Towards Sustainable Concrete: Current Trends and Future Projections of Supplementary Cementitious Materials in South Africa
Abstract
1. Introduction
2. Supplementary Cementitious Materials
2.1. Fly Ash
2.2. Slag
2.3. Silica Fume
2.4. Natural Pozzolans
2.4.1. Natural Pozzolans (Uncalcined)
2.4.2. Limestone Calcined Clay
2.5. Agricultural Waste
2.6. Recycled Concrete Fines
3. General Discussion and Future Projections of SCMs
4. Recommendations and Areas of Future Research
4.1. Exportation of Fly Ash
4.2. High-Volume Fly Ash
4.3. Inclusion of LC3 in the Cement Standards
4.4. Government Incentives and Policies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flegar, M.; Serdar, M.; Londono-Zuluaga, D.; Scrivener, K. Overview of clay as supplementary cementitious material. In Proceedings of the 5th Symposium on Doctoral Studies in Civil Engineering, Zagreb, Croatia, 9–10 September 2019; pp. 163–174. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Bosoaga, A.; Masek, O.; Oakey, J.E. CO2 Capture Technologies for Cement Industry. Energy Procedia 2009, 1, 133–140. [Google Scholar] [CrossRef]
- Muigai, R.; Alexander, M.G.; Moyo, P. Cradle-to-gate environmental impacts of the concrete industry in South Africa. J. S. Afr. Inst. Civ. Eng. 2013, 55, 2–7. [Google Scholar]
- Boanada-Fuchs, A.; Heierli, U.; Scrivener, K. Low Carbon Cement: Harmonizing Environmental Goals and Housing Needs. 2024. Available online: https://lc3.ch/ (accessed on 10 April 2025).
- Scrivener, K.L.; Snellings, R. The Rise of Portland Cements. Elements 2022, 18, 308–313. [Google Scholar] [CrossRef]
- Belaïd, F. How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resour. Conserv. Recycl. Adv. 2022, 15, 200084. [Google Scholar] [CrossRef]
- Ankur, N.; Singh, N. Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111361. [Google Scholar] [CrossRef]
- Ige, O.E.; Olanrewaju, O.A. Comparative Life Cycle Assessment of Different Portland Cement Types in South Africa. Clean Technol. 2023, 5, 901–920. [Google Scholar] [CrossRef]
- Muthu, M.; Kumar, B.G.; Govindaraj, V.; Sadowski, Ł. Performance and life cycle of Portland limestone cement mixes admixed with gypsum. Eur. J. Environ. Civ. Eng. 2024, 29, 966–982. [Google Scholar] [CrossRef]
- Son, P.V.H.; Van Nam, N.; Tran, N.P.; Le-Hoai, L.; Ngo, T.D. Steel slag aggregate low-cement concrete: Engineering performance, microstructure and sustainability. Constr. Build. Mater. 2024, 436, 136827. [Google Scholar] [CrossRef]
- De Maeijer, P.K.; Craeye, B.; Snellings, R.; Kazemi-Kamyab, H.; Loots, M.; Janssens, K.; Nuyts, G. Effect of ultra-fine fly ash on concrete performance and durability. Constr. Build Mater. 2020, 263, 120493. [Google Scholar] [CrossRef]
- Amadi, I.G.; Beushausen, H.; Alexander, M.G. Multi-Technique Approach to Enhance the Properties of Fine Recycled Aggregate Concrete. Front. Mater. 2022, 9, 893852. [Google Scholar] [CrossRef]
- Beushausen, H.; Alexander, M.; Ballim, Y. Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios. Constr. Build. Mater. 2012, 29, 533–540. [Google Scholar] [CrossRef]
- Johari, M.A.M.; Brooks, J.J.; Kabir, S.; Rivard, P. Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 2011, 25, 2639–2648. [Google Scholar] [CrossRef]
- Ashish, K.S. Effect of class F fly ash on the durability properties of concrete. Sustain. Environ. Res. 2018, 28, 25–31. [Google Scholar] [CrossRef]
- Richardson, M.G. Fundamentals of Durable Reinforced Concrete; Spon Press: London, UK, 2004. [Google Scholar]
- Amadi, I.G.; Alexander, M.G.; Beushausen, H. The future of concrete aggregates—A brief review. Indian Concr. J. 2021, 95, 12–21. [Google Scholar]
- Mo, L.; Crowther, T.W.; Maynard, D.S.; Hoogen, J.v.D.; Ma, H.; Bialic-Murphy, L.; Liang, J.; De-Miguel, S.; Nabuurs, G.-J.; Reich, P.B.; et al. The global distribution and drivers of wood density and their impact on forest carbon stocks. Nat. Ecol. Evol. 2024, 8, 2195–2212. [Google Scholar] [CrossRef] [PubMed]
- World Bank Population, Total. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?end=2023&start=1994&view=chart (accessed on 2 February 2025).
