Study on Antibacterial Durability of Waterproof Coatings with Different Base Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pretreatment of Waterproof Coatings
2.2. Durability Treatment
2.3. Strains and Media
2.4. Antimicrobial Performance Test
2.5. Microstructural Analysis
2.6. Data Analysis
3. Results
3.1. Microbial Growth Rate Analysis of Different Types of Waterproofing
- I polyurethane coatings
- II cement-based polymer coatings
- III asphalt-based polymer-modified coatings
- IV other polymer emulsion coatings
3.2. Influences of Extreme Environmental Conditions on the Antimicrobial Properties of Coatings
- UV
- Water immersion
- Temperature
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, B.; Zhang, E.; Han, X.; Zhu, H.; Shi, Y.; Cao, Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface. ACS Appl. Mater. Interfaces 2020, 12, 21330–21341. [Google Scholar] [CrossRef]
- Aburto-Medina, A.; Le, P.H.; MacLaughlin, S.; Ivanova, E. Diversity of experimental designs for the fabrication of antifungal surfaces for the built environment. Appl. Microbiol. Biotechnol. 2021, 105, 2663–2674. [Google Scholar] [CrossRef]
- Wei, S.; Jiang, Z.; Liu, H.; Zhou, D.; Sanchez-Silva, M. Microbiologically induced deterioration of concrete: A review. Braz. J. Microbiol. 2013, 44, 1001–1007. [Google Scholar] [CrossRef]
- Song, Y.; Tian, Y.; Li, X.; Wei, J.; Zhang, H.; Bond, P.L.; Yuan, Z.; Jiang, G. Distinct microbially induced concrete corrosion at the tidal region of reinforced concrete sewers. Water Res. 2019, 150, 392–402. [Google Scholar] [CrossRef]
- Wu, M.; Wang, T.; Wu, K.; Kan, L. Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Constr. Build. Mater. 2020, 239, 117813. [Google Scholar] [CrossRef]
- Pinho, A.C.; Piedade, A.P. Polymeric Coatings with Antimicrobial Activity: A Short Review. Polymers 2020, 12, 2469. [Google Scholar] [CrossRef]
- Miao, C.; Zhiang, W.; Lingling, W. Preparation and Performance Study of High-strength Single Component Polyurethane Waterproof Coating. J. Paint. Coat. Ind. 2024, 54, 35–40. [Google Scholar]
- Siritongsuk, P.; Thammawithan, S.; Srichaiyapol, O.; Nasompag, S.; Pongha, S.; Daduang, S.; Klaynongsruang, S.; Patramanon, R. Synthesis and Application of AgNPs-Chitosan Composite as a Self-Disinfecting Coating in Water-Based Polyurethane. Coatings 2022, 12, 1832. [Google Scholar] [CrossRef]
- Jiang, G.; Li, X.; Che, Y.; Lv, Y.; Liu, F.; Wang, Y.; Zhao, C.; Wang, X. Antibacterial and anticorrosive properties of CuZnO@RGO waterborne polyurethane coating in circulating cooling water. Environ. Sci. Pollut. Res. Int. 2019, 26, 9027–9040. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, P.; Tang, Y.; Yang, K.; Wang, Q. MXene-Functionalized Light-Induced Antimicrobial and Waterproof Polyacrylate Coating for Cementitious Materials Protection. Polymers 2023, 15, 2076. [Google Scholar] [CrossRef]
- Kim, K.; Le, T.H.M. Evaluation of the Polymer Modified Tack Coat on Aged Concrete Pavement: An Experimental Study on Adhesion Properties. Polymers 2023, 15, 2830. [Google Scholar] [CrossRef]
- Taqa, A.A.; Alsalman, T.H.; Alkhalidi, E.F. Antibacterial properties of new calcium based cement prepared from egg shell. Edorium J. Dent. 2015, 2, 21–28. [Google Scholar]
