Bibliometric Analysis of Bio- and Earth-Based Building Materials: Current and Future Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database: Web of Science
2.2. Bibliometrics Analysis Software: VOSviewer
- -
- Co-authorship: Refers to publications co-authored by two authors, organizations or countries.
- -
- Co-occurrence: Describes publications in which two keywords appear together.
- -
- Citation: Involves one element (document, source, author, organization, country) citing another one.
- -
- Bibliometric coupling: Measures the number of common references between two documents, sources, authors, organizations or countries.
- -
- Co-citation: Quantifies the number of times items (references, sources, authors) are cited together in the same document.
2.3. Work Methodology
3. Results
3.1. Preliminary Statistical Analysis
3.1.1. Bio-Based Building Materials
- Increasing number of scientific publications
- Geographic and editorial dynamics
- Main topics covered
- Focus on raw materials
3.1.2. Earth-Based Building Materials
- Increasing number of scientific publications
- Geographic and editorial dynamics
- Main topics covered
- Focus on implementation techniques
3.2. Comparative Study with Composite Building Materials
3.2.1. Evolution in the Number of Publications on Composite Materials
- Obviously, the number of publications is extremely high, providing an overall perspective. What is striking is the number of publications, which increased more than six-fold between 1989 and 1991. It is legitimate to question the reasons for this major breakthrough in composite materials and related work in those years.
- The 1990s marked the beginning of the computer age. Since then, computer networks have been driving progress in science and engineering [83]. One possible explanation for the inflection point in publication growth is the development of computer technology. Before the 2000s, numerous publications incorporating computerized tools were noticed [84,85,86,87].
3.2.2. Emerging Themes and Tools for New Developments
3.2.3. Eco-Materials: What about Modeling and the Hard Sciences?
3.3. Bibliometric Networks
3.3.1. Bio-Based Building Materials
- Main authors and their collaborations
- Founding works
- Key themes in the literature
- Focus on main raw materials
- In order to provide a closer insight into the contributions made to date on the main raw materials identified in Section 3.1.1, an analysis of keyword co-occurrence was carried out within the relevant publications. The visualization includes a time scale to emphasize trends over recent years. For the sake of relevance, this section focuses exclusively on primary resources with more than 10 publications each: hemp, wood, bamboo, flax, palm, rice, straw, sunflower (Figure 18).
- -
- “Cellulose”: linked to the chemical composition of the resource, particularly relevant to wood as a primary chemical compound.
- -
- “Moisture content”: in relation to water adsorption by the material and potential pathologies arising under such conditions.
- -
- “Sustainability“: referring to the evolution of a material’s properties under various stresses, including temperature and relative humidity variations over its lifetime.
- -
- “Energy”: related to the overall energy efficiency of the building, i.e., covering a more global scale than that of the material or the wall.
3.3.2. Geo-Based Building Materials
- Main authors and their collaborations
- Founding works
- The most frequently cited research works date from the 1990s to 2000s (Figure 20). These works are considered foundational in the field.
- Co-authorship links
- Focus on implementation techniques
- In order to provide a closer insight into the contributions concerning implementation in Section 3.1.2, an analysis of keyword co-occurrence was carried out on the publications relating to them. The time scale is added to the visualizations to underline the trend over the last few years. All techniques are included, as they have been studied in over 10 publications (Figure 22).
- -
- -
- -
- -
- Life cycle assessment: as earth is a low-embodied carbon construction material [24], life cycle assessment methodology may adequately demonstrate its potential in place of conventional materials.