- USGS. Mineral Commodity Summaries. National Minerals Information Center. Available online: https://www.usgs.gov/centers/national-minerals-information-center/mineral-commodity-summaries (accessed on 9 February 2025).
- FAO. FAOSTAT: Forestry Production and Trade. Available online: https://www.fao.org/faostat/en/#data/FO (accessed on 9 February 2025).
- Kruger, R.A. Fly ash beneficiation in South Africa: Creating new opportunities in the market-place. Fuel 1997, 76, 777–779. [Google Scholar] [CrossRef]
- JMahlaba, S.; Kearsley, E.P.; Kruger, R.A. Physical, chemical and mineralogical characterisation of hydraulically disposed fine coal ash from SASOL Synfuels. Fuel 2011, 90, 2491–2500. [Google Scholar] [CrossRef][Green Version]
- Eze, C.P.; Nyale, S.M.; Akinyeye, R.O.; Gitari, W.M.; Akinyemi, S.A.; Fatoba, O.O.; Petrik, L.F. Chemical, mineralogical and morphological changes in weathered coal fly ash: A case study of a brine impacted wet ash dump. J. Environ. Manag. 2013, 129, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Sinngu, F.; Ekolu, S.O.; Naghizadeh, A.; Quainoo, H.A. Evaluation of metakaolin pozzolan for cement in South Africa. Dev. Built Environ. 2023, 14, 100154. [Google Scholar] [CrossRef]
- Leo, E.S.; Alexander, M.G.; Beushausen, H. Optimisation of mix proportions of LC3 binders with African clays, based on compressive strength of mortars, and associated hydration aspects. Cem. Concr. Res. 2023, 173, 107255. [Google Scholar] [CrossRef]
- Otieno, M.; Ikotun, J.; Ballim, Y. Experimental investigations on the effect of concrete quality, exposure conditions and duration of initial moist curing on carbonation rate in concretes exposed to urban, inland environment. Constr. Build. Mater. 2020, 246, 118443. [Google Scholar] [CrossRef]
- Salvoldi, B.G.; Beushausen, H.; Alexander, M.G. Oxygen permeability of concrete and its relation to carbonation. Constr. Build. Mater. 2015, 85, 30–37. [Google Scholar] [CrossRef]
- Otieno, M.; Beushausen, H.; Alexander, M. Effect of chemical composition of slag on chloride penetration resistance of concrete. Cem. Concr. Compos. 2014, 46, 56–64. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Norval, C.; Kolawole, J.T.; Paul, S.C.; Ibrahim, K.A. 3D-printed limestone calcined clay cement concrete incorporating recycled plastic waste (RESIN8). Results Eng. 2024, 22, 102112. [Google Scholar] [CrossRef]
- Colyn, M.; van Zijl, G.; Babafemi, A.J. Fresh and strength properties of 3D printable concrete mixtures utilising a high volume of sustainable alternative binders. Constr. Build. Mater. 2024, 419, 135474. [Google Scholar] [CrossRef]
- Jaji, M.B.; van Zijl, G.P.A.G.; Babafemi, A.J. Slag-modified metakaolin-based geopolymer for 3D concrete printing application: Evaluating fresh and hardened properties. Clean. Eng. Technol. 2023, 15, 100665. [Google Scholar] [CrossRef]
- Eskom. Ash Management In Eskom; Eskom: Sandton, South Africa, 2021. [Google Scholar]
- Vilakazi, A.Q.; Ndlovu, S.; Chipise, L.; Shemi, A. The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations. Sustainability 2022, 14, 1958. [Google Scholar] [CrossRef]
- Sideris, K.; Justnes, H.; Soutsos, M.; Sui, T. Fly ash. In Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4; De Belie, N., Soutsos, M., Gruyaert, E., Eds.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Nayak, D.K.; Abhilash, P.P.; Singh, R.; Kumar, R.; Kumar, V. Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Clean. Mater. 2022, 6, 100143. [Google Scholar] [CrossRef]
