Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Projeto MapBiomas—Mapeamento Anual de Cobertura e Uso da Terra no Brasil–Coleção 7. Destaques do Mapeamento Anual da Cobertura e Uso da Terra no Brasil de 1985 a 2021: Pastagem. 2022. Available online: https://mapbiomas-br-site.s3.amazonaws.com/MapBiomas_Cole%C3%A7%C3%A3o7_2022_10.10.pdf (accessed on 24 February 2023).
- Projeto MapBiomas—Mapeamento Anual de Cobertura e Uso da Terra do Brasil–Coleção 6. A Evolução da Pastagem nos Último 36 Anos. Destaques do Mapeamento Anual e Qualidade de Pastagens no Brasil entre 1985 a 2020. 2021. Available online: https://mapbiomas-br-site.s3.amazonaws.com/Fact_Sheet_PASTAGEM_13.10.2021_ok_ALTA.pdf (accessed on 24 February 2023).
- Kaiser, D.R.; Reinert, D.J.; Reichert, J.M.; Collares, G.L.; Kunz, M. Intervalo hídrico ótimo no perfil explorado pelas raízes de feijoeiro em um latossolo sob diferentes níveis de compactação. Rev. Bras. Ciênc. Solo 2009, 33, 845–855. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J.; de Lima, C.L.R. Degree of compactness and mechanical properties of a subtropical Alfisol with eucalyptus, native forest, and grazed pasture. For. Sci. 2015, 61, 716–722. [Google Scholar] [CrossRef]
- Gregory, A.S.; Ritz, K.; McGrath, S.P.; Quinton, J.N.; Goulding, K.W.T.; Jones, R.J.A.; Harris, J.A.; Bol, R.; Wallace, P.; Pilgrim, E.S.; et al. A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 2015, 31, 1–15. [Google Scholar] [CrossRef]
- Silva, P.L.F. Compactação e seus efeitos sobre o funcionamento do solo e a absorção de nutrientes pelas plantas: Uma revisão bibliográfica. Meio Ambiente 2021, 3, 24–33. [Google Scholar] [CrossRef]
- Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Mastroberti, A.A.; Levien, R.; Leitner, D.; Schnepf, A. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res. 2020, 200, 104611. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Alves, M.C.; Reichert, J.M. Critical limits for soybean and black bean root growth, based on macroporosity and penetrability, for soils with distinct texture and management systems. Sustainability 2022, 14, 2958. [Google Scholar] [CrossRef]
- Nunes, M.R.; Pauletto, E.A.; Denardin, J.E.; Suzuki, L.E.A.S.; van Es, H.M. Dynamic changes in compressive properties and crop response after chisel tillage in a highly weathered soil. Soil Tillage Res. 2019, 186, 183–190. [Google Scholar] [CrossRef]
- Fullen, M.A. Compaction, hydrological processes and soil erosion on loamy sands in east Shropshire, England. Soil Tillage Res. 1985, 6, 17–29. [Google Scholar] [CrossRef]
- Zabrodskyi, A.; Šarauskis, E.; Kukharets, S.; Juostas, A.; Vasiliauskas, G.; Andriušis, A. Analysis of the impact of soil compaction on the environment and agricultural economic losses in Lithuania and Ukraine. Sustainability 2021, 13, 7762. [Google Scholar] [CrossRef]
- Keller, T.; Sandina, M.; Colombia, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Silva, V.R.; Reinert, D.J.; Reichert, J.M. Densidade do solo, atributos químicos e sistema radicular do milho afetados pelo pastejo e manejo do solo. Rev. Bras. Ciênc. Solo 2000, 24, 191–1990. [Google Scholar] [CrossRef]
- Lanzanova, M.E.; Nicoloso, R.S.; Lovato, T.; Eltz, F.L.F.; Amado, T.J.C.; Reinert, D.J. Atributos físicos do solo em sistema de integração lavoura-pecuária sob plantio direto. Rev. Bras. Ciênc. Solo 2007, 31, 1131–1140. [Google Scholar] [CrossRef]
- Colares, G.L.; Reinert, D.J.; Reichert, J.M.; Kaiser, D.R. Compactação superficial de Latossolos sob integração lavoura—Pecuária de leite no noroeste do Rio Grande do Sul. Ciênc. Rural 2011, 41, 246–250. [Google Scholar] [CrossRef]
- Torres, J.L.R.; Rodrigues Junior, D.J.; Sene, G.A.; Jaime, D.G.; Vieira, D.M.S. Resistência à penetração em área de pastagem de capim tifton, influenciada pelo pisoteio e irrigação. Biosci. J. 2012, 28 (Suppl. 1), 232–239. Available online: https://seer.ufu.br/index.php/biosciencejournal/article/view/12546 (accessed on 14 June 2023).