3.3.3. Potential Emerging Themes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richards, C.E.; Lupton, R.C.; Allwood, J.M. Re-framing the threat of global warming: An empirical causal loop diagram of climate change, food insecurity and societal collapse. Clim. Chang. 2021, 164, 49. [Google Scholar] [CrossRef]
- Higano, Y.; Otsuka, A. Special Feature on Regional Sustainability: Analysis in a spatial and regional context with broad perspectives on the risk of global warming, natural disasters, and emerging issues due to the globalized economy. Asia-Pacific J. Reg. Sci. 2022, 6, 239–245. [Google Scholar] [CrossRef]
- Rossati, A. Global Warming and Its Health Impact. Int. J. Occup. Environ. Med. 2017, 8, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Rehman, A.; Zia, K.; Naveed, U.; Bibi, S.; Sherazi, R.; Hussain, I.; Ur Rehman, M.; Massa, S. Microbes and Environment: Global Warming Reverting the Frozen Zombies. In Environment, Climate, Plant and Vegetation Growth; Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Ali Khan, I., Adnan, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 607–633. [Google Scholar] [CrossRef]
- Ürge-Vorsatz, D.; Khosla, R.; Bernhardt, R.; Chan, Y.C.; Vérez, D.; Hu, S.; Cabeza, L.F. Advances Toward a Net-Zero Global Building Sector. Annu. Rev. Environ. Resour. 2020, 45, 227–269. [Google Scholar] [CrossRef]
- Ali, K.A.; Ahmad, M.I.; Yusup, Y. Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector. Sustainability 2020, 12, 7427. [Google Scholar] [CrossRef]
- Mouton, L.; Allacker, K.; Röck, M. Bio-based building material solutions for environmental benefits over conventional construction products—Life cycle assessment of regenerative design strategies (1/2). Energy Build. 2023, 282, 112767. [Google Scholar] [CrossRef]
- Jones, D.; Brischke, C. Performance of Bio-Based Building Materials; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Lagouin, M.; Magniont, C.; Sénéchal, P.; Moonen, P.; Aubert, J.-E.; Laborel-Préneron, A. Influence of types of binder and plant aggregates on hygrothermal and mechanical properties of vegetal concretes. Constr. Build. Mater. 2019, 222, 852–871. [Google Scholar] [CrossRef]
- Bourbia, S.; Kazeoui, H.; Belarbi, R. A review on recent research on bio-based building materials and their applications. Mater. Renew. Sustain. Energy 2023, 12, 117–139. [Google Scholar] [CrossRef]
- Yang, Y.; Haurie, L.; Wang, D.-Y. Bio-based materials for fire-retardant application in construction products: A review. J. Therm. Anal. Calorim. 2022, 147, 6563–6582. [Google Scholar] [CrossRef]
- Bumanis, G.; Vitola, L.; Pundiene, I.; Sinka, M.; Bajare, D. Gypsum, Geopolymers, and Starch—Alternative Binders for Bio-based Building Materials: A Review and Life-Cycle Assessment. Sustainability 2020, 12, 5666. [Google Scholar] [CrossRef]
- Dams, B.; Maskell, D.; Shea, A.; Allen, S.; Cascione, V.; Walker, P. Upscaling bio-based construction: Challenges and opportunities. Build. Res. Inf. 2023, 51, 764–782. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.; Magniont, C.; Tribout, C.; Bertron, A. Plant aggregates and fibers in earth construction materials: A review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012, 29, 512–519. [Google Scholar] [CrossRef]
- Boussaa, N.; Kheloui, F.; Chelouah, N. Mechanical, thermal and durability investigation of compressed earth bricks stabilized with wood biomass ash. Constr. Build. Mater. 2023, 364, 129874. [Google Scholar] [CrossRef]
- Santos, T.; Gomes, M.I.; Silva, A.S.; Ferraz, E.; Faria, P. Comparison of mineralogical, mechanical and hygroscopic characteristic of earthen, gypsum and cement-based plasters. Constr. Build. Mater. 2020, 254, 119222. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Courteille, E. 3D Printing of Earth-Based Materials: Processing Aspects. Constr. Build. Mater. 2018, 172, 670–676. [Google Scholar] [CrossRef]
- Fabbri, A.; Morel, J.C.; Aubert, J.-E.; Bui, Q.-B.; Gallipoli, D.; Ventura, A.; Reddy, V.B.V.; Hamard, E.; Pelé-Peltier, A.; Abhilash, H.N. An overview of the remaining challenges of the RILEM TC 274-TCE, testing and characterisation of earth-based building materials and elements. RILEM Tech. Lett. 2021, 6, 150–157. [Google Scholar] [CrossRef]
- Azil, A.; Le Guern, M.; Touati, K.; Sebaibi, N.; Boutouil, M.; Streiff, F.; Goodhew, S.; Gomina, M. Earth construction: Field variabilities and laboratory reproducibility. Constr. Build. Mater. 2022, 314, 125591. [Google Scholar] [CrossRef]
- Paul, S.; Islam, M.S.; Elahi, T.E. Comparative effectiveness of fibers in enhancing engineering properties of Earth as a building Material: A review. Constr. Build. Mater. 2022, 332, 127366. [Google Scholar] [CrossRef]
- Fabbri, A.; Morel, J.-C.; Gallipoli, D. Assessing the performance of earth building materials: A review of recent developments. RILEM Tech. Lett. 2018, 3, 46–58. [Google Scholar] [CrossRef]