- ASTM C618; Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM: West Conshohocken, PA, USA, 2023. [CrossRef]
- Gitari, W.M.; Petrik, L.F.; Akinyemi, S.A. Treatment of Acid Mine Drainage with Coal Fly Ash: Exploring the Solution Chemistry and Product Water Quality. In Coal Fly Ash Beneficiation—Treatment of Acid Mine Drainage with Coal Fly Ash; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Udaya; Fernandes, P. Novel carbon nanotube and fly-ash reinforced Al composites for automobile and aerospace applications. Mater. Today Proc. 2020, 35, 456–460. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, R.; Liu, Q.; Cao, Q.; Guo, R. Synthesis of zeolite A from fly ash and its application in the slow release of urea. Waste Manag. 2023, 158, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Koshlak, H. Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals. Materials 2023, 16, 4837. [Google Scholar] [CrossRef] [PubMed]
- SANS 50197-1; Cement: Composition, Specifications and Conformity Criteria for Common Cements. South African Bureau of Standards: Pretoria, South Africa, 2013.
- Kolias, S.; Kasselouri-Rigopoulou, V.; Karahalios, A. Stabilisation of clayey soils with high calcium fly ash and cement. Cem. Concr. Compos. 2005, 27, 301–313. [Google Scholar] [CrossRef]
- Hait, P.; Dhara, D.; Ghanta, I.; Biswas, C.; Basu, P. Simultaneous Utilization of Fly Ash and Waste Plastics for Making Bricks and Paver Blocks. J. Inst. Eng. (India) Ser. D 2024, 105, 1981–1988. [Google Scholar] [CrossRef]
- Gourav, K.; Reddy, B.V.V. Characteristics of compacted fly ash bricks and fly ash brick masonry. J. Struct. Eng. 2014, 41, 144–157. [Google Scholar]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cem. Concr. Res. 2013, 52, 112–122. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.Q.; Zhou, S.H.; Chen, E.; Tang, S.W. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash. Constr. Build. Mater. 2018, 187, 1073–1091. [Google Scholar] [CrossRef]
- Montgomery, A.; Kasaniya, M.; Zhao, P.; Thomas, M.; Peterson, K. The dam that fly ash built. J. Microsc. 2023, 294, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Reynolds-Clausen, K.; Singh, N. South Africa’s Power Producer’s Revised Coal Ash Strategy and Implementation Progress. Coal Combust. Gasif. Prod. 2019, 11, 10–17. [Google Scholar] [CrossRef]
- Department of Environmental Affairs. South Africa State of Waste Report. Final Draft. Pretoria. 2018. Available online: https://www.scribd.com/document/726136799/141119143510-state-of-Waste-Report-2018-1 (accessed on 18 February 2025).
- Power Technology. Medupi Coal-Fired Power Station Project, South Africa. Available online: https://www.power-technology.com/projects/medupi-power-station-project-south-africa/?cf-view&cf-closed (accessed on 21 April 2025).
- Enerdata. South Africa’s Eskom Connects a 800 MW Unit at the Kusile Coal Power Plant. Available online: https://www.enerdata.net/publications/daily-energy-news/south-africas-eskom-connects-800-mw-unit-kusile-coal-power-plant.html (accessed on 19 April 2025).
- Eskom. As Komati Coal-Fired Power Station Reaches End of Life, Renewable Energy Project Takes Shape. Available online: https://www.eskom.co.za/as-komati-coal-fired-power-station-reaches-end-of-life-renewable-energy-project-takes-shape/ (accessed on 19 April 2025).
- Ash Development Association of Australia. Annual Production and Utilisation Survey Report: January–December 2023. 2024. Available online: https://www.adaa.asn.au/products/ccp-utilisation/ (accessed on 19 April 2025).
