Effect of Water Magnetization Technique on the Properties of Metakaolin-Based Sustainable Concrete
Abstract
:1. Introduction
2. Experimental Research Program
2.1. Materials
2.2. Mixes and Variables
2.3. Methods of Tests
2.3.1. Workability Evaluation
2.3.2. The Compressive Strength Test
2.3.3. The Splitting Tensile Strength Test
2.3.4. SEM Analysis
3. Results and Discussions
3.1. Workability
3.2. Mechanical Properties
3.2.1. Compressive Strength
3.2.2. Splitting Tensile Strength and Flexural Strength
3.3. Effect of the Water Magnetization Method
3.4. SEM Analysis
4. Conclusions
- Mix MK+10TW showed the best results of the mechanical properties in this study. This mix included 10% of MK added to cement in concrete.
- The slump results of mixes prepared with MK and TW showed a decrease in values of slump by up to 8% due to the comparatively small size, high fineness, and polygonal particle shape of MK, which make it absorbable to the mixing water.
- Adding 10% of MK (mix MK+10TW) to concrete enhanced the compressive strength of concrete by up to 10%, 14%, and 12% after 7, 28, and 365 days compared to the control mix MK0TW.
- The splitting tensile strength of MK+10TW mix enhanced by 18% and the flexural strength of MK+10TW mix enhanced by 17%, compared to the control mix MK0TW.
- The best method of water magnetization was “method M-I” that had the water flow passing through 1.6 T permeant magnet and then 1.4 T permeant magnet sequentially for 150 cycles. The slump value of mixes prepared with this method was enhanced by up to 2%. The compressive strength results also increased by up to 21%, 16%, and 18% after 7, 28, and 365 days.
- SEM analysis showed that 10% MK as a cement additive was able to form a more intermixed C-S-H gel, compared with no MK in concrete made with TW. The use of MW in mix MK+10-I improved the concrete internally as there was more C-S-H, less calcium hydroxide, and the concrete became denser, compared with mix MK+10TW.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Helmy, S.H.; Tahwia, A.M.; Mahdy, M.G.; Elrahman, M.A.; Abed, M.A.; Youssf, O. The Use of Recycled Tire Rubber, Crushed Glass, and Crushed Clay Brick in Lightweight Concrete Production: A Review. Sustainability 2023, 15, 10060. [Google Scholar] [CrossRef]
- Lyu, X.; Elchalakani, M.; Ahmed, T.; Sadakkathulla, M.A.; Youssf, O. Residual strength of steel fibre reinforced rubberised UHPC under elevated temperatures. J. Build. Eng. 2023, 76, 107173. [Google Scholar] [CrossRef]
- Rojo-López, G.; Nunes, S.; González-Fonteboa, B.; Martínez-Abella, F. Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for produc-tion of self-compacting concrete. J. Clean. Prod. 2020, 266, 121666. [Google Scholar] [CrossRef]
- Liu, K.; Shui, Z.; Sun, T.; Ling, G.; Li, X.; Cheng, S. Effects of combined expansive agents and supplementary cementitious materials on the mechanical properties, shrinkage and chloride penetration of self-compacting concrete. Constr. Build. Mater. 2019, 211, 120–129. [Google Scholar] [CrossRef]
- Al-Kroom, H.; Abdel-Gawwad, H.A.; Abd Elrahman, M.; Abdel-Aleem, S.; Saad Ahmed, M.; Salama, Y.F.; Qaysi, S.; Techman, M.; Seliem, M.K.; Youssf, O. Utilization of Foamed Glass as an Effective Adsorbent for Methylene Blue: Insights into Physicochemical Properties and Theoretical Treatment. Materials 2023, 16, 1412. [Google Scholar] [CrossRef] [PubMed]