- Shubbar, A.A.; Sadique, M.; Kot, P.; Atherton, W. Future of clay-based construction materials—A review. Constr. Build. Mater. 2019, 210, 172–187. [Google Scholar] [CrossRef]
- Pelé-Peltier, A.; Charef, R.; Morel, J.-C. Factors affecting the use of earth material in mainstream construction: A critical review. Build. Res. Inf. 2023, 51, 119–137. [Google Scholar] [CrossRef]
- Zami, M.S.; Lee, A. Economic benefits of contemporary earth construction in low-cost urban housing—State-of-the-art review. J. Build. Apprais. 2010, 5, 259–271. [Google Scholar] [CrossRef]
- Bamogo, H.; Ouedraogo, M.; Sanou, I.; Ouedraogo, K.A.J.; Dao, K.; Aubert, J.-E.; Millogo, Y. Improvement of water resistance and thermal comfort of earth renders by cow dung: An ancestral practice of Burkina Faso. J. Cult. Heritage 2020, 46, 42–51. [Google Scholar] [CrossRef]
- Khtou, O.; Aalil, I.; Aboussaleh, M.; EL Wardi, F.Z. Mechanical Analysis of Fiber Reinforced Adobe. Civ. Eng. Arch. 2021, 9, 2160–2168. [Google Scholar] [CrossRef]
- Guerrero Baca, L.F. The Use of Cob in the Intervention of Adobe Construction Components. Interv. México DF 2020, 11, 133–187. [Google Scholar] [CrossRef]
- Lima, J.; Faria, P. Eco-Efficient Earthen Plasters: The Influence of the Addition of Natural Fibers. In Natural Fibres: Advances in Science and Technology Towards Industrial Applications; Fangueiro, R., Rana, S., Eds.; RILEM Bookseries; Springer: Dordrecht, The Netherlands, 2016; pp. 315–327. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Magniont, C.; Aubert, J.-E. Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition. Energy Build. 2018, 178, 265–278. [Google Scholar] [CrossRef]
- Giroudon, M.; Laborel-Préneron, A.; Aubert, J.-E.; Magniont, C. Comparison of barley and lavender straws as bioaggregates in earth bricks. Constr. Build. Mater. 2019, 202, 254–265. [Google Scholar] [CrossRef]
- Bouasria, M.; El Mendili, Y.; Benzaama, M.-H.; Pralong, V.; Bardeau, J.-F.; Hennequart, F. Valorisation of stranded Laminaria digitata seaweed as an insulating earth material. Constr. Build. Mater. 2021, 308, 125068. [Google Scholar] [CrossRef]
- Lagouin, M.; Laborel-Préneron, A.; Magniont, C.; Geoffroy, S.; Aubert, J.-E. Effects of organic admixtures on the fresh and mechanical properties of earth-based plasters. J. Build. Eng. 2021, 41, 102379. [Google Scholar] [CrossRef]
- Jonkers, H.M. Toward Bio-based geo- & Civil Engineering for a Sustainable Society. Procedia Eng. 2017, 171, 168–175. [Google Scholar] [CrossRef]
- Lagouin, M.; Laborel-Préneron, A.; Magniont, C.; Geoffroy, S.; Aubert, J.-E. Moisture buffer capacity of a bilayer bio- and geo-based wall. Constr. Build. Mater. 2022, 329, 127209. [Google Scholar] [CrossRef]
- Brümmer, M.; Sáez-Pérez, M.P.; Suárez, J.D. Hemp-Clay Concretes for Environmental Building—Features that Attribute to Drying, Stabilization with Lime, Water Uptake and Mechanical Strength. In Advances in Natural Fibre Composites; Fangueiro, R., Rana, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 249–265. [Google Scholar] [CrossRef]
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. JoVE J. Vis. Exp. 2019, 152, e58494. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Dharmani, P.; Das, S.; Prashar, S. A bibliometric analysis of creative industries: Current trends and future directions. J. Bus. Res. 2021, 135, 252–267. [Google Scholar] [CrossRef]
- Soosaraei, M.; Khasseh, A.A.; Fakhar, M.; Hezarjaribi, H.Z. A decade bibliometric analysis of global research on leishmaniasis in Web of Science database. Ann. Med. Surg. 2018, 26, 30–37. [Google Scholar] [CrossRef]
- Kirby, A. Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. Publications 2023, 11, 10. [Google Scholar] [CrossRef]
- McAllister, J.T.; Lennertz, L.; Mojica, Z.A. Mapping A Discipline: A Guide to Using VOSviewer for Bibliometric and Visual Analysis. Sci. Technol. Libr. 2022, 41, 319–348. [Google Scholar] [CrossRef]
- CWTS—Centre for Science and Technology Studies—Leiden University. CWTS. Available online: https://www.cwts.nl// (accessed on 1 October 2023).
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Alviz-Meza, A.; Orozco-Agamez, J.; Quinayá, D.C.P.; Alviz-Amador, A. Bibliometric Analysis of Fourth Industrial Revolution Applied to Material Sciences Based on Web of Science and Scopus Databases from 2017 to 2021. Chemengineering 2023, 7, 2. [Google Scholar] [CrossRef]
- Spence, R.; Mulligan, H. Sustainable development and the construction industry. Habitat Int. 1995, 19, 279–292. [Google Scholar] [CrossRef]
- Vanegas, J.; DuBose, J.; Pearce, A. Sustainable Technologies for the Building Construction Industry. Jan. 1995. Available online: https://www.researchgate.net/publication/228540323_Sustainable_technologies_for_the_building_construction_industry (accessed on 20 November 2023).