- Lima, R.P.; León, M.J.; Silva, A.R. Resistência mecânica à penetração sob diferentes sistemas de uso do solo. Sci. Plena 2013, 9, 1–7. Available online: https://www.scientiaplena.org.br/sp/article/download/1035/807 (accessed on 14 June 2023).
- Gurgel, A.L.C.; Santana, J.C.S.; Theodoro, G.F.; Difante, G.S.; Almeida, E.M.; Arcanjo, A.H.M.; Costa, C.M.; da Costa, A.B.G.; Fernandes, P.B. Compactação do solo: Efeitos na nutrição mineral e produtividade de plantas forrageiras. Rev. Cient. Rural 2020, 22, 13–29. [Google Scholar] [CrossRef]
- Parente, H.N.; Maia, M.O. Impacto do pastejo sobre a compactação dos solos com ênfase no Semiárido. Rev. Tróp.–Ciênc. Agrár. Biól. 2011, 5, 3–15. [Google Scholar] [CrossRef]
- Koppe, E.; Rupollo, C.Z.; Queiroz, R.; Puschmann, D.U.; Peth, S.; Reinert, D. Physical recovery of an oxisol subjected to four intensities of dairy cattle grazing. Soil Tillage Res. 2021, 206, 104813. [Google Scholar] [CrossRef]
- Pilon, C.; Moore, P.A., Jr.; Pote, D.H.; Pennington, J.H.; Martin, J.W.; Brauer, D.K.; Raper, R.L.; Dabney, S.M.; Lee, J. Long-term effects of grazing management and buffer strips on soil erosion from pastures. J. Environ. Qual. 2017, 46, 364–372. [Google Scholar] [CrossRef]
- Holtz, R.D.; Kovacs, W.D. An Introduction to Geotechnical Engineering; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981; 733p. [Google Scholar]
- Suzuki, L.E.A.S.; Reisser Júnior, C.; Miola, E.C.C.; Rostirolla, P.; Strieder, G.; Scherer, V.S.; Pauletto, E.A. Variabilidade da compressibilidade e do grau de compactação de um Argissolo cultivado com pessegueiro. Sci. Rural 2021, 1, 60–75. Available online: https://www.phantomstudio.com.br/index.php/ScientiaRural/article/view/1642/pdf (accessed on 14 June 2023).
- Suzuki, L.E.A.S.; Reinert, D.J.; Fenner, P.T.; Secco, D.; Reichert, J.M. Prevention of additional compaction in eucalyptus and pasture land uses, considering soil moisture and bulk density. J. S. Am. Earth Sci. 2022, 120, 104113. [Google Scholar] [CrossRef]
- Mary, B.; Recous, S.; Darwis, D.; Robin, D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 1996, 181, 71–82. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Reichert, J.M.; Lima, C.L.R. Estimativa da suscetibilidade à compactação e do suporte de carga do solo com base em propriedades físicas de solos do Rio Grande do Sul. Rev. Bras. Ciênc. Solo 2008, 32, 963–973. [Google Scholar] [CrossRef]
- Tassinari, D.; Dias Junior, M.S.; Casagrande, D.R.; Pais, P.S.M.; Souza, Z.R. Short term changes on soil physical quality after different pasture renovation methods on a clayey oxidic Red Latosol. Rev. Bras. Ciênc. Agrár. 2015, 10, 485–491. [Google Scholar] [CrossRef]
- Martins, P.C.C.; Dias Junior, M.S.; Ajayi, A.E.; Takahashi, E.N.; Tassinari, D. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests. Ciênc. Agrotecnologia 2018, 42, 58–68. [Google Scholar] [CrossRef]
- Mendonça, E.A.S.; Lima, R.P.; Dantas, D.C.; Batista, P.H.D.; Giarola, N.F.B.; Rolim, M.M. Precompression stress in response to water content and bulk density under no-till Oxisols in southern Brazil. Geoderma Reg. 2020, 21, e00261. [Google Scholar] [CrossRef]
