservation3030023