Effect of Curing Methods on Plastic Shrinkage Cracking
Abstract
:1. Introduction
1.1. Concrete Curing Methods
1.2. Significance of the Research
2. Materials and Experimental Methods
2.1. Mixture Proportioning
2.2. Mixing and Placing
2.3. Experimental Methods
2.3.1. Plastic Shrinkage Test
2.3.2. Evaporation Rate
2.3.3. Parameters of the Study
3. Experimental Results and Discussion
3.1. Evaporation Rate
3.2. Crack Width
3.3. Comparison of the Concrete Curing Methods
4. Conclusions
- The ASTM evaporation rates are similar for all the specimens and are affected by the initial water pan temperature, while the Menzel’s formula evaporation rates increase with an increase in the concrete temperature.
- All the concrete curing methods are successful to some extent in restraining plastic shrinkage cracking.
- Covering concrete with plastic sheets (PSC) prevents the evaporation of the bleed water and eliminates plastic shrinkage cracks, albeit at the expense of increased temperatures, while covering concrete with wet hessian fabric (HFC) decreases micro and plastic shrinkage cracks and keeps the concrete temperature down.
- The power floating concrete curing method (PFC) reduces or eliminates cracks, although it takes time to apply and increases the concrete temperature.
- Cold water concrete (CWC) gives the best overall relative efficiency score but does not eliminate cracking, so it is recommended as a supplementary method in hot climates.
- Both shrinkage-reducing admixtures (SSC and SS90WC) used in this study prevent and reduce plastic shrinkage cracks but affect the concrete temperature negatively.
- Recycled tire steel fibres (RTSFC40) eliminate plastic shrinkage cracking, but due to their cost, they are not recommended just for plastic shrinkage control.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Combrinck, R.; Steyl, L.; Boshoff, W.P. Influence of concrete depth and surface finishing on the cracking of plastic concrete. Constr. Build. Mater. 2018, 175, 621–628. [Google Scholar] [CrossRef]
- Matalkah, F.; Jaradat, Y.; Soroushian, P. Plastic shrinkage cracking and bleeding of concrete prepared with alkali activated cement. Heliyon 2019, 5, e01514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, F.U.A. Effect of Cracking on Corrosion of Steel in Concrete. Int. J. Concr. Struct. Mater. 2018, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.; Gazder, U.; Maslehuddin, M.; Al-Amoudi, O.S.B.; Syed, I.A. Prediction of Properties of Concrete Cured Under Hot Weather Using Multivariate Regression and ANN Models. Arab. J. Sci. Eng. 2020, 45, 4111–4123. [Google Scholar] [CrossRef]
- ASTM C192/C192M; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2016; pp. 1–8. [CrossRef]
- ASTM C1579; Standard Test Method for Evaluating Plastic Shrinkage Cracking of Restrained Fiber Reinforced Concrete. ASTM International: West Conshohocken, PA, USA, 2006; pp. 1–7. [CrossRef]
- Safiuddin, M.; Kaish, A.B.M.A.; Woon, C.O.; Raman, S.N. Early-Age Cracking in Concrete: Causes, Consequences, Remedial Measures, and Recommendations. Appl. Sci. 2018, 8, 1730. [Google Scholar] [CrossRef] [Green Version]
- De Schutter, G.; Taerwe, L. Specific heat and thermal diffusivity of hardening concrete. Mag. Concr. Res. 1995, 47, 203–208. [Google Scholar] [CrossRef]
- Moelich, G.M.; van Zyl, J.; Rabie, N.; Combrinck, R. The influence of solar radiation on plastic shrinkage cracking in concrete. Cem. Concr. Compos. 2021, 123, 104182. [Google Scholar] [CrossRef]
- Naaman, A.E.; Wongtanakitcharoen, T.; Hauser, G. Influence of different fibers on plastic shrinkage cracking of concrete. ACI Mater. J. 2005, 102, 49–58. [Google Scholar] [CrossRef]
- Nasir, M.; Al-Amoudi, O.S.B.; Maslehuddin, M. Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather. Constr. Build. Mater. 2017, 152, 943–953. [Google Scholar] [CrossRef]
- Al-Amoudi, O.S.B.; Maslehuddin, M.; Shameem, M.; Ibrahim, M. Shrinkage of plain and silica fume cement concrete under hot weather. Cem. Concr. Compos. 2007, 29, 690–699. [Google Scholar] [CrossRef]
- ACI 224R-01; Control of Cracking in Concrete Structures Reported by ACI Committee 224. ACI Committee: Farmington Hills, MI, USA, 2001; pp. 1–46.