- Yang, Z.; Chang, G.; Xia, Y.; He, Q.; Zeng, H.; Xing, Y.; Gui, X. Utilization of waste cooking oil for highly efficient recovery of unburned carbon from coal fly ash. J. Clean. Prod. 2021, 282, 124547. [Google Scholar] [CrossRef]
- Yu, X.; Cui, Y.; Chen, Y.; Chang, I.S.; Wu, J. The drivers of collaborative innovation of the comprehensive utilization technologies of coal fly ash in China: A network analysis. Environ. Sci. Pollut. Res. 2022, 29, 56291–56308. [Google Scholar] [CrossRef] [PubMed]
- Central Electricity Authority. Report on Fly Ash Generation at Coal or Lignite Based Thermal Power Stations and Its Utilization in the Country for the Year 2019–2020. New Delhi. 2020. Available online: https://cea.nic.in/wp-content/uploads/tcd/2021/01/flyash_2019-20.pdf (accessed on 12 February 2025).
- Putilova, I.V. Current state of the coal ash handling problem in Russia and abroad, aspects of the coal ash applications in hydrogen economy. Int. J. Hydrogen Energy 2023, 48, 31040–31048. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. Recovered Fly Ashes as an Anthropogenic Raw Material. Minerals 2023, 13, 623. [Google Scholar] [CrossRef]
- American Coal Ash Association. Coal Ash Recycling Rate Increased in 2022; Ash Harvesting Continued at Significant Volumes. 2023. Available online: https://acaa-usa.org/wp-content/uploads/2023/12/News-Release-Coal-Ash-Production-and-Use-2022.pdf (accessed on 12 February 2025).
- NCPC. IEE Guideline for the Cement Manufacturing Industry in South Africa: Part 1. 2023. Available online: https://www.industrialefficiency.co.za/wp-content/uploads/2024/08/2023-Cement-Guideline-Part-1.pdf (accessed on 19 February 2025).
- Shikwambana, L.; Mhangara, P.; Mbatha, N. Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102130. [Google Scholar] [CrossRef]
- Eskom. Generation Plant Mix; Eskom: Sandton, South Africa, 2024. [Google Scholar]
- Siyobi, B.; Moosa, M. 100 Years of Eskom: How Did we Get Here? Available online: https://gga.org/100-years-of-eskom-how-did-we-get-here/ (accessed on 4 March 2025).
- Šulc, R.; Šídlová, M.; Formáček, P.; Snop, R.; Škvára, F.; Polonská, A. A Study of Physicochemical Properties of Stockpile and Ponded Coal Ash. Materials 2022, 15, 3653. [Google Scholar] [CrossRef] [PubMed]
- Cemnet. Clinker Substitution Takes Hold in Africa. Available online: https://www.cemnet.com/News/story/174818/clinker-substitution-takes-hold-in-africa.html (accessed on 16 February 2025).
- Mining Review Africa. Afrisam Champions the Use of Slag to Reduce Clinker Factor. Available online: https://www.miningreview.com/base-metals/afrisam-champions-the-use-of-slag-to-reduce-clinker-factor/ (accessed on 16 February 2025).
- SANS 55167-1; Ground Granulated Blast Furnace Slag for Use in Concrete, Mortar and Grout Part 1: Conformity Evaluation. South African Bureau of Standards: Pretoria, South Africa, 2011.
- SANS 50450-1; Fly Ash for Concrete Part 1: Definition, Specifications and Conformity Criteria. South African Bureau of Standards: Pretoria, South Africa, 2014.
- SANS 53263-1; Silica Fume for Concrete Part 1: Definitions, Requirements and Conformity Criteria. South African Bureau of Standards: Pretoria, South Africa, 2011.
- Matthes, W.; Vollpracht, A.; Villagrán, Y.; Kamali-Bernard, S.; Hooton, D.; Gruyaert, E.; Soutsos, M.; De Belie, N. Ground Granulated Blast-Furnace Slag. In Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4; Chapter 1; De Belie, N., Soutsos, M., Gruyaert, E., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 1–54. [Google Scholar] [CrossRef]
- Alexander, M.; Jaufeerally, H.; Mackechnie, K. Structural and Durability Properties of Concrete made with Corex Slag. Res. Monogr. 2003, 1–28. Available online: https://ebe.uct.ac.za/sites/default/files/content_migration/ebe_uct_ac_za/848/files/Mono_6_pdf.pdf (accessed on 18 February 2025).