- Ofori, G.; Briffett, C.; Gang, G.; Ranasinghe, M. Impact of ISO 14000 on construction enterprises in Singapore. Constr. Manag. Econ. 2000, 18, 935–947. [Google Scholar] [CrossRef]
- Gavilan, R.M.; Bernold, L.E. Source Evaluation of Solid Waste in Building Construction. J. Constr. Eng. Manag. 1994, 120, 536–552. [Google Scholar] [CrossRef]
- Venkatarama Reddy, B.V.; Jagadish, K.S. Embodied energy of common and alternative building materials and technologies. Energy Build. 2003, 35, 129–137. [Google Scholar] [CrossRef]
- Melià, P.; Ruggieri, G.; Sabbadini, S.; Dotelli, G. Environmental impacts of natural and conventional building materials: A case study on earth plasters. J. Clean. Prod. 2014, 80, 179–186. [Google Scholar] [CrossRef]
- Khator, R. The new paradigm: From development administration to sustainable development administration. Int. J. Public Adm. 1998, 21, 1777–1801. [Google Scholar] [CrossRef]
- Delmas, M.A. The diffusion of environmental management standards in Europe and in the United States: An institutional perspective. Policy Sci. 2002, 35, 91–119. [Google Scholar] [CrossRef]
- Yadav, M.; Agarwal, M. Biobased building materials for sustainable future: An overview. Mater. Today Proc. 2021, 43, 2895–2902. [Google Scholar] [CrossRef]
- Arufe, S.; de Menibus, A.H.; Leblanc, N.; Lenormand, H. Physico-chemical characterisation of plant particles with potential to produce biobased building materials. Ind. Crop. Prod. 2021, 171, 113901. [Google Scholar] [CrossRef]
- Göswein, V.; Reichmann, J.; Habert, G.; Pittau, F. Land availability in Europe for a radical shift toward bio-based construction. Sustain. Cities Soc. 2021, 70, 102929. [Google Scholar] [CrossRef]
- Aghamohammadi, N.; Shahmohammadi, M. Chapter 8—Towards sustainable development goals and role of bio-based building materials. In Bio-Based Materials and Waste for Energy Generation and Resource Management; Hussain, C.M., Kushwaha, A., Bharagava, R.N., Goswami, L., Eds.; Advanced Zero Waste Tools; Elsevier: Amsterdam, The Netherlands, 2023; Volume 5, pp. 243–279. [Google Scholar] [CrossRef]
- Mazian, B.; Bergeret, A.; Benezet, J.-C.; Bayle, S.; Malhautier, L. Impact of Field Retting on the Hemp Fibres Structure. Rev. Compos. Matér. Avancés 2019, 29, 277–282. [Google Scholar] [CrossRef]
- Zoungrana, O.; Bologo/Traoré, M.; Messan, A.; Nshimiyimana, P.; Pirotte, G. The Paradox around the Social Representations of Compressed Earth Block Building Material in Burkina Faso: The Material for the Poor or the Luxury Material? Open J. Soc. Sci. 2021, 9, 50–65. [Google Scholar] [CrossRef]
- Morel, J.-C.; Charef, R.; Hamard, E.; Fabbri, A.; Beckett, C.; Bui, Q.-B. Earth as construction material in the circular economy context: Practitioner perspectives on barriers to overcome. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200182. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Gustafsson, A. Effects of COVID-19 on business and research. J. Bus. Res. 2020, 117, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Avrami, E.; Guillaud, H.; Hardy, M. (Eds.) Terra Literature Review: An Overview of Research in Earthen Architecture Conservation; Getty Conservation Institute: Los Angeles, CA, USA, 2008; Available online: http://hdl.handle.net/10020/gci_pubs/terra_literature_review (accessed on 20 November 2023).
- Andonova, L.B.; Hoffmann, M.J. From Rio to Rio and Beyond: Innovation in Global Environmental Governance. J. Environ. Dev. 2012, 21, 57–61. [Google Scholar] [CrossRef]
- Panjabi, R.K.L. The Earth Summit at Rio: Politics, Economics and the Environment. Chapter 4. 1997. Available online: https://www.cabdirect.org/cabdirect/abstract/19981806031 (accessed on 5 September 2023).
