Thermal Optimization of Earth Bricks Using Néré Husk (Parkia biglobosa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Test Specimens
2.3. Tests
2.4. Statistical Analysis
3. Results
3.1. Thermal Conductivity
3.2. Thermal Effusivity
4. Discussions
4.1. Thermal Conductivity
4.2. Thermal Effusivity
5. Conclusions
6. Recommendations
- –
- Néré husk should be used in fine powder form for applications requiring a more uniform distribution in the matrix of the material.
- –
- Other pod processing techniques (e.g., thermal or chemical treatments) should be explored to further improve its performance.
- –
- The bricks should be tested in real buildings to assess their thermal performance under varied and prolonged conditions of use.
- –
- The ecological footprint of the entire production process should be assessed to ensure a balance between innovation and respect for the environment.
- –
- The use of néré husk in local construction should be promoted by training craftsmen and builders in the best formulation techniques.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tlaiji, G.; Ouldboukhitine, S.; Pennec, F.; Biwole, P. Thermal and Mechanical Behavior of Straw-Based Construction: A Review. Constr. Build. Mater. 2022, 316, 125915. [Google Scholar] [CrossRef]
- Far, C.; Ahmed, I.; Mackee, J. Significance of Occupant Behaviour on the Energy Performance Gap in Residential Buildings. Architecture 2022, 2, 424–433. [Google Scholar] [CrossRef]
- Ministères Aménagement du Territoire Transition Ecologique. Énergie dans les Bâtiments. Available online: https://www.ecologie.gouv.fr/politiques-publiques/energie-batiments (accessed on 18 January 2025).
- Rodriguez, C.M.; D’Alessandro, M. Indoor Thermal Comfort Review: The Tropics as the next Frontier. Urban Clim. 2019, 29, 100488. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of Vegetation, Urban Density, Building Height, and Atmospheric Conditions on Local Temperatures and Thermal Comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Tossim, M.J.; Tombar, P.A.; Banakinao, S.; Mavunda, C.A.; Sondou, T.; Aholou, C.C.; Ayité, Y.M.X.D. Analysis of the Choice of Cement in Construction and Its Impact on Comfort in Togo. Sustainability 2024, 16, 7359. [Google Scholar] [CrossRef]
- Latha, P.K.; Darshana, Y.; Venugopal, V. Role of Building Material in Thermal Comfort in Tropical Climates—A Review. J. Build. Eng. 2015, 3, 104–113. [Google Scholar] [CrossRef]
- ASHRAE 55-2023|Boutique ASHRAE. Available online: https://store.accuristech.com/ashrae/standards/ashrae-55-2023?product_id=2577096 (accessed on 19 March 2025).
- Irfeey, A.M.M.; Jamei, E.; Chau, H.-W.; Ramasubramanian, B. Enhancing Occupants’ Thermal Comfort in Buildings by Applying Solar-Powered Techniques. Architecture 2023, 3, 213–233. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Nag, P.K. Sick Building Syndrome and Other Building-Related Illnesses. In Office Buildings: Health, Safety and Environment; Nag, P.K., Ed.; Springer: Singapore, 2019; pp. 53–103. ISBN 978-981-13-2577-9. [Google Scholar]
- Mannan, M.; Al-Ghamdi, S.G. Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure. Int. J. Environ. Res. Public Health 2021, 18, 3276. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Baldinelli, G.; Bianchi, F. Evaluating in Situ Thermal Transmittance of Green Buildings Masonries—A Case Study. Case Stud. Constr. Mater. 2014, 1, 53–59. [Google Scholar] [CrossRef]
- González, M.J.; García Navarro, J. Evaluation de La Diminution Des Émissions de CO2 Dans Le Secteur de La Construction Grâce Au Choix Des Matériaux: Etude de Cas Pratique de Trois Maisons à Faible Impact Environnemental. Build. Environ. 2006, 41, 902–909. [Google Scholar] [CrossRef]