- South African Iron and Steel Institute. Crude Steel Production. 2025. Available online: https://www.saisi.org/crude-steel-production/#:~:text=South%20Africa%20produced%204.7%20million,tonnes%20recorded%20in%20Q4%202023 (accessed on 16 February 2025).
- World Steel Association. Fact Sheet: Steel Industry Co-Products; World Steel Association: Brussels, Belgium, 2021; Available online: https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf (accessed on 18 February 2025).
- South African Iron and Steel Institute. The Steel Industry Performance Overview—2024. Steel Matters, No. January. 2025. Available online: https://www.saisi.org/publications/steelmatters-january-2025/ (accessed on 19 February 2025).
- Reuters. ArcelorMittal South Africa Defers Plant Closure After $92 Million Injection. Available online: https://www.reuters.com/markets/commodities/arcelormittal-south-africa-defers-plant-closure-after-92-million-injection-2025-03-31/ (accessed on 20 April 2025).
- Beesley, A.; Scribante, P. ArcelorMittal SA’s Collapse Highlights Urgent Need for Industrial Policy Reform. ActionSA. Available online: https://www.actionsa.org.za/arcelormittal-sas-collapse-highlights-urgent-need-for-industrial-policy-reform/ (accessed on 20 April 2025).
- Arcelormittal Limited. Atmospheric Impact Report in Support of the Saldanha Steel AEL Amendment Application; Arcelormittal Limited: Midrands, South Africa, 2023; Available online: https://www.wsp.com/-/media/service/south-africa/2024-documents/proposed-development-of-the-logistics-hub-at-the-saldanha-steel-facility/41103718---saldanha-steel-ael-amendment-application--air.pdf (accessed on 19 February 2025).
- Siddique, R.; Chahal, N. Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar. Resour. Conserv. Recycl. 2011, 55, 739–744. [Google Scholar] [CrossRef]
- Lewis, R.C. Silica Fume. In Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4; Chapter 3; De Belie, N., Soutsos, M., Gruyaert, E., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 99–121. [Google Scholar]
- Hamada, H.M.; Abed, F.; Katman, H.Y.B.; Humada, A.M.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.T.; Thomas, B.S. Effect of silica fume on the properties of sustainable cement concrete. J. Mater. Res. Technol. 2023, 24, 8887–8908. [Google Scholar] [CrossRef]
- Civengtech. Global Silica Fume Production Analysis: Annual Output Trends and Regional Dynamics. Available online: https://civengtech.com/global-silica-fume-production-analysis-annual-output-trends-and-regional-dynamics/ (accessed on 3 March 2025).
- Dedeloudis, C.; Zervaki, M.; Sideris, K.; Juenger, M.; Alderete, N.; Kamali-Bernard, S.; Villagrán, Y.; Snellings, R. Natural Pozzolans. In Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4; Chapter 6; De Belie, N., Soutsos, M., Gruyaert, E., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 181–231. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Sinngu, F.; Ekolu, S.O.; Naghizadeh, A.; Quainoo, H.A. Experimental study and classification of natural zeolite pozzolan for cement in South Africa. J. S. Afr. Inst. Civ. Eng. 2022, 64, 2–15. [Google Scholar] [CrossRef]
- Sharbaf, M.; Najimi, M.; Ghafoori, N. A comparative study of natural pozzolan and fly ash: Investigation on abrasion resistance and transport properties of self-consolidating concrete. Constr. Build. Mater. 2022, 346, 128330. [Google Scholar] [CrossRef]
- Hussain, R.R.; Alhozaimy, A.M.; Al-Negheimish, A. Role of scoria natural pozzolan in the passive film development for steel rebars in chloride-contaminated concrete environment. Constr. Build. Mater. 2022, 357, 129335. [Google Scholar] [CrossRef]
- Seraj, S.; Cano, R.; Ferron, R.D.; Juenger, M.C.G. The role of particle size on the performance of pumice as a supplementary cementitious material. Cem. Concr. Compos. 2017, 80, 135–142. [Google Scholar] [CrossRef]
- McKay, M.P.; Weislogel, A.L.; Fildani, A.; Brunt, R.L.; Hodgson, D.M.; Flint, S.S. U-PB zircon tuff geochronology from the Karoo Basin, South Africa: Implications of zircon recycling on stratigraphic age controls. Int. Geol. Rev. 2015, 57, 393–410. [Google Scholar] [CrossRef]
- Holzförster, F. Lithology and depositional environments of the Lower Jurassic Clarens Formation in the eastern Cape, South Africa. S. Afr. J. Geol. 2007, 110, 543–560. [Google Scholar] [CrossRef]