- Jacobsen, S.; Scherer, G.W.; Schulson, E.M. Concrete–ice abrasion mechanics. Cem. Concr. Res. 2015, 73, 79–95. [Google Scholar] [CrossRef]
- Xie, T.; Fang, C.; Ali, M.M.S.; Visintin, P. Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study. Cem. Concr. Compos. 2018, 91, 156–173. [Google Scholar] [CrossRef]
- Zhan, P.M.; He, Z.H. Application of shrinkage reducing admixture in concrete: A review. Constr. Build. Mater. 2019, 201, 676–690. [Google Scholar] [CrossRef]
- Shah, S.P.; Marikunte, S.; Yang, W.; Aldea, C. Control of Cracking with Shrinkage-Reducing Admixtures. Transp. Res. Rec. 1997, 1574, 25–36. [Google Scholar] [CrossRef]
- Pease, B.; Shah, H.; Weiss, J. Shrinkage Behavior and Residual Stress Development in Mortar Containing Shrinkage Reducing Admixtures (SRAs). Am. Concr. Inst. ACI Spec. Publ. SP. 2005, 227, 285–302. [Google Scholar] [CrossRef]
- Cabrera, J.G.; Cusens, A.R.; Brookes-Wang, Y. Effect of superplasticizers on the plastic shrinkage of concrete. Mag. Concr. Res. 1992, 44, 149–155. [Google Scholar] [CrossRef]
- Combrinck, R.; Kayondo, M.; le Roux, B.D.; de Villiers, W.I.; Boshoff, W.P. Effect of various liquid admixtures on cracking of plastic concrete. Constr. Build. Mater. 2019, 202, 139–153. [Google Scholar] [CrossRef]
- Alshammari, T.O.; Pilakoutas, K.; Guadagnini, M. Performance of Manufactured and Recycled Steel Fibres in Restraining Concrete Plastic Shrinkage Cracks. Materials 2023, 16, 713. [Google Scholar] [CrossRef]
- Banthia, N.; Yan, C. Shrinkage cracking in polyolefin fiber-reinforced concrete. Mater. J. 2000, 97, 432–437. [Google Scholar]
- Bertelsen, I.M.G.; Ottosen, L.M.; Fischer, G. Influence of fibre characteristics on plastic shrinkage cracking in cement-based materials: A review. Constr. Build. Mater. 2010, 230, 116769. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- Al-Tulaian, B.S.; Al-Shannag, M.J.; Al-Hozaimy, A.R. Recycled plastic waste fibers for reinforcing Portland cement mortar. Constr. Build. Mater. 2016, 127, 102–110. [Google Scholar] [CrossRef]
- Sivakumar, A.; Santhanam, M. A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cem. Concr. Compos. 2007, 29, 575–581. [Google Scholar] [CrossRef]
- Hu, H.; Papastergiou, P.; Angelakopoulos, H.; Guadagnini, M.; Pilakoutas, K. Mechanical properties of SFRC using blended Recycled Tyre Steel Cords (RTSC) and Recycled Tyre Steel Fibres (RTSF). Constr. Build. Mater. 2018, 187, 553–564. [Google Scholar] [CrossRef]
- ASTM C136-01; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2005; Volume 13, pp. 85–86.
- Uno, P.J. Plastic shrinkage cracking and evaporation formulas. ACI Mater. J. 1998, 95, 365–375. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, C.; Qi, C.; Wang, M.; Huan, C.; Zhang, B.; Song, K.I.I.L. Effects of curing time and ice-to-water ratio on performance of cemented paste backfill containing ice slag. Constr. Build. Mater. 2019, 228, 116639. [Google Scholar] [CrossRef]
- ASTM C 309; Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete 1. ASTM International: West Conshohocken, PA, USA, 2015; pp. 8–10.
- BS 7542; Method of Test for Curing Compounds for Concrete. BSI Group: London, UK, 1992.