- Arnaud, L.; Rosa, C.; Sallet, F. MECHANICAL BEHAVIOUR OF STRAW CONSTRUCTION FOLLOWING THE GREB TECHNIQUE. In Proceedings of the 11th International Conference on Non-conventional Materials and Technologies (NOCMAT 2009), Bath, UK, 6–9 September 2009; pp. 6–9. [Google Scholar]
- Adegun, O.B.; Adedeji, Y.M.D. Review of Economic and Environmental Benefits of Earthen Materials for Housing in Africa. Front. Archit. Res. 2017, 6, 519–528. [Google Scholar] [CrossRef]
- Dejeant, F.; Garnier, P.; Joffroy, T. Matériaux Locaux, Matériaux d’Avenir; CRAterre: Villefontaine, France, 2021. [Google Scholar]
- Jamshaid, H.; Shah, A.; Shoaib, M.; Mishra, R.K. Recycled-Textile-Waste-Based Sustainable Bricks: A Mechanical, Thermal, and Qualitative Life Cycle Overview. Sustainability 2024, 16, 4036. [Google Scholar] [CrossRef]
- Daher, R. L’Architecture En Terre Crue Dans La Vallée Du Jourdain; Une Filière En Reconstruction…Temporaire. Doctoral Thesis, Université Paris-Saclay (ComUE), Gif-sur-Yvette, France, 2015. [Google Scholar]
- Tossim, M.J.; Banakinao, S.; Samon, S.P.; Zemo, M.A.T.; Mavunda, C.A.; Aholou, C.C.; Ayité, Y.M.X.D. Contribution of Earth Bricks Reinforced with African Locust Bean Pod Powder (Parkia biglobosa) to Sustainable Construction in Togo: Characterization, Formulation, Mechanical Performance, and Recommendations. J. Infrastruct. Policy Dev. 2024, 8, 9780. [Google Scholar]
- Balogun, W.G.; Adebayo, I.A.; Yusuf, U.; Seeni, A. A Review of the Phytochemistry and Medicinal Activities of the Popular African Food Additive: Parkia biglobosa Seed. Orient. Pharm. Exp. Med. 2018, 18, 271–279. [Google Scholar] [CrossRef]
- Compaoré, C.S.; Tapsoba, F.W.; Parkouda, C.; Tamboura, D.; Traoré, E.M.A.; Diawara, B.; Savadogo, A.; Jespersen, L.; Sawadogo-Lingani, H. Development of Starter Cultures Carrier for the Production of High Quality Soumbala, a Food Condiment Based on Parkia biglobosa Seeds. Afr. J. Biotechnol. 2020, 19, 820–828. [Google Scholar] [CrossRef]
- Banakinao, S. Caractérisation et Modélisation du Comportement Mécanique des Microstructures Hétérogènes: Cas du Matériau Composite (Terre-Cosse de Néré) et ses Applications dans les BTP (Bâtiments et Travaux Publics). PhD Thesis, Université de Lomé, Lomé, Togo, 2016. [Google Scholar]
- Noukpakou, F.; Pauporté, E.; Pleitinx, R.; Wilbaux, Q.; Matériaux Locaux de Construction et Développement Durable dans L’Atacora: l’Enduit Mural dans L’Architecture Otammari. Congrès International sur le Patrimoine Architectural et Matériaux Locaux de Construction (Errachidia, Maroc, du 15/10/2020 au 18/10/2020). Available online: http://hdl.handle.net/2078.1/230646 (accessed on 19 March 2025).
- Banakinao, S.; Tiem, S.; Attipou, K.; Novinyo, K.; Lolo, K.; Koutsawa, Y.; Bedja, K.-S. Use of the Nere Pod (Parkia biglobosa) for the Improvement of Mechanical Properties of Soils. Am. J. Appl. Sci. 2017, 14, 302–308. [Google Scholar] [CrossRef]
- Banakinao, S.; Tiem, S.; Lolo, K.; Koutsawa, Y.; Bedja, K.-S. Dataset of the Use of Tannin of Néré (Parkia-biglobosa) as a Solution for the Sustainability of the Soil Constructions in West Africa. Data Brief 2016, 8, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Nenonene, A.Y.; Koba, K.; Sanda, K.; Rigal, L. Composition chimique et propriétés adhésives d’extraits d’organes tannifères de quelques plantes du Togo pour l’agglomeration de particules de tige de kénaf (Hibiscus cannabinus L.). J. Société Ouest-Afr. Chim. 2014, 037, 49–55. [Google Scholar]