- Li, H.; Lin, X.; Wang, H. Fabrication and Evaluation of Nano-TiO(2) Superhydrophobic Coating on Asphalt Pavement. Materials 2021, 14, 211. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Zheng, M. Enhancing the Efficiency of Ice-Resistant Materials in Asphalt Road Surfaces: A Comprehensive Performance Analysis. Coatings 2023, 14, 37. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Y.; Chen, G.; Duan, Y.; Yu, C. Proposed Cool Coatings with High Near-Infrared Reflectance and Heat Insulation for Asphalt Pavement. Coatings 2021, 11, 85. [Google Scholar] [CrossRef]
- Ślosarczyk, A.; Klapiszewska, I.; Skowrońska, D.; Janczarek, M.; Jesionowski, T.; Klapiszewski, Ł. A comprehensive review of building materials modified with metal and metal oxide nanoparticles against microbial multiplication and growth. Chem. Eng. J. 2023, 466, 143276. [Google Scholar] [CrossRef]
- Steinerová, D.; Kalendová, A.; Machotová, J.; Knotek, P.; Humpolíček, P.; Vajdák, J.; Slang, S.; Krejčová, A.; Beneš, L.; Wolff-Fabris, F. Influence of Metal Oxide Nanoparticles as Antimicrobial Additives Embedded in Waterborne Coating Binders Based on Self-Crosslinking Acrylic Latex. Coatings 2022, 12, 1445. [Google Scholar] [CrossRef]
- Hu, X.-L.; Shang, Y.; Yan, K.-C.; Sedgwick, A.C.; Gan, H.-Q.; Chen, G.-R.; He, X.-P.; James, T.D.; Chen, D. Low-dimensional nanomaterials for antibacterial applications. J. Mater. Chem. B 2021, 9, 3640–3661. [Google Scholar] [CrossRef]
- Mam, K.; Dangtungee, R. Effects of silver nanoparticles on physical and antibacterial properties of natural rubber latex foam. Mater. Today Proc. 2019, 17, 1914–1920. [Google Scholar] [CrossRef]
- Ghosh, S.; Amariei, G.; Mosquera, M.E.G.; Rosal, R. Polymeric ruthenium precursor as a photoactivated antimicrobial agent. J. Hazard. Mater. 2021, 402, 123788. [Google Scholar] [CrossRef]
- Johnson, A.; Wu, J.; Zhou, Z.; Li, Y.; Yin, Y.; Ponder, M.A.; Kim, Y.-T.; Shuai, D.; Huang, H. Efficacy of a Rose Bengal-Embedded Antimicrobial Packaging Film in Inactivating Escherichia coli under Visible Light Irradiation. ACS Food Sci. Technol. 2024, 4, 561–566. [Google Scholar] [CrossRef]
- Cao, B.; Liu, J.; Qin, G.; Tian, S. Oxidative stress acts on special membrane proteins to reduce the viability of Pseudomonas syringae pv tomato. J. Proteome Res. 2012, 11, 4927–4938. [Google Scholar] [CrossRef]
- Ogunsona, E.O.; Muthuraj, R.; Ojogbo, E.; Valerio, O.; Mekonnen, T.H. Engineered nanomaterials for antimicrobial applications: A review. Appl. Mater. Today 2020, 18, 100473. [Google Scholar] [CrossRef]
- Angarano, V.; Smet, C.; Akkermans, S.; Watt, C.; Chieffi, A.; Van Impe, J.F.M. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics 2020, 9, 171. [Google Scholar] [CrossRef]
- Liou, J.W.; Chang, H.H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch. Immunol. Ther. Exp. 2012, 60, 267–275. [Google Scholar] [CrossRef]
- Gwynne, P.J.; Gallagher, M.P. Light as a Broad-Spectrum Antimicrobial. Front. Microbiol. 2018, 9, 119. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Goel, G.; Matthews, A.; Goel, S. Review of the untapped potentials of antimicrobial materials in the construction sector. Prog. Mater. Sci. 2023, 133, 101065. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, B.; Liu, Y.; Suo, X.; Li, H. Influence of surface topography on bacterial adhesion: A review (Review). Biointerphases 2018, 13, 060801. [Google Scholar] [CrossRef]