- Lacerda, K.S.; Vargas, R.C.; Ribeiro, K.M.; Dias Junior, M.S.; Ribeiro, K.D.; Abreu, D. Load-bearing capacity and critical water content of the coffee plantation soil with management in full sun and shaded. Rev. Bras. Ciênc. Solo 2022, 46, e0220051. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, N.; An, J.; Zou, H.; Zhang, Y. Soil compressibility and resilience based on uniaxial compression loading test in response to soil water suction and soil organic matter content in Northeast China. Sustainability 2022, 14, 2620. [Google Scholar] [CrossRef]
- Canarache, A.; Horn, R.; Colibas, I. Compressibility of soils in a long term field experiment with intensive deep ripping in Romania. Soil Tillage Res. 2000, 56, 185–196. [Google Scholar] [CrossRef]
- Imhoff, S.; Silva, A.P.; Fallow, D. Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Sci. Soc. Am. J. 2004, 68, 17–24. [Google Scholar] [CrossRef]
- Carter, M.R. Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Can. J. Soil Sci. 1990, 70, 425–433. [Google Scholar] [CrossRef]
- Håkansson, I. A method for characterizing the state of compactness of the plough layer. Soil Tillage Res. 1990, 16, 105–120. [Google Scholar] [CrossRef]
- Lipiec, J.; Håkansson, I.; Tarkiewicz, S.; Kossowski, J. Soil physical properties and growth of spring barley related to the degree-of-compactness of two soils. Soil Tillage Res. 1991, 19, 307–317. [Google Scholar] [CrossRef]
- Silva, A.P.; Kay, B.D.; Perfect, E. Management versus inherent soil properties effects on bulk density and relative compaction. Soil Tillage Res. 1997, 44, 81–93. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J. Degree of compactness, soil physical properties and yield of soybean in six soils under no-tillage. Soil Res. 2013, 51, 311–321. [Google Scholar] [CrossRef]
- Twedorff, D.A.; Chanasyk, D.S.; Mapfumo, E.; Naeth, M.A.; Baron, V.S. Impacts of forage grazing and cultivation on near-surface relative compaction. Can. J. Soil Sci. 1999, 79, 465–471. [Google Scholar] [CrossRef]
- Reichert, J.M.; Brandt, A.A.; Rodrigues, M.F.; da Veiga, M.; Reinert, D.J. Is chiseling or inverting tillage required to improve mechanical and hydraulic properties of sandy clay loam soil under long-term no-tillage? Geoderma 2017, 301, 72–79. [Google Scholar] [CrossRef]
- Dong, L.; Zheng, Y.; Martinsen, V.; Liang, C.; Mulder, J. Effect of grazing exclusion and rotational grazing on soil aggregate stability in typical grasslands in Inner Mongolia, China. Front. Environ. Sci. 2022, 10, 844151. [Google Scholar] [CrossRef]
- Pandolfo, C.; Braga, H.J.; Da Silva, V.P., Jr.; Massignam, A.M.; Pereira, E.S.; Thomé, V.M.R.; Valci, F.V. Atlas Climatológico do Estado de Santa Catarina; Epagri: Florianópolis, Brasil, 2002.
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; E-book: Il. Color; Embrapa: Brasília, Brazil, 2018; Available online: https://www.embrapa.br/solos/sibcs (accessed on 5 October 2022).
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf (accessed on 11 April 2023).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 11 April 2023).
- Bitencourt Junior, D. Produção e Qualidade de Milho-Silagem na Safra e Safrinha, Num Sistema de Integração Lavoura-Pecuária, em Plantio Direto. Tese (Doutorado em Zootecnia), Universidade Federal de Pelotas, Pelotas. 2010. 75p. Available online: http://guaiaca.ufpel.edu.br/bitstream/123456789/2630/1/Tese_Darcy_Bitencourt_Junior.pdf (accessed on 10 April 2023).