- Drovou, S. Determination du Contenu et Utilisation du Tannin de Coques de Neré (Parkia biglobosa); Ecole Nationale Supérieure d’Ingénieurs (ENSI) Univesité de Lomé, Togo: Lomé, Togo, 2014. [Google Scholar]
- Drovou, S.; Pizzi, A.; Lacoste, C.; Zhang, J.; Abdulla, S.; El-Marzouki, F.M. Flavonoid Tannins Linked to Long Carbohydrate Chains—MALDI-TOF Analysis of the Tannin Extract of the African Locust Bean Shells. Ind. Crops Prod. 2015, 67, 25–32. [Google Scholar] [CrossRef]
- Kane, M.N.; Ndiaye, M.; Touré, P.M.; Dione, A. Physical and Thermo-Mechanical Properties of Composite Materials Based on Raw Earth and Crushed Palm Leaf Fibers (Borassus aethiopum). Mater. Sci. Appl. 2024, 15, 358–377. [Google Scholar] [CrossRef]
- Samson, M.; Edgar, N.G.; Tikri, B.; Akana, T.F.; Bobet, O. Thermal Characteristics of Earth Blocks Stabilized by Rice Husks. Open J. Appl. Sci. 2023, 13, 1796–1819. [Google Scholar] [CrossRef]
- Ndiaye, M.M.D.; Touré, P.M.; Dieye, Y.; Gueye, P.M. Thermo-Mechanical Characterization of Building Component with Crushed Millet Stalk Fiber. Int. J. Innov. Appl. Stud. 2019, 26, 1230–1239. [Google Scholar]
- Nitcheu, M.; Meukam, P.; Damfeu, J.C.; Njomo, D. Thermomechanical Characterisation of Compressed Clay Bricks Reinforced by Thatch Fibres for the Optimal Use in Building. Mater. Sci. Appl. 2018, 9, 913–935. [Google Scholar] [CrossRef]
- Kossi Imbga, B.; Bodian, S.; Toure, P.M.; Dieye, Y.; Sambou, V. STUDY OF THE THERMOCHEMICAL AND MECHANICAL PROPERTIES OF LATERITE BRICKS STABILISED WITH CEMENTS. Int. J. Adv. Res. 2022, 10, 589–603. [Google Scholar] [CrossRef]
- Ghabo, A.; Touré, P.M.; Dıéye, Y.; Sambou, V. Thermophysical Characterization of Concrete Reinforced with Baobab Trunk Fibers (Adansonia digitata L.) for Thermal Insulation of Buildings. J. Sustain. Constr. Mater. Technol. 2023, 8, 251–259. [Google Scholar] [CrossRef]
- Ouakarrouch, M.; El Azhary, K.; Mansour, M.; Laaroussi, N.; Garoum, M. Thermal Study of Clay Bricks Reinforced by Sisal-Fibers Used in Construction in South of Morocco. Energy Rep. 2020, 6, 81–88. [Google Scholar] [CrossRef]
- Lamrani, M.; Mansour, M.; Laaroussi, N.; Khalfaoui, M. Thermal Study of Clay Bricks Reinforced by Three Ecological Materials in South of Morocco. Energy Procedia 2019, 156, 273–277. [Google Scholar] [CrossRef]
- Ouedraogo, M. Stabilisation Des Adobes Par Des Fibres Végétales; Université de Ouagadougou: Ouagadougou, Burkina Faso, 2018. [Google Scholar]
- Millogo, Y.; Morel, J.-C.; Aubert, J.-E.; Ghavami, K. Analyse Expérimentale de Blocs d’adobe Pressés Renforcés Avec Des Fibres d’ Hibiscus Cannabinus. Constr. Build. Mater. 2014, 52, 71–78. [Google Scholar] [CrossRef]
- Ali, M.E.-S.; Zeitoun, O.M. Discovering and Manufacturing a New Natural Insulating Material Extracted from a Plant Growing up in Saudi Arabia. J. Eng. Fibers Fabr. 2012, 7, 155892501200700405. [Google Scholar] [CrossRef]
- Shafigh, P.; Asadi, I.; Akhiani, A.R.; Mahyuddin, N.B.; Hashemi, M. Thermal Properties of Cement Mortar with Different Mix Proportions. Mater. Constr. 2020, 70, e224. [Google Scholar] [CrossRef]
- Mohamed, L.; Mohamed, K.; Najma, L.; Abdelhamid, K. Thermal Characterization of a New Effective Building Material Based on Clay and Olive Waste. MATEC Web Conf. 2018, 149, 02053. [Google Scholar] [CrossRef]
- Fall, M.; Mbengue, A.; Gueye, N.; Sall, O. Physico-Mechanical Characterization of Composite Bricks from Laterite, Typha and/or Rice Hull. Am. J. Civ. Eng. Archit. 2021, 9, 9–12. [Google Scholar] [CrossRef]
Soil | Optimum Water Content | Optimum Density | % 0.075 mm Pass | Plasticity Index (PI) | Liquidity Limit (Wl) | LCPC Classification | AASHTO Classification | Type |