- Larrañaga-Altuna, M.; Zabala, A.; Llavori, I. Bactericidal surfaces: An emerging 21stcentury ultra-precision manufacturing and materials puzzle. Appl. Phys. Rev. 2021, 8, 021303. [Google Scholar] [CrossRef]
- Riveiro, A.; Maçon, A.L.B.; del Val, J.; Comesaña, R.; Pou, J. Laser Surface Texturing of Polymers for Biomedical Applications. Front. Phys. 2018, 6, 16. [Google Scholar] [CrossRef]
- Redfern, J.; Tucker, J.; Simmons, L.M.; Askew, P.; Stephan, I.; Verran, J. Environmental and Experimental Factors Affecting Efficacy Testing of Nonporous Plastic Antimicrobial Surfaces. Methods Protoc. 2018, 1, 26. [Google Scholar] [CrossRef]
- Pourali, P.; Baserisalehi, M.; Afsharnezhad, S.; Behravan, J.; Ganjali, R.; Bahador, N.; Arabzadeh, S. The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. Biometals 2013, 26, 189–196. [Google Scholar] [CrossRef]
- Le, N.T.; Nagata, H.; Aihara, M.; Takahashi, A.; Okamoto, T.; Shimohata, T.; Mawatari, K.; Kinouchi, Y.; Akutagawa, M.; Haraguchi, M. Additional effects of silver nanoparticles on bactericidal efficiency depend on calcination temperature and dip-coating speed. Appl. Environ. Microbiol. 2011, 77, 5629–5634. [Google Scholar] [CrossRef]
Process Group | UV | Soaking | Freezing |
---|---|---|---|
E. coli (%) | −38.86 | −37.47 | −7.09 |
S. aure (%) | −44.04 | −53.31 | −36.75 |
Canidia albicans (%) | 23.73 | 0.07 | 4.86 |
Fungus (%) | 54.65 | −26.76 | −18.03 |
Process Group | UV | Soaking | Freezing |
---|---|---|---|
E. coli (%) | 22.73 | 218.66 | 110.05 |
S. aure (%) | 11.07 | 10.71 | 18.21 |
Canidia albicans (%) | −1.35 | −16.61 | −17.26 |
Fungus (%) | 31.28 | 23.99 | 29.04 |
Process Group | UV | Soaking | Freezing |
---|---|---|---|
E. coli (%) | −11.89 | 5.59 | 18.88 |
S. aure (%) | 2.54 | −18.64 | 22.46 |
Canidia albicans (%) | 6.37 | −11.93 | −0.33 |
Fungus (%) | 0.15 | 3.25 | 7.45 |
Process Group | UV | Soaking | Freezing |
---|---|---|---|
E.coli (%) | 1.61 | 170.97 | 170.05 |
S. aure (%) | −61.68 | −35.93 | −9.88 |
Canidia albicans (%) | −96.57 | −16.02 | −22.87 |
Fungus (%) | 32.78 | 29.12 | −11.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Chang, X.; Shi, Y. Study on Antibacterial Durability of Waterproof Coatings with Different Base Materials. Constr. Mater. 2024, 4, 493-505. https://doi.org/10.3390/constrmater4030026
Gao Y, Chang X, Shi Y. Study on Antibacterial Durability of Waterproof Coatings with Different Base Materials. Construction Materials. 2024; 4(3):493-505. https://doi.org/10.3390/constrmater4030026
Chicago/Turabian StyleGao, Yuxuan, Xuning Chang, and Yuntong Shi. 2024. "Study on Antibacterial Durability of Waterproof Coatings with Different Base Materials" Construction Materials 4, no. 3: 493-505. https://doi.org/10.3390/constrmater4030026
APA StyleGao, Y., Chang, X., & Shi, Y. (2024). Study on Antibacterial Durability of Waterproof Coatings with Different Base Materials. Construction Materials, 4(3), 493-505. https://doi.org/10.3390/constrmater4030026