- Kalina, R.D.; Al-Shmaisani, S.; Ferron, R.D.; Juenger, M.C.G. False positives in ASTM C618 specifications for natural pozzolans. ACI Mater. J. 2019, 116, 165–172. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K. Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 2012, 42, 1579–1589. [Google Scholar] [CrossRef]
- Sharma, M.; Bishnoi, S.; Martirena, F.; Scrivener, K. Limestone calcined clay cement and concrete: A state-of-the-art review. Cem. Concr. Res. 2021, 149, 106564. [Google Scholar] [CrossRef]
- Hussain, S.M.F.; Ayub, T.; Jamil, T.; Khan, A.U.R. Durability Performance of OPC and LC3-50 Concrete Containing Lightweight Aggregates. Iran. J. Sci. Technol.—Trans. Civ. Eng. 2025. [Google Scholar] [CrossRef]
- Leo, E.S.; Alexander, M.G.; Beushausen, H. Compressive strength and durability performance of limestone calcined clay cement concrete made from selected African raw materials. Constr. Build. Mater. 2024, 438, 137012. [Google Scholar] [CrossRef]
- Alujas, A.; Fernández, R.; Quintana, R.; Scrivener, K.L.; Martirena, F. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl. Clay Sci. 2015, 108, 94–101. [Google Scholar] [CrossRef]
- Martirena, F.; Almenares, R.; Zunino, F.; Alujas, A.; Scrivener, K. Color control in industrial clay calcination. RILEM Tech. Lett. 2020, 5, 1–7. [Google Scholar] [CrossRef]
- Department of Minerals and Energy. Lime Industry in South Africa. 2010. Available online: https://www.dmre.gov.za/LinkClick.aspx?fileticket=YqZfpm-OvZs%3D&portalid=0 (accessed on 11 April 2025).
- Ekosse, G.I.E. Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization. Appl. Clay Sci. 2010, 50, 212–236. [Google Scholar] [CrossRef]
- Leo, E.S.; Alexander, M.G. Potential of Selected South African Kaolinite Clays for Clinker Replacement in Concrete. In Calcined Clays for Sustainable Concret: Proceedings of the 3rd International Conference on Calcined Clays for Sustainable Concrete; Chapter 2; Bishnoi, S., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Ram, K.; Flegar, M.; Serdar, M.; Scrivener, K. Influence of Low- to Medium-Kaolinite Clay on the Durability of Limestone Calcined Clay Cement (LC3) Concrete. Materials 2023, 16, 374. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Du, H.; Pang, S.D. Performance of mortar incorporating calcined marine clays with varying kaolinite content. J. Clean Prod. 2021, 282, 124513. [Google Scholar] [CrossRef]
- Zolfagharnasab, A.; Ramezanianpour, A.A.; Bahman-Zadeh, F. Investigating the potential of low-grade calcined clays to produce durable LC3 binders against chloride ions attack. Constr. Build. Mater. 2021, 282, 124541. [Google Scholar] [CrossRef]
- Chipfupa, U.; Tagwi, A. Greenhouse gas emission implications of small-scale sugarcane farmers’ trash management practices: A case for bioenergy production in South Africa. Energy Nexus 2024, 15, 100308. [Google Scholar] [CrossRef]
- Martirena, F.; Monzó, J. Vegetable ashes as Supplementary Cementitious Materials. Cem. Concr. Res. 2018, 114, 57–64. [Google Scholar] [CrossRef]
- Farrant, W.E.; Babafemi, A.J.; Kolawole, J.T.; Panda, B. Influence of Sugarcane Bagasse Ash and Silica Fume on the Mechanical and Durability Properties of Concrete. Materials 2022, 15, 3018. [Google Scholar] [CrossRef] [PubMed]
- Iro, U.I.; Alaneme, G.U.; Attah, I.C.; Ganasen, N.; Duru, S.C.; Olaiya, B.C. Optimization of cassava peel ash concrete using central composite design method. Sci. Rep. 2024, 14, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Van Tuan, N.; Ye, G.; Van Breugel, K.; Copuroglu, O. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash. Cem. Concr. Res. 2011, 41, 1104–1111. [Google Scholar] [CrossRef]
- Shakouri, M.; Exstrom, C.L.; Ramanathan, S.; Suraneni, P. Hydration, strength, and durability of cementitious materials incorporating untreated corn cob ash. Constr. Build. Mater. 2020, 243, 118171. [Google Scholar] [CrossRef]
- Department of Agriculture, Land Reform and Rural Development. Trends in the Agricultural Sector 2023. Pretoria. 2024. Available online: https://www.dalrrd.gov.za/images/Branches/Economica%20Development%20Trade%20and%20Marketing/Statistc%20and%20%20Economic%20Analysis/statistical-information/trends-in-the-agricultural-sector-2023.pdf (accessed on 16 April 2025).