- Böhringer, C. The Kyoto Protocol: A Review and Perspectives. Oxf. Rev. Econ. Policy 2003, 19, 451–466. [Google Scholar] [CrossRef]
- Prins, G.; Rayner, S. The Kyoto Protocol. Bull. At. Sci. 2008, 64, 45–58. [Google Scholar] [CrossRef]
- Ghezloun, A.; Saidane, A.; Oucher, N.; Chergui, S. The Post-Kyoto. Energy Procedia 2013, 36, 1–8. [Google Scholar] [CrossRef]
- Gong, G.J. What China wants: China’s climate change priorities in a post-Copenhagen world. Glob. Chang. Peace Secur. 2011, 23, 159–175. [Google Scholar] [CrossRef]
- Depledge, J. Against the grain: The United States and the global climate change regime. Glob. Chang. Peace Secur. 2005, 17, 11–27. [Google Scholar] [CrossRef]
- Connelly, R.K.W.W.A.J. Introduction: European Union political leadership in international climate change politics. In The European Union as a Leader in International Climate Change Politics; Routledge: London, UK, 2010. [Google Scholar]
- Viguier, L.L.; Babiker, M.H.; Reilly, J.M. The costs of the Kyoto Protocol in the European Union. Energy Policy 2003, 31, 459–481. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 2014, 51, 151–162. [Google Scholar] [CrossRef]
- Martín-Uceda, J.; Rufí, J.V. Territorial Development and Cross-Border Cooperation: A Review of the Consequences of European INTERREG Policies on the Spanish–French Border (2007–2020). Sustainability 2021, 13, 12017. [Google Scholar] [CrossRef]
- Feliu, J.; Berzi, M.; Vicente, J.; Castañer, M.; Llussà, R. Analysis of cross-border projects between France and Spain 2007–2013. Eur. J. Geogr. 2013, 4, 33–46. [Google Scholar]
- Lagouin, M.; Bire, D.; Bory, J.-B.; Evon, P.; Labonne, L.; Laborel-Preneron, A.; Magniony, C. Structuration d’une filière de valorisation transfrontalière des tiges de maïs et de tournesol pour la construction. Acad. J. Civ. Eng. 2022, 40, 1. [Google Scholar]
- Avellaneda, A.; Evon, P.; Haurie, L.; Laborel-Préneron, A.; Lagouin, M.; Magniont, C.; Navarro, A.; Palumbo, M.; Torres, A. Evaluation of the Potential of Plant Aggregates from Corn and Sunflower Stalks for the Design of Building Materials. In Bio-Based Building Materials; Amziane, S., Merta, I., Page, J., Eds.; RILEM Bookseries; Springer Nature: Cham, Switzerland, 2023; pp. 70–86. [Google Scholar] [CrossRef]
- Azil, A.; Le Guern, M.; Rattier, R.; Touati, K.; Sebaibi, N.; El Mendili, Y.; Boutouil, M.; Streiff, F.; Goodhew, S.; Louahlia, H. Réalisation d’un bâtiment pilote en terre-fibres. Acad. J. Civ. Eng. 2020, 38, 1. Available online: https://hal.science/hal-03331999 (accessed on 14 September 2023).
- Fox, M.; Le Guern, M.; Carfrae, J.; Touati, K.; Strieff, F.; Boutouil, M.; Goodhew, S. An Investigation into the Potential Use of TDR Measurement Systems to Accurately Assess the Moisture Content at the Centre of Completed Earth Walls. 2022. Available online: https://pearl.plymouth.ac.uk/handle/10026.1/19510 (accessed on 14 September 2023).
- Maris, G.; Flouros, F. The Green Deal, National Energy and Climate Plans in Europe: Member States’ Compliance and Strategies. Adm. Sci. 2021, 11, 75. [Google Scholar] [CrossRef]
- Strazzeri, V.; Karrech, A. Qualitative and quantitative study to assess the use of rammed earth construction technology in Perth and the south-west of Western Australia. Clean. Mater. 2023, 7, 100169. [Google Scholar] [CrossRef]
- Gomaa, M.; Schade, S.; Bao, D.W.; Xie, Y.M. Automation in rammed earth construction for industry 4.0: Precedent work, current progress and future prospect. J. Clean. Prod. 2023, 398, 136569. [Google Scholar] [CrossRef]
- Abdelaal, A.; Gomaa, M.; Xie, Y.M. A novel modular technique for manufacturing free-form rammed earth walls. In Proceedings of the IASS Annual Symposium 2023, Melbourne, Australia, 10–14 July 2023; pp. 1–12. [Google Scholar]
- Foster, I. The Grid: A New Infrastructure for 21st Century Science. Phys. Today 2002, 55, 42–47. [Google Scholar] [CrossRef]
- Michel, J.; Moulinec, H.; Suquet, P. Effective properties of composite materials with periodic microstructure: A computational approach. Comput. Methods Appl. Mech. Eng. 1999, 172, 109–143. [Google Scholar] [CrossRef]
- Fish, J.; Yu, Q.; Shek, K. Computational damage mechanics for composite materials based on mathematical homogenization. Int. J. Numer. Methods Eng. 1999, 45, 1657–1679. [Google Scholar] [CrossRef]