- Tahwia, A.M.; Helal, K.A.; Youssf, O. Chopped Basalt Fiber-Reinforced High-Performance Concrete: An Experimental and Analytical Study. J. Compos. Sci. 2023, 7, 250. [Google Scholar] [CrossRef]
- Abd-Elrahman, M.H.; Agwa, I.S.; Mostafa, S.A.; Youssf, O. Effect of utilizing peanut husk ash on the properties of ultra-high strength concrete. Constr. Build. Mater. 2023, 384, 131398. [Google Scholar] [CrossRef]
- Rashad, A.M. Metakaolin as cementitious material: History, scours, production and composition—A comprehensive over-view. Constr. Build. Mater. 2013, 41, 303–318. [Google Scholar] [CrossRef]
- Krajči, Ľ.; Mojumdar, S.C.; Janotka, I.; Puertas, F.; Palacios, M.; Kuliffayová, M. Performance of composites with metakaolin-blended cements. J. Therm. Anal. Calorim. 2015, 119, 851–863. [Google Scholar] [CrossRef]
- Grist, E.R.; Paine, K.A.; Heath, A.; Norman, J.; Pinder, H. The environmental credentials of hydraulic lime-pozzolan concretes. J. Clean. Prod. 2015, 93, 26–37. [Google Scholar] [CrossRef]
- De Larrard, F. Concrete Mixture Proportioning: A Scientific Approach; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Srilai, S.; Kaewtrakulchai, N.; Panomsuwan, G.; Fuji, M.; Eiad-Ua, A. Influence of hydrothermal and calcination process on metakaolin from natural clay. AIP Conf. Proc. 2018, 2010, 020018. [Google Scholar]
- Cassagnabère, F.; Mouret, M.; Escadeillas, G.; Broilliard, P.; Bertrand, A. Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects. Constr. Build. Mater. 2010, 24, 1109–1118. [Google Scholar] [CrossRef]
- Chu, S.; Kwan, A. Co-addition of metakaolin and silica fume in mortar: Effects and advantages. Constr. Build. Mater. 2019, 197, 716–724. [Google Scholar] [CrossRef]
- Rashad, A.M. Metakaolin: Fresh properties and optimum content for mechanical strength in traditional cementitious materials-A comprehensive overview. Rev. Adv. Mater. Sci. 2015, 40, 15–44. [Google Scholar]
- Al Menhosh, A.; Wang, Y.; Wang, Y.; Augusthus-Nelson, L. Long term durability properties of concrete modified with metakaolin and polymer admixture. Constr. Build. Mater. 2018, 172, 41–51. [Google Scholar] [CrossRef]
- Güneyisi, E.; Mehmet, G.; Kasım, M. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 2008, 41, 937–949. [Google Scholar] [CrossRef]
- Khatib, J.; Hibbert, J. Selected engineering properties of concrete incorporating slag and metakaolin. Constr. Build. Mater. 2005, 19, 460–472. [Google Scholar] [CrossRef]
- Muduli, R.; Mukharjee, B.B. Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete. J. Clean. Prod. 2019, 209, 398–414. [Google Scholar] [CrossRef]
- Xiao, R.; Huang, B.; Zhou, H.; Ma, Y.; Jiang, X. A state-of-the-art review of crushed urban waste glass used in OPC and AAMs (geopolymer): Progress and challenges. Clean. Mater. 2022, 4, 100083. [Google Scholar] [CrossRef]
- Elkerany, A.M.; Keshta, M.M.; Elshikh, M.M.Y.; Elshami, A.A.; Youssf, O. Characteristics of Sustainable Concrete Containing Metakaolin and Magnetized Water. Buildings 2023, 13, 1430. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Elshikh, M.M.Y.; Elemam, W.E.; Youssf, O. Influence of Mixing-Water Magnetization Method on the Performance of Silica Fume Concrete. Buildings 2022, 13, 44. [Google Scholar] [CrossRef]
- Youssf, O.; Swilam, A.; Tahwia, A.M. Performance of crumb rubber concrete made with high contents of heat pre-treated rubber and magnetized water. J. Mater. Res. Technol. 2023, 23, 2160–2176. [Google Scholar] [CrossRef]