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576830/pdf/MMJ2403-0069.pdf (accessed on 14 June 2023).
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Pimentel-Gomes, F.; Garcia, C.H. Estatística Aplicada a Experimentos Agronômicos e Florestais: Exposição com Exemplos e Orientações para Uso de Aplicativos; FEALQ: Piracicaba, Brazil, 2002; 309p. [Google Scholar]
- Silva, V.R.; Reinert, D.J.; Reichert, J.M. Suscetibilidade à compactação de um Latossolo Vermelho-Escuro e de um Podzólico Vermelho-Amarelo. Rev. Bras. Ciênc. Solo 2000, 4, 239–249. [Google Scholar] [CrossRef]
- Watanabe, R.; Figueiredo, G.C.; Silva, A.P.; Neves, J.C.L.; Oliveira, T.S. Soil compressibility under irrigated perennial and annual crops in a semi-arid environment. Rev. Bras. Ciênc. Solo 2017, 41, e0160206. [Google Scholar] [CrossRef]
- Reichert, J.M.; Mentges, M.I.; Rodrigues, M.F.; Cavalli, J.P.; Awe, G.O.; Mentges, L.R. Compressibility and elasticity of subtropical no-till soils varying in granulometry organic matter, bulk density and moisture. Catena 2018, 165, 345–357. [Google Scholar] [CrossRef]
- Gholamreza, S.; Hossein, G.; Cyril, C.; Bofu, Y. Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in Southeast Queensland. Aust. J. Soil Res. 2008, 46, 348–358. [Google Scholar] [CrossRef]
- Bitencourt Junior, D.; Suzuki, L.E.A.S.; Pauletto, E.A.; Bamberg, A.L.; Nunes, M.R.; Perazzoli, D. Estrutura e água disponível de um Cambissolo submetido a períodos de pastejo rotacionado. Rev. Agron. Amazôn. Agroamazon 2021, 1, 50–59. [Google Scholar] [CrossRef]
- Horn, R.; Lebert, M. Soil compactability and compressibility. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 45–69. [Google Scholar]
- Capurro, E.P.G.; Secco, D.; Reichert, J.M.; Reinert, D.J. Compressibilidade e elasticidade de um Vertissolo afetado pela intensidade de pastejo bovino. Ciência Rural 2014, 44, 283–288. [Google Scholar] [CrossRef]
- Pereira, S.A.; Oliveira, G.C.; Kliemann, H.J.; Balbino, L.C.; França, A.F.S.; Carvalho, E.R. Influence of different grazing systems on physical properties and aggregation in savannah soils. Pesq. Agropec. Trop. 2010, 40, 274–282. Available online: https://repositorio.bc.ufg.br/bitstream/ri/13593/5/Artigo%20-%20Silvano%20Alves%20Pereira%20-%202010.pdf (accessed on 14 June 2023).