- Ladevèze, P. A damage computational method for composite structures. Comput. Struct. 1992, 44, 79–87. [Google Scholar] [CrossRef]
- Hou, T.Y.; Wu, X.-H. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media. J. Comput. Phys. 1997, 134, 169–189. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Collet, F.; Chamoin, J.; Pretot, S.; Lanos, C. Comparison of the hygric behaviour of three hemp concretes. Energy Build. 2013, 62, 294–303. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef]
- Elfordy, S.; Lucas, F.; Tancret, F.; Scudeller, Y.; Goudet, L. Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Korjenic, A.; Petránek, V.; Zach, J.; Hroudová, J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy Build. 2011, 43, 2518–2523. [Google Scholar] [CrossRef]
- Lelievre, D.; Colinart, T.; Glouannec, P. Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses. Energy Build. 2014, 84, 617–627. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, M. Renewable energy investment risk evaluation model based on system dynamics. Renew. Sustain. Energy Rev. 2017, 73, 782–788. [Google Scholar] [CrossRef]
- Mazhoud, B.; Collet, F.; Pretot, S.; Chamoin, J. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 2016, 96, 206–216. [Google Scholar] [CrossRef]
- Palumbo, M.; Lacasta, A.M.; Holcroft, N.; Shea, A.; Walker, P. Determination of hygrothermal parameters of experimental and commercial bio-based insulation materials. Constr. Build. Mater. 2016, 124, 269–275. [Google Scholar] [CrossRef]
- Pittau, F.; Krause, F.; Lumia, G.; Habert, G. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build. Environ. 2018, 129, 117–129. [Google Scholar] [CrossRef]
- Pretot, S.; Collet, F.; Garnier, C. Life cycle assessment of a hemp concrete wall: Impact of thickness and coating. Build. Environ. 2014, 72, 223–231. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Promis, G.; Laidoudi, B.; Crigny, A.; Dupre, B.; Langlet, T. Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy Build. 2015, 88, 91–99. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Promis, G.; Langlet, T. Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Constr. Build. Mater. 2016, 102, 679–687. [Google Scholar] [CrossRef]
- Shea, A.; Lawrence, M.; Walker, P. Hygrothermal performance of an experimental hemp–lime building. Constr. Build. Mater. 2012, 36, 270–275. [Google Scholar] [CrossRef]
- Walker, R.; Pavia, S.; Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
- Latapie, S.R.; Lagouin, M.; Sabathier, V.; Abou-Chakra, A. From aggregate to particleboard: A new multi-scale model approach to thermal conductivity in bio-based materials. J. Build. Eng. 2023, 78, 107664. [Google Scholar] [CrossRef]
- Barbieri, V.; Gualtieri, M.L.; Siligardi, C. Wheat husk: A renewable resource for bio-based building materials. Constr. Build. Mater. 2020, 251, 118909. [Google Scholar] [CrossRef]
- Allinson, D.; Hall, M. Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy Build. 2010, 42, 845–852. [Google Scholar] [CrossRef]
- Bahar, R.; Benazzoug, M.; Kenai, S. Performance of compacted cement-stabilised soil. Cem. Concr. Compos. 2004, 26, 811–820. [Google Scholar] [CrossRef]
- Cagnon, H.; Aubert, J.E.; Coutand, M.; Magniont, C. Hygrothermal properties of earth bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- Ghavami, K.; Toledo Filho, R.D.; Barbosa, N.P. Behaviour of composite soil reinforced with natural fibres. Cem. Concr. Compos. 1999, 21, 39–48. [Google Scholar] [CrossRef]
- Hall, M.; Djerbib, Y. Rammed earth sample production: Context, recommendations and consistency. Constr. Build. Mater. 2004, 18, 281–286. [Google Scholar] [CrossRef]
- Houben, H.; Guillard, H. Earth Construction: A Comprehensive Guide; Intermediate Technology Publications: Rugby, UK, 1994. [Google Scholar]
- Jiménez Delgado, M.C.; Guerrero, I.C. The selection of soils for unstabilised earth building: A normative review. Constr. Build. Mater. 2007, 21, 237–251. [Google Scholar] [CrossRef]
- Liuzzi, S.; Hall, M.R.; Stefanizzi, P.; Casey, S.P. Hygrothermal behaviour and relative humidity buffering of unfired and hydrated lime-stabilised clay composites in a Mediterranean climate. Build. Environ. 2013, 61, 82–92. [Google Scholar] [CrossRef]
- Miccoli, L.; Müller, U.; Fontana, P. Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob. Constr. Build. Mater. 2014, 61, 327–339. [Google Scholar] [CrossRef]
