Vs30 Derived from Geology: An Attempt in the Province of Quebec, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vs30 Comparison Between Zonation Map and USGS Model
2.2. Distribution of Vs30 in Each Region
3. Results
3.1. Vs30 Comparison Between Zonation Map and USGS Model
3.2. Distribution of Vs30 in Each Region
3.3. Correlation Between Vs30 Data and Surficial Sediments
3.4. Correlation of Vs30 with Depth to Bedrock
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NBCC | National Building Code of Canada |
SIGEOM | Système d’Information Géominière |
USGS | US Geological Survey |
References
- Finn, W.D.L.; Byrne, P.M.; Evans, S.; Law, T. Some geotechnical aspects of the Hyogo-ken Nanbu (Kobe) earthquake of January 17, 1995. Can. J. Civ. Eng. 1996, 23, 778–796. [Google Scholar] [CrossRef]
- Finn, W.D.L.; Ruz, F. Amplification effects of thin soft-surface layers. Earthq. Spectra 2016, 32, 2109–2126. [Google Scholar] [CrossRef]
- Adams, J.; Allen, T.; Halchuk, S.; Kolaj, M. Canada’s 6th Generation Seismic Hazard Model, as Prepared for the 2020 National Building Code of Canada. In Proceedings of the 12th Canadian Conference on Earthquake Engineering, Quebec City, QC, Canada, 17–20 June 2019. [Google Scholar]
- Lu, Y.; Marshall, A.M.; Hajirasouliha, I. A simplified Nonlinear Sway-Rocking model for evaluation of seismic response of structures on shallow foundations. Soil Dyn. Earthq. Eng. 2016, 81, 14–26. [Google Scholar] [CrossRef]
- Braganza, S.; Atkinson, G.M.; Ghofrani, H.; Hassani, B.; Chouinard, L.; Rosset, P.; Motazedian, D.; Hunter, J. Modeling Site Amplification in Eastern Canada on a Regional Scale. Seismol. Res. Lett. 2016, 87, 1008–1021. [Google Scholar] [CrossRef]
- Rosset, P.; Takahashi, A.; Chouinard, L. Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources. Geosciences 2023, 13, 256. [Google Scholar] [CrossRef]
- Choi, Y.; Stewart, J.P. Nonlinear site amplification as function of 30 m shear wave velocity. Earthq. Spectra 2005, 21, 1–30. [Google Scholar] [CrossRef]
- Rosset, P.; Chouinard, L.E. Characterization of site effects in Montreal, Canada. Nat. Hazards 2009, 48, 295–308. [Google Scholar] [CrossRef]
- Motazedian, D.; Hunter, J.A.; Belvaux, M.; Sivathayalan, S.; Pugin, A.; Chouinard, L.; Khaheshi Banab, K. Seismic Microzonation of Montreal and Ottawa, Canada. In Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering, Toronto, ON, Canada, 25–29 July 2010; pp. 631–640. [Google Scholar]
- Limoges, M.; Demers Bonin, M.; Pépin, N.; Lemieux, M. Case study: Characterization of a thick sensitive clay deposit in the St. Lawrence River valley, slope stability analysis and preliminary assessment of permanent deformations. In Advances in Natural and Technological Hazards Research; Springer: Cham, Switzerland, 2017; Volume 46, pp. 383–394. [Google Scholar] [CrossRef]
- Chouinard, L.; Rosset, P. Seismic Site Effects and Seismic Risk in the Montreal Area—The Influence of Marine Clays. In Proceedings of the 9th Canadian Conference on Earthquake Engineering, Ottawa, ON, Canada, 26–29 June 2007; pp. 512–521. [Google Scholar]
- Spence, C.; Biradar, S.; Waechter, B. Foundation Construction on Leda/Champlain Sea Clay in Ottawa. In Proceedings of the 43th Geotechnical Hazards and Risk Forum, Ottawa, ON, Canada, December 2019; Available online: https://www.researchgate.net/publication/348735154_Foundation_Construction_on_LedaChamplain_Sea_Clay_in_Ottawa (accessed on 19 March 2025).