- Toledo, E.J.; Ramalho, T.C.; Magriotis, Z.M. Influence of magnetic field on physical-chemical properties of the liquid water: Insights from experimental and theoretical models. J. Mol. Struct. 2008, 888, 409–415. [Google Scholar] [CrossRef]
- Afshin, H.; Gholizadeh, M.; Khorshidi, N. Improving mechanical properties of high strength concrete by magnetic water technology. Sci. Iran. 2010, 17, 74–79. [Google Scholar]
- Abdel-Magid, T.I.M.; Hamdan, R.M.; Abdelgader, A.A.B.; Omer, M.E.A.; Ahmed, N.M.R.-A. Effect of magnetized water on workability and compressive strength of concrete. Procedia Eng. 2017, 193, 494–500. [Google Scholar] [CrossRef]
- Gholhaki, M.; Kheyroddin, A.; Hajforoush, M.; Kazemi, M. An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Constr. Build. Mater. 2018, 158, 173–180. [Google Scholar] [CrossRef]
- Keshta, M.M.; Elshikh, M.M.Y.; Elrahman, M.A.; Youssf, O. Utilizing of Magnetized Water in Enhancing of Volcanic Concrete Characteristics. J. Compos. Sci. 2022, 6, 320. [Google Scholar] [CrossRef]
- Keshta, M.M.; Elshikh, M.M.Y.; Kaloop, M.R.; Hu, J.-W.; Elmohsen, I.A. Effect of magnetized water on characteristics of sustainable concrete using volcanic ash. Constr. Build. Mater. 2022, 361, 129640. [Google Scholar] [CrossRef]
- Elshami, A.; Essam, N.; Yousry, E.-S.M. Improvement of hydration products for self-compacting concrete by using magnetized water. Frat. Ed Integrità Strutt. 2022, 16, 352–371. [Google Scholar] [CrossRef]
- Ahmed, S.M. Effect of Magnetic Water on Engineering Properties of Concrete. AL-Rafdain Eng. J. (AREJ) 2009, 17, 71–82. [Google Scholar] [CrossRef]
- Su, N.; Wu, Y.-H.; Mar, C.-Y. Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cem. Concr. Res. 2000, 30, 599–605. [Google Scholar] [CrossRef]
- Al-Safy, R.A. Employment of magnetic water treatment in construction. J. Eng. Sustain. Dev. 2022, 25, 1–12. [Google Scholar] [CrossRef]
- Mohammadnezhad, A.; Azizi, S.; Farahani, H.S.; Tashan, J.; Korayem, A.H. Understanding the magnetizing process of water and its effects on cementitious materials: A critical review. Constr. Build. Mater. 2022, 356, 129076. [Google Scholar] [CrossRef]
- ES 2421/2009; Cement-Physical and Mechanical Testing. Egyptian Organization for Standardization and Quality Control: Cairo, Egypt, 2009.
- Lorika, D.A.; Hamad, B.; Yehya, A.; Salam, D.A. Evaluating the use of mucilage from opuntia ficus-indica as a bio-additive in production of sustainable concrete. Constr. Build. Mater. 2023, 396, 132132. [Google Scholar] [CrossRef]
- ES 4756-1/2013; Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. Egyptian Organization for Standardization and Quality: Cairo, Egypt, 2013.
- Yousry, O.M.M.; Abdallah, M.A.; Ghazy, M.F.; Taman, M.H.; Kaloop, M.R. A study for improving compressive strength of cementitious mortar utilizing magnetic water. Materials 2020, 13, 1971. [Google Scholar] [CrossRef] [PubMed]
- ASTM C143/C143M; Standard Test Method for Slump of Hydraulic—Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2015.
- EN 12390-4; Testing Hardened Concrete: Compressive Strength of Test Specimens. BSI: London, UK, 2019.
- EN 12390-6; Testing Hardened Concrete: Splitting Tensile Strength of Test Specimen. BSI: London, UK, 2019.
- ASTM C143; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2009. Available online: http://www.astm.org/ (accessed on 3 August 2022).