- Millogo, Y.; Morel, J.-C.; Aubert, J.-E.; Ghavami, K. Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. 2014, 52, 71–78. [Google Scholar] [CrossRef]
- Morel, J.C.; Mesbah, A.; Oggero, M.; Walker, P. Building houses with local materials: Means to drastically reduce the environmental impact of construction. Build. Environ. 2001, 36, 1119–1126. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Abdollahnejad, Z.; Miraldo, S.; Baklouti, S.; Ding, Y. An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Constr. Build. Mater. 2012, 36, 1053–1058. [Google Scholar] [CrossRef]
- Walker, P.J. Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cem. Concr. Compos. 1995, 17, 301–310. [Google Scholar] [CrossRef]
- Ardant, D.; Brumaud, C.; Habert, G. Tackling Variability of Clay to Provide a Robust Binder. Constr. Technol. Archit. 2022, 1, 382–387. [Google Scholar] [CrossRef]
- Barnaure, M.; Bonnet, S.; Poullain, P. Earth buildings with local materials: Assessing the variability of properties measured using non-destructive methods. Constr. Build. Mater. 2021, 281, 122613. [Google Scholar] [CrossRef]
- Nascimento, G.M.D. Clay and Clay Minerals; BoD–Books on Demand; IntechOpen: London, UK, 2021. [Google Scholar]
- Gomaa, M.; Jabi, W.; Soebarto, V.; Xie, Y.M. Digital manufacturing for earth construction: A critical review. J. Clean. Prod. 2022, 338, 130630. [Google Scholar] [CrossRef]
- Rawat, B.; Mehra, N.; Bist, A.S.; Yusup, M.; Sanjaya, Y.P.A. Quantum Computing and AI: Impacts & Possibilities. ADI J. Recent Innov. 2022, 3, 202–207. [Google Scholar] [CrossRef]
- Bado, M.F.; Tonelli, D.; Poli, F.; Zonta, D.; Casas, J.R. Digital Twin for Civil Engineering Systems: An Exploratory Review for Distributed Sensing Updating. Sensors 2022, 22, 3168. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Pregnolato, M.; Gunner, S.; Voyagaki, E.; De Risi, R.; Carhart, N.; Gavriel, G.; Tully, P.; Tryfonas, T.; Macdonald, J.; Taylor, C. Towards Civil Engineering 4.0: Concept, workflow and application of Digital Twins for existing infrastructure. Autom. Constr. 2022, 141, 104421. [Google Scholar] [CrossRef]
- Nguyen, T.-D.; Cherif, R.; Mahieux, P.-Y.; Lux, J.; Aït-Mokhtar, A.; Bastidas-Arteaga, E. Artificial intelligence algorithms for prediction and sensitivity analysis of mechanical properties of recycled aggregate concrete: A review. J. Build. Eng. 2023, 66, 105929. [Google Scholar] [CrossRef]
- Vadyala, S.R.; Betgeri, S.N.; Matthews, J.C.; Matthews, E. A review of physics-based machine learning in civil engineering. Results Eng. 2022, 13, 100316. [Google Scholar] [CrossRef]
- Lux, J.; Hoong, J.D.L.H.; Mahieux, P.-Y.; Turcry, P. Classification and estimation of the mass composition of recycled aggregates by deep neural networks. Comput. Ind. 2023, 148, 103889. [Google Scholar] [CrossRef]
Topic | Year Published | Number of Publications |
---|---|---|
“Bio-based building materials” | 1900–2022 | 1778 |
“Earth-based building materials” or “geo-based building materials” | 1900–2022 | 1605 |
“Composite materials” | 1900–2022 | 416,745 |
Countries | Articles |
---|---|
China | 309 |
France | 241 |
USA | 225 |
Italy | 147 |
Germany | 139 |
England | 107 |
India | 100 |
Spain | 91 |
Canada | 77 |
Netherlands | 62 |
Author | Affiliation | Articles |
---|---|---|
Collet Florence | Université de Rennes 1, Laboratoire de Génie Civil et Génie Mécanique | 18 |
Lanos Christophe | Université de Rennes 1, Laboratoire de Génie Civil et Génie Mécanique | 15 |
Blanchet Pierre | Department of Wood and Forest Sciences, Laval University, Québec, QC G1V0A6, Canada | 15 |
Magniont Camille | Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), Toulouse Cedex 04, France | 14 |
Habert Guillaume | Chair of Sustainable Construction, Eidgenössische Technische Hochschule (ETH) Zurich, Stefano Francini Platz 5, CH-8093 Zurich, Switzerland | 13 |
Pretot Sylvie | Université de Rennes 1, Laboratoire de Génie Civil et Génie Mécanique | 12 |
Lawrence Mike | BRE Centre for Innovative Construction Materials, Department of Architecture and Civil Engineering, University of Bath, BA2 7AY, United Kingdom | 11 |
Langlet Thierry | Laboratoire des Technologies Innovantes (LTI), University of Picardie Jules Verne, Avenue des Facultés—Le Bailly, 80 025 Amiens Cedex 1, France | 10 |