---|---|---|---|---|---|---|---|---|
Tse-1 | 8.27% | 2.19 g/cm3 | 31.15 < 35 | 14.13 > 11 | 32.5 < 40 | B4 | A2-6 | Clayey sands with little plasticity |
Constituents Analyzed | Content (%) per 100 g of Selected Dry Matter | Associated Features or Elements |
---|---|---|
Dry matter content | 91.68 | Indicates the percentage of dry matter in the sample |
Mineral matter | 2.9 | Inorganic compounds (mineral salts, etc.) |
Lipids | 0.9 | Fats and oils |
Crude protein | 4.69 | Proteins, amino acids |
Cellulose | 49.76 | Main component of holocelluloses |
Hemicelluloses | 22.52 | Associated with the long chains to which flavonoids are potentially linked |
Lignin | 32.95 | Portion of non-extractable polyphenols in the form of tannins |
Total polyphenols | 33 | A round of these polyphenols are extractable tannins. |
Tannic condensates | Not specified | Oligomers linked to flavonoids, often without carbohydrate chains after industrial extraction. |
Hydrolysable tannins | Low proportion | Traces identified: trimer (569 Da), pentamer (835 Da), pentagalloyl glucose (960 Da). |
Sugar solubles (glucose, lactose, etc.) | Low proportion | Residues associated with holocellulose chains or fragments attached to flavonoids. |
Flavonoid linkage structures | Not specified | Glycosides (3-O, 7-O) or ethers are associated with carbohydrates and holocelluloses. |
Parameters | Values |
---|---|
Grain diameter (mm) | Lower limit |
0.08 | 39% |
0.1 | 90% |
0.125 | 95% |
0.2 | 99% |
0.4 | 100% |
0.5 | 100% |
1.00 | 100% |
bulk density | 0.69 g/cm3 |
Absorption rate | 0.44 mL/g |
Mixed ID | Recipe | ||
---|---|---|---|
M0: Control mixture | Soil (Tse-1) g | Water (W) g | |
350 | 38.5 | ||
M1 (M1-a; M1-b; M1-c): Powder-reinforced mix | Soil (Tse-1) g | Water (W) g | Cosse de néré powder (Cne) |
350 | 40 | 28 | |
M2: Mixing reinforced by maceration | Soil (Tse-1) g | Maceration of Cosse de néré (MCne) g | |
350 | 73 |
Mixes | Thermal Conductivity | Standard Deviation | Coefficient of Variation | p-Value |
---|---|---|---|---|
M0 | 0.557 | 0.053 | 9.52 | 0.654 |
M1-a | 0.404 | 0.014 | 3.47 | 0.937 |
M1-b | 0.489 | 0.008 | 1.64 | 0.959 |
M1-c | 0.467 | 0.005 | 1.07 | 0.953 |
M2 | 0.614 | 0.029 | 4.72 | 0.723 |
Mixes | Thermal Effusivity | Standard Deviation | Coefficient of Variation (%) | p-Value |
---|---|---|---|---|
M0 | 1000.32 | 0.88 | 0.088 | 0.937 |
M1-a | 922.2 | 0.225 | 0.24 | 0.953 |
M1-b | 912.76 | 0.175 | 0.019 | 0.959 |
M1-c | 907.99 | 0.16 | 0.018 | 0.937 |
M2 | 1040.18 | 0.75 | 0.072 | 0.953 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tossim, M.J.; Dieng, E.; Bafei, K.L.; Aholou, C.C.; Ayité, Y.M.X.D. Thermal Optimization of Earth Bricks Using Néré Husk (Parkia biglobosa). Constr. Mater. 2025, 5, 18. https://doi.org/10.3390/constrmater5020018
Tossim MJ, Dieng E, Bafei KL, Aholou CC, Ayité YMXD. Thermal Optimization of Earth Bricks Using Néré Husk (Parkia biglobosa). Construction Materials. 2025; 5(2):18. https://doi.org/10.3390/constrmater5020018
Chicago/Turabian StyleTossim, Magnouréwa Josiane, Elhadji Dieng, Kpatchaa Lidawou Bafei, Cyprien Coffi Aholou, and Yawovi Mawuénya Xolali Dany Ayité. 2025. "Thermal Optimization of Earth Bricks Using Néré Husk (Parkia biglobosa)" Construction Materials 5, no. 2: 18. https://doi.org/10.3390/constrmater5020018
APA StyleTossim, M. J., Dieng, E., Bafei, K. L., Aholou, C. C., & Ayité, Y. M. X. D. (2025). Thermal Optimization of Earth Bricks Using Néré Husk (Parkia biglobosa). Construction Materials, 5(2), 18. https://doi.org/10.3390/constrmater5020018