- Horn, R.; Fleige, H. A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Tillage Res. 2003, 73, 89–99. [Google Scholar] [CrossRef]
- Lima, C.L.R.; Silva, A.P.; Imhoff, S.; Leão, T.P. Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado. Rev. Bras. Ciênc. Solo 2004, 28, 945–951. [Google Scholar] [CrossRef]
- Horn, R.; Vossbrink, J.; Becker, S. Modern forestry vehicles and their impacts on soil physical properties. Soil Tillage Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- Oliveira, G.C.; Dias Junior, M.S.; Curi, N.; Resck, D.V.S. Compressibilidade de um Latossolo Vermelho argilosos de acordo com a tensão de água no solo, uso e manejo. Rev. Bras. Ciênc. Solo 2003, 27, 773–781. [Google Scholar] [CrossRef]
- Guérif, J. Effects of compaction on soil strength parameters. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 191–214. [Google Scholar]
- Batista, P.H.D.; Almeida, G.L.P.; Silva, J.L.B.; Lins, F.A.C.; Silva, M.V.; Cordeiro Junior, J.F. Hydro-physical properties of soil and pasture vegetation coverage under animal trampling. Rev. Bras. Eng. Agríc. Ambient. 2020, 24, 854–860. [Google Scholar] [CrossRef]
Correlation Coefficient | Interpretation |
---|---|
0.00–0.10 | Negligible correlation |
0.10–0.39 | Weak correlation |
0.40–0.69 | Moderate correlation |
0.70–0.89 | Strong correlation |
0.90–1.00 | Very strong correlation |
2-Times Grazing | 3-Times Grazing | |||
---|---|---|---|---|
Grazing | No Grazing | Grazing | No Grazing | |
Mean | 0.23 | 0.22 | 0.25 | 0.23 |
Maximum | 0.41 | 0.30 | 0.34 | 0.26 |
Minimum | 0.11 | 0.13 | 0.19 | 0.22 |
CV (%) | 34.53 | 28.69 | 10.94 | 5.37 |
CI | BDPPC, Mg/m3 | BD, Mg/m3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Number of Grazing | Number of Grazing | Number of Grazing | |||||||
2-Times | 3-Times | Mean | 2-Times | 3-Times | Mean | 2-Times | 3-Times | Mean | |
Grazing | 0.23 Aa | 0.23 Aa | 0.23 | 1.46 | 1.41 | 1.43 | 1.46 | 1.44 | 1.45 |
No grazing | 0.25 Aa | 0.20 Ab | 0.22 | 1.47 | 1.50 | 1.48 | 1.47 | 1.52 | 1.50 |
Mean | 0.24 | 0.21 | 1.46 | 1.45 | 1.46 | 1.48 |
PPC, kPa | DC, % | |||||
---|---|---|---|---|---|---|
Number of Grazing | Number of Grazing | |||||
Layer, m | 2-Times | 3-Times | Mean | 2-Times | 3-Times | Mean |
0.00–0.05 | 193.48 | 200.48 | 196.98 B | 81.4 | 82.1 | 81.8 B |
0.05–0.10 | 219.22 | 232.45 | 225.84 A | 83.3 | 84.9 | 84.1 A |
0.10–0.15 | 230.67 | 240.00 | 235.34 A | 83.7 | 85.1 | 84.4 A |
0.15–0.20 | 235.82 | 236.47 | 236.15 A | 83.0 | 84.5 | 83.7 A |
Mean | 219.80 | 227.35 | 82.9 b | 84.2 a |
1 Variables | ||||||
---|---|---|---|---|---|---|
BD | GM | Def | CI | PPC | DC | |
TP | −0.98 ** | 0.79 ** | 0.77 ** | 0.20 ** | −0.51 ** | −0.77 ** |
BD | - | −0.83 ** | −0.74 ** | −0.19 * | 0.50 ** | 0.74 ** |
GM | - | - | 0.43 ** | ns | −0.27 ** | −0.43 ** |
Def | - | - | - | 0.56 ** | −0.66 ** | −0.99 ** |
CI | - | - | - | - | ns | −0.56 ** |
PPC | - | - | - | - | - | 0.66 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, L.E.A.S.; Bitencourt Junior, D.; Pauletto, E.A.; Miola, E.C.C.; Rostirolla, P.; Strieder, G. Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction. Conservation 2023, 3, 334-345. https://doi.org/10.3390/conservation3030023
Suzuki LEAS, Bitencourt Junior D, Pauletto EA, Miola ECC, Rostirolla P, Strieder G. Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction. Conservation. 2023; 3(3):334-345. https://doi.org/10.3390/conservation3030023
Chicago/Turabian StyleSuzuki, Luis Eduardo Akiyoshi Sanches, Darcy Bitencourt Junior, Eloy Antonio Pauletto, Ezequiel Cesar Carvalho Miola, Pablo Rostirolla, and Gilberto Strieder. 2023. "Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction" Conservation 3, no. 3: 334-345. https://doi.org/10.3390/conservation3030023
APA StyleSuzuki, L. E. A. S., Bitencourt Junior, D., Pauletto, E. A., Miola, E. C. C., Rostirolla, P., & Strieder, G. (2023). Compressibility of a Cambisol Submitted to Periods of Rotational Grazing and Strategies to Avoid Additional Soil Compaction. Conservation, 3(3), 334-345. https://doi.org/10.3390/conservation3030023