Maalouf Chadi | University of Reims Champagne-Ardennes, GRESPI Laboratory (EA 4694), Reims 51100, France | 9 |
Journal | Articles |
---|---|
Construction and building materials | 79 |
Polymers | 38 |
Journal of cleaner production | 37 |
Materials | 34 |
Energy and buildings | 32 |
Journal of building engineering | 27 |
Sustainability | 26 |
Building and environment | 25 |
Industrial crops and products | 20 |
Material today proceedings | 20 |
Countries | Articles |
---|---|
USA | 309 |
China | 291 |
France | 145 |
Italy | 113 |
Germany | 89 |
England | 86 |
Spain | 82 |
India | 80 |
Portugal | 64 |
Australia | 55 |
Author | Affiliation | Articles |
---|---|---|
Aubert Jean-Emmanuel | Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), Toulouse Cedex 04, France | 13 |
Faria Paulina | CERIS-ICIST and Civil Engineering Department, NOVA University of Lisbon (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal | 12 |
Laborel-Preneron Aurélie | Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), Toulouse Cedex 04, France | 11 |
Magniont Camille | Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), Toulouse Cedex 04, France | 9 |
Humberto Varum | CONSTRUCT-LESE, Department of Civil Engineering, Faculdade de Engenharia da Universidade do Porto, Portugal | 8 |
Niroumand Hamed | Department of Civil Engineering, Faculty of Engineering, Buein Zahra Technical University (IKIU-BZ), Qazvin 34149, Iran | 8 |
Pinto Joao Fransisco | Natural Works, Rua Ricardo Esp. Santo N5 CVD, 1200-790, Lisboa, Portugal | 8 |
Beckett Christopher | Institute of Infrastructure and Environment, School of Engineering, The University of Edinburgh, Edinburgh, UK | 7 |
Zai, M.F.M | University of Reims Champagne-Ardennes, GRESPI Laboratory (EA 4694), Reims 51100, France | 6 |
Hamard Erwan | LUNAM University, IFSTTAR, MAST, GPEM, F-44344 Bouguenais, France | 6 |
Journal | Articles |
---|---|
Construction and building materials | 63 |
Sustainability | 26 |
Proceeding of SPIE | 23 |
Journal of building engineering | 22 |
International journal of architectural heritage | 18 |
Journal of cleaner production | 18 |
Inorganic chemistry | 17 |
AIP Conference Proceedings | 15 |
Accounts of chemical research | 14 |
Materials today proceedings | 14 |
Cluster | Associated Color | General Theme |
---|---|---|
1 | Environmental impact | |
2 | Thermo-hydric behavior | |
3 | Mechanical properties | |
4 | Building-scale performance |
Cluster | Associated Color | General Theme |
---|---|---|
1 | Environmental impact | |
2 | Thermo-hydric behavior | |
3 | Construction techniques | |
4 | Mechanical behavior |
Topic | Major Authors | Main Subcategories Studied | Research Perspectives |
---|---|---|---|
Bio-based building materials | Collet F. Lanos C. Blanchet P. Magniont C. Habert G. Pretot S. Lawrence Mike Langlet T. Maalouf C. | Hemp Wood Straw | Modeling Physics Microstructure Chemical composition Sustainability Energy Resource diversity Structuring the local sector |
Earth-based building materials | Aubert J.E. Faria P. Laborel-Préneron A. Magniont C. Humberto V. Niroumand H. Pinto J.F Beckett C. Zai M.F.M Hamard E. Zai | Rammed earth | Modeling Physics Microstructure Variability of the earth Traditional craftsmanship to modern techniques Pre-conceived ideas on earth |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa Latapie, S.; Abou-Chakra, A.; Sabathier, V. Bibliometric Analysis of Bio- and Earth-Based Building Materials: Current and Future Trends. Constr. Mater. 2023, 3, 474-508. https://doi.org/10.3390/constrmater3040031
Rosa Latapie S, Abou-Chakra A, Sabathier V. Bibliometric Analysis of Bio- and Earth-Based Building Materials: Current and Future Trends. Construction Materials. 2023; 3(4):474-508. https://doi.org/10.3390/constrmater3040031
Chicago/Turabian StyleRosa Latapie, Séverine, Ariane Abou-Chakra, and Vincent Sabathier. 2023. "Bibliometric Analysis of Bio- and Earth-Based Building Materials: Current and Future Trends" Construction Materials 3, no. 4: 474-508. https://doi.org/10.3390/constrmater3040031
APA StyleRosa Latapie, S., Abou-Chakra, A., & Sabathier, V. (2023). Bibliometric Analysis of Bio- and Earth-Based Building Materials: Current and Future Trends. Construction Materials, 3(4), 474-508. https://doi.org/10.3390/constrmater3040031