- Alshammari, T.O.; Guadagnini, M.; Pilakoutas, K. The Effect of Harsh Environmental Conditions on Concrete Plastic Shrinkage Cracks: Case Study Saudi Arabia. Materials 2022, 15, 8622. [Google Scholar] [CrossRef] [PubMed]
- Isa, M.N.; Pilakoutas, K.; Guadagnini, M. Determination of tensile characteristics and design of eco-efficient UHPC. Structures 2021, 32, 2174–2194. [Google Scholar] [CrossRef]
- McCarter, W.J.; Ben-Saleh, A.M. Influence of practical curing methods on evaporation of water from freshly placed concrete in hot climates. Build. Environ. 2001, 36, 919–924. [Google Scholar] [CrossRef]
- Maslehuddin, M.; Ibrahim, M.; Shameem, M.; Ali, M.R.; Al-Mehthel, M.H. Effect of curing methods on shrinkage and corrosion resistance of concrete. Constr. Build. Mater. 2013, 41, 634–641. [Google Scholar] [CrossRef]
- Shen, Y.; Lv, Y.; Yang, H.; Ma, W.; Zhang, L.; Pan, J. Effect of different ice contents on heat transfer and mechanical properties of concrete. Cold Reg. Sci. Technol. 2022, 199, 103570. [Google Scholar] [CrossRef]
- Nabil, B.; Aissa, A.; Aguida, B.I. Use of a New Approach (Design of Experiments Method) to Study Different Procedures to Avoid Plastic Shrinkage Cracking of Concrete in Hot Climates. J. Adv. Concr. Technol. 2011, 9, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Nassif, H.; Suksawang, N.; Mohammed, M. Effect of Curing Methods on Early-Age and Drying Shrinkage of High-Performance Concrete. Transp. Res. Rec. 2003, 1834, 48–58. [Google Scholar] [CrossRef]
- Kori, K.; Goliya, S.S. Use of Discrete fiber in road pavement. Mater. Today: Proc. 2022, 65, 1856–1860. [Google Scholar] [CrossRef]
- Saliba, J.; Rozière, E.; Grondin, F.; Loukili, A. Influence of shrinkage-reducing admixtures on plastic and long-term shrinkage. Cem. Concr. Compos. 2011, 33, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Leemann, A.; Nygaard, P.; Lura, P. Impact of admixtures on the plastic shrinkage cracking of self-compacting concrete. Cem. Concr. Compos. 2014, 46, 1–7. [Google Scholar] [CrossRef]
- Combrinck, R.; Boshoff, W.P. Typical plastic shrinkage cracking behaviour of concrete. Mag. Concr. Res. 2013, 65, 486–493. [Google Scholar] [CrossRef]
- Eren, O.; Marar, K. Effect of steel fibers on plastic shrinkage cracking of normal and high strength concretes. Mater. Res. 2010, 13, 135–141. [Google Scholar] [CrossRef] [Green Version]
Material | Quantity |
---|---|
Cement (CEMII 42.5) | 335 kg/m3 |
Fine aggregate (river round sand) | 847 kg/m3 |
Gravel 10 mm (river round gravel) | 491 kg/m3 |
Gravel 14 mm (river round gravel) | 532 kg/m3 |
Water | 185 kg/m3 |
Superplasticizer (Twinflow) (Sika ViscoCrete 30HE) | 1.5 L/m3 |
Method | Range | PSC | HFC | PFC | CWC | SSC | SS90WC | RTSFC40 |
---|---|---|---|---|---|---|---|---|
Cost | 4–0 (£/m2) | 0.18 (0.8) | 0.21 (0.8) | 0.30 (0.6) | 0.10 (1) | 0.33 (0.6) | 0.33 (0.6) | 4 (0) |
Time of application | 0–30 (s/m2) | 13 (0.6) | 20 (0.4) | 20 (0.4) | 0 (1) | 5 (0.8) | 5 (0.8) | 30 (0) |
Sustainability | 0–100 (%) | 66.66 (0.6) | 100 (1) | 33.33 (0.3) | 100 (1) | 0 (0) | 0 (0) | 33.33 (0.3) |
Quality | 0–100 (CRR %) | 100 (1) | 48 (0.5) | 100 (1) | 22 (0.2) | 78 (0.78) | 100 (1) | 100 (1) |
Crack initiation | 2–3 (h) | No crack (1) | 02:20 (0.3) | No crack (1) | 02:30 (0.5) | 02:30 (0.5) | No crack (1) | No crack (1) |
Concrete temp. | 20–30 (°C) | 29.7 (0) | 23.5 (0.6) | 25.3 (0.5) | 20.1 (1) | 23.1 (0.7) | 26.7 (0.3) | 24 (0.6) |
Overall relative score | 0–6 | 4 | 3.6 | 3.8 | 4.5 | 3.3 | 3.6 | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, T.O.; Pilakoutas, K.; Guadagnini, M. Effect of Curing Methods on Plastic Shrinkage Cracking. Constr. Mater. 2023, 3, 244-258. https://doi.org/10.3390/constrmater3020016
Alshammari TO, Pilakoutas K, Guadagnini M. Effect of Curing Methods on Plastic Shrinkage Cracking. Construction Materials. 2023; 3(2):244-258. https://doi.org/10.3390/constrmater3020016
Chicago/Turabian StyleAlshammari, Talal O., Kypros Pilakoutas, and Maurizio Guadagnini. 2023. "Effect of Curing Methods on Plastic Shrinkage Cracking" Construction Materials 3, no. 2: 244-258. https://doi.org/10.3390/constrmater3020016
APA StyleAlshammari, T. O., Pilakoutas, K., & Guadagnini, M. (2023). Effect of Curing Methods on Plastic Shrinkage Cracking. Construction Materials, 3(2), 244-258. https://doi.org/10.3390/constrmater3020016