- Ungureanu, N.; Vlăduț, V.; Biriș, S.Ș. Sustainable Valorization of Waste and By-Products from Sugarcane Processing. Sustainability 2022, 14, 11089. [Google Scholar] [CrossRef]
- Singh, K.; Singh, J.; Kumar, S. A Sustainable Environmental Study on Corn Cob Ash Subjected To Elevated Temperature. Curr. World Environ. 2018, 13, 144–150. [Google Scholar] [CrossRef]
- Lizotte, P.L.; Savoie, P.; De Champlain, A. Ash content and calorific energy of corn stover components in eastern Canada. Energies 2015, 8, 4827–4838. [Google Scholar] [CrossRef]
- Islam, M.K.; Khatun, M.S.; Arefin, M.A.; Islam, M.R.; Hassan, M. Waste to energy: An experimental study of utilizing the agricultural residue, MSW, and e-waste available in Bangladesh for pyrolysis conversion. Heliyon 2021, 7, e08530. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.; Commeh, M.; Olonade, K.; Schiewer, G.L.; Dodoo-Arhin, D.; Dauda, R.; Fataei, S.; Tawiah, A.T.; Mohamed, F.; Thiedeitz, M.; et al. Sustainable circular value chains: From rural waste to feasible urban construction materials solutions. Dev. Built Environ. 2021, 6, 100047. [Google Scholar] [CrossRef]
- Onsongo, S.K.; Olukuru, J.; Munyao, O.M.; Mwabonje, O. The role of agricultural ashes (rice husk ash, coffee husk ash, sugarcane bagasse ash, palm oil fuel ash) in cement production for sustainable development in Africa. Discov. Sustain. 2025, 6, 62. [Google Scholar] [CrossRef]
- Schmidt, W.; Otieno, M.; Olonade, K.; Radebe, N.; Van-Damme, H.; Tunji-Olayeni, P.; Kenai, S.; Tawiah, A.T.; Manful, K.; Akinwale, A.; et al. Innovation potentials for construction materials with specific focus on the challenges in Africa. RILEM Tech. Lett. 2020, 5, 63–74. [Google Scholar] [CrossRef]
- Fadele, O.; Otieno, M. Utilisation of supplementary cementitious materials from agricultural wastes: A review. Proc. Inst. Civ. Eng. Constr. Mater. 2022, 175, 65–71. [Google Scholar] [CrossRef]
- Zajac, M.; Song, J.; Ullrich, P.; Skocek, J.; Haha, M.B.; Skibsted, J. High early pozzolanic reactivity of alumina-silica gel: A study of the hydration of composite cements with carbonated recycled concrete paste. Cem. Concr. Res. 2023, 175, 107345. [Google Scholar] [CrossRef]
- Zajac, M.; Skibsted, J.; Skocek, J.; Durdzinski, P.; Bullerjahn, F.; Haha, M.B. Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation. Cem. Concr. Res. 2020, 130, 105990. [Google Scholar] [CrossRef]
- Zajac, M.; Skocek, J.; Skibsted, J.; Haha, M.B. CO2 mineralization of demolished concrete wastes into a supplementary cementitious material—a new ccu approach for the cement industry. RILEM Tech. Lett. 2021, 6, 53–60. [Google Scholar] [CrossRef]
- Li, J.; Deng, X.; Lu, Z.; Li, X.; Hou, L.; Jiang, J.; Yang, F.; Zhang, J.; He, K. Recycled concrete fines as a supplementary cementitious material: Mechanical performances, hydration, and microstructures in cementitious systems. Case Stud. Constr. Mater. 2024, 21, e03575. [Google Scholar] [CrossRef]
- Amadi, I.G.; Mahachi, J. State-of-the-art review on construction and demolition waste: The South African context. Clean. Waste Syst. 2025, 11, 100251. [Google Scholar] [CrossRef]