- Noushini, A.; Aslani, F.; Castel, A.; Gilbert, R.I.; Uy, B.; Foster, S. Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete. Cem. Concr. Compos. 2016, 73, 136–146. [Google Scholar] [CrossRef]
- Aquino, W.; Lange, D.; Olek, J. The influence of metakaolin and silica fume on the chemistry of alkali-silica reaction products. Cem. Concr. Compos. 2001, 23, 485–493. [Google Scholar] [CrossRef]
Element | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | LOI |
---|---|---|---|---|---|---|---|---|
OPC | 62.70 | 20.20 | 6.00 | 3.30 | 2.00 | 2.20 | 0.01 | 1.70 |
Element | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | P2O5 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
MK | 0.29 | 62.07 | 24.31 | 1.72 | 0.27 | 0.01 | 0.01 | 0.65 | 0.02 | 8.98 |
Magnetization Method | Water Direction | Valves System | |||||||
---|---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | ||
M-I | Series of pipes (Upper to lower) | O | C | C | O | C | O | O | C |
M-II | Only Lower | C | O | -- | O | -- | C | -- | C |
M-III | Only Upper | O | C | O | -- | C | -- | C | -- |
M-IV | Series of pipes (Lower to Upper) | C | O | O | C | O | C | C | O |
M-V | Parallel pipes | O | O | O | O | C | C | C | C |
Group | Mix Code | Coarse Aggregate kg/m3 | Fine Aggregate kg/m3 | Cement | MK | TW kg/m3 | MW kg/m3 | SP kg/m3 | ||
---|---|---|---|---|---|---|---|---|---|---|
% | kg/m3 | % | kg/m3 | |||||||
1 | MK0TW | 1179 | 589 | 100% | 500 | 0% | 0 | 175 | - | 7.5 |
MK5TW | 1176 | 588 | 95% | 475 | 5% | 25 | 175 | - | 7.5 | |
MK10TW | 1174 | 587 | 90% | 450 | 10% | 50 | 175 | - | 7.5 | |
MK20TW | 1169 | 585 | 80% | 400 | 20% | 100 | 175 | - | 7.5 | |
MK+5TW | 1148 | 574 | 100% | 500 | +5% | 25 | 175 | - | 7.5 | |
MK+10TW | 1114 | 557 | 100% | 500 | +10% | 50 | 175 | - | 7.5 | |
MK+20TW | 1048 | 524 | 100% | 500 | +20% | 100 | 175 | - | 7.5 | |
2 | MK+10-I | 1114 | 557 | 100% | 500 | +10% | 50 | - | 175 | 7.5 |
MK+10-II | 1114 | 557 | 100% | 500 | +10% | 50 | - | 175 | 7.5 | |
MK+10-III | 1114 | 557 | 100% | 500 | +10% | 50 | - | 175 | 7.5 | |
MK+10-IV | 1114 | 557 | 100% | 500 | +10% | 50 | - | 175 | 7.5 | |
MK+10-V | 1114 | 557 | 100% | 500 | +10% | 50 | - | 175 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkerany, A.M.; Elshikh, M.M.Y.; Elshami, A.A.; Youssf, O. Effect of Water Magnetization Technique on the Properties of Metakaolin-Based Sustainable Concrete. Constr. Mater. 2023, 3, 434-448. https://doi.org/10.3390/constrmater3040028
Elkerany AM, Elshikh MMY, Elshami AA, Youssf O. Effect of Water Magnetization Technique on the Properties of Metakaolin-Based Sustainable Concrete. Construction Materials. 2023; 3(4):434-448. https://doi.org/10.3390/constrmater3040028
Chicago/Turabian StyleElkerany, Ahmed M., Mohamed M. Yousry Elshikh, Ahmed A. Elshami, and Osama Youssf. 2023. "Effect of Water Magnetization Technique on the Properties of Metakaolin-Based Sustainable Concrete" Construction Materials 3, no. 4: 434-448. https://doi.org/10.3390/constrmater3040028
APA StyleElkerany, A. M., Elshikh, M. M. Y., Elshami, A. A., & Youssf, O. (2023). Effect of Water Magnetization Technique on the Properties of Metakaolin-Based Sustainable Concrete. Construction Materials, 3(4), 434-448. https://doi.org/10.3390/constrmater3040028