- Berge, S.; von Blottnitz, H. An estimate of construction and demolition waste quantities and composition expected in South Africa. S. Afr. J. Sci. 2022, 118, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Rangel, C.S.; Filho, R.D.T.; Amario, M.; Pepe, M.; de Castro Polisseni, G.; de Andrade, G.P. Generalized quality control parameter for heterogenous recycled concrete aggregates: A pilot scale case study. J. Clean. Prod. 2019, 208, 589–601. [Google Scholar] [CrossRef]
- Du, S.; Zhao, Q.; Shi, X. High-Volume Fly Ash-Based Cementitious Composites as Sustainable Materials: An Overview of Recent Advances. Adv. Civ. Eng. 2021, 2021, 4976169. [Google Scholar] [CrossRef]
- Doucet, F.J. Perspective on the use of mine tailings in fly ash-based geopolymers in the South African context. In Next Generation Tailings—Opportunity or Risk? The Southern African Institute of Mining and Metallurgy: Johannesbur, South Africa, 2023; pp. 24–25. Available online: https://www.saimm.co.za/Conferences/files/tailings-2023/14%20T10_Doucet.pdf (accessed on 27 April 2025).
- National Treasury. Carbon Tax Act No. 15 of 2019. 2019. Available online: https://carbon.energy.gov.za/Documents/Docs/2019%20Carbon%20Offset%20Regulations.pdf (accessed on 29 January 2025).
Country | Reference Year(s) | Production (Million Tonnes) | Utilisation Level (%) | Reference |
---|---|---|---|---|
South Africa | 2017 | 39.2 | 7 | [51] |
Australia | 2023 | 10.2 | 48 | [55] |
China | 2019 | 450 | 70 | [56,57] |
India | 2019–2020 | 205.1 | 83.1 | [58] |
Japan | 2019 | 11.2 | 98.4 | [59] |
Poland | 2021 | 1.3 | 90 | [60] |
Russia | 2019 | 27.4 | 10.3 | [59] |
USA | 2022 | 68.2 | 62 | [61] |
All production units are expressed in tonnes for uniformity. | ||||
Data for India spans from April 2019 to March 2020 |
SCM | Annual Production (Million Tonnes) | Stockpile/Deposit (Million Tonnes) | Comment |
---|---|---|---|
Fly ash | >39.2 | >1000 | Continuous increase in the stockpile |
Slag | 1.3 | NA | Continuous decrease in annual production, raising concerns about future availability |
Silica fume | 0.05–0.1 | - | Production is forecast to remain largely unchanged in the foreseeable future |
Calcined clay | - | >1000 | Great potential but largely unutilised |
Agricultural waste | 0.22 | - | Largely unutilised, with limited viability |
Recycled concrete fines | 0.04 | - | Limited viability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amadi, I.G.; Mahachi, J. Towards Sustainable Concrete: Current Trends and Future Projections of Supplementary Cementitious Materials in South Africa. Constr. Mater. 2025, 5, 70. https://doi.org/10.3390/constrmater5030070
Amadi IG, Mahachi J. Towards Sustainable Concrete: Current Trends and Future Projections of Supplementary Cementitious Materials in South Africa. Construction Materials. 2025; 5(3):70. https://doi.org/10.3390/constrmater5030070
Chicago/Turabian StyleAmadi, Ichebadu George, and Jeffrey Mahachi. 2025. "Towards Sustainable Concrete: Current Trends and Future Projections of Supplementary Cementitious Materials in South Africa" Construction Materials 5, no. 3: 70. https://doi.org/10.3390/constrmater5030070
APA StyleAmadi, I. G., & Mahachi, J. (2025). Towards Sustainable Concrete: Current Trends and Future Projections of Supplementary Cementitious Materials in South Africa. Construction Materials, 5(3), 70. https://doi.org/10.3390/constrmater5030070