- Bruneau, M. Seismic Evaluation of Unreinforced Masonry Buildings—A State-of-the-Art Report. Can. J. Civ. Eng. 1994, 21, 512–539. [Google Scholar] [CrossRef]
- Mitchell, D.; Tinawi, R.; Law, T. Damage Caused by the November 25, 1988, Saguenay Earthquake. Can. J. Civ. Eng. 1990, 17, 338–365. [Google Scholar] [CrossRef]
- Chouinard, L.; Rosset, P. On the Use of Single Station Ambient Noise Techniques for Microzonation Purposes: The Case of Montreal. In Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock; Hunter, J.A., Crow, H.L., Eds.; Open File 7078; Geological Survey of Canada: Ottawa, ON, Canada, 2012; pp. 85–93. [Google Scholar] [CrossRef]
- Talukder, M.K.; Chouinard, L. Dynamic Response Predictions of Soil Profiles in Montreal. In Proceedings of the Canadian Society for Civil Engineering Conference, Montreal, QC, Canada, 9–12 June 2010; pp. 1–10. [Google Scholar]
- Robertson, P.K.; Sasitharan, S.; Cunning, J.C.; Sego, D.C. Shear-Wave Velocity to Evaluate In-Situ State of Ottawa Sand. J. Geotech. Eng. 1995, 121, 262–273. [Google Scholar] [CrossRef]
- Pitilakis, K.; Riga, E.; Anastasiadis, A. New Code Site Classification, Amplification Factors and Normalized Response Spectra Based on a Worldwide Ground-Motion Database. Bull. Earthq. Eng. 2013, 11, 925–966. [Google Scholar] [CrossRef]
- Holzer, T.L.; Padovani, A.C.; Bennett, M.J.; Noce, T.E.; Tinsley, J.C. Mapping NEHRP VS30 Site Classes. Earthq. Spectra 2005, 21, 353–370. [Google Scholar] [CrossRef]
- Kolaj, M. Sixth-Generation Seismic Hazard Model of Canada: Grid Values of Mean Hazard to Be Used with the 2020 National Building Code of Canada; Geological Survey of Canada Open File Rep. 2023; Natural Resources Canada: Ottawa, ON, Canada, 2023. [Google Scholar]
- Motazedian, D.; Hunter, J.A.; Pugin, A.; Crow, H. Development of a Vs30 (NEHRP) Map for the City of Ottawa, Ontario, Canada. Can. Geotech. J. 2011, 48, 458–472. [Google Scholar] [CrossRef]
- Benjumea, B.; Hunter, J.A.; Pullan, S.E.; Brooks, G.R.; Pyne, M.; Aylsworth, J.M. Vs30 and Fundamental Site Period Estimates in Soft Sediments of the Ottawa Valley from Near-Surface Geophysical Measurements. In Proceedings of the 19th Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP 2006), Seattle, WA, USA, 2–6 April 2006; Volume 2, pp. 1270–1281. [Google Scholar] [CrossRef]
- Wills, C.J.; Petersen, M.; Bryant, W.A.; Reichle, M.; Saucedo, G.J.; Tan, S.; Taylor, G.; Treiman, J. A Site-Conditions Map for California Based on Geology and Shear-Wave Velocity. Bull. Seismol. Soc. Am. 2000, 90, 187–208. [Google Scholar] [CrossRef]
- Heath, D.C.; Wald, D.J.; Worden, C.B.; Thompson, E.M.; Smoczyk, G.M. A Global Hybrid VS30 Map with a Topographic Slope–Based Default and Regional Map Insets. Earthq. Spectra 2020, 36, 1570–1584. [Google Scholar] [CrossRef]
- Allen, T.I.; Wald, D.J. On the Use of High-Resolution Topographic Data as a Proxy for Seismic Site Conditions (VS30). Bull. Seismol. Soc. Am. 2009, 99, 935–943. [Google Scholar] [CrossRef]
- Wald, D.J.; Quitoriano, V.; Worden, B.; Hopper, M.; Dewey, J.W. USGS “Did You Feel It?” Internet-Based Macroseismic Intensity Maps. Ann. Geophys. 2011, 54, 688–707. [Google Scholar] [CrossRef]
- Litton, D. Vs30 Correlations for the Boston Region. Master’s Thesis, Tufts University, Medford, MA, USA, 2015. Available online: http://hdl.handle.net/10427/011998 (accessed on 19 March 2025).
- Rosset, P.; Zhu, H.; Chouinard, L. Influence of the Vs30 Mapping on the Residential Risk: Case Study of the Greater Montreal. In Proceedings of the Canadian Conference—Pacific Conference on Earthquake Engineering 2023, Vancouver, BC, Canada, 25–30 June 2023; Available online: https://www.caee.ca/document/8007/ (accessed on 19 March 2025).
- Mori, F.; Mendicelli, A.; Moscatelli, M.; Romagnoli, G.; Peronace, E.; Naso, G. A New Vs30 Map for Italy Based on the Seismic Microzonation Dataset. Eng. Geol. 2020, 275, 105745. [Google Scholar] [CrossRef]
- Crowley, H.M.; Dabbeek, J.; Despotaki, V.; Rodrigues, D.; Martins, L.; Silva, V.; Romão, X.; Pereira, N.; Weatherill, G.A.; Danciu, L. European Seismic Risk Model (ESRM20). In EFEHR Technical Report 002; European Facility for Earthquake Hazard and Risk: Potsdam, Germany, 2021. [Google Scholar]
- Parker, G.A.; Harmon, J.A.; Stewart, J.P.; Hashash, Y.M.A.; Kottke, A.R.; Rathje, E.M.; Silva, W.J.; Campbell, K.W. Proxy-Based Vs30 Estimation in Central and Eastern North America. Bull. Seismol. Soc. Am. 2017, 107, 117–131. [Google Scholar] [CrossRef]
- Cox, B.R.; Bachhuber, J.; Rathje, E.; Wood, C.M.; Dulberg, R.; Kottke, A.; Green, R.A.; Olson, S.M. Shear Wave Velocity- and Geology-Based Seismic Microzonation of Port-au-Prince, Haiti. Earthq. Spectra 2011, 27, 67–92. [Google Scholar] [CrossRef]
- Stewart, J.P.; Klimis, N.; Savvaidis, A.; Theodoulidis, N.; Zargli, E.; Athanasopoulos, G.; Pelekis, P.; Mylonakis, G.; Margaris, B. Compilation of a Local Vs Profile Database and Its Application for Inference of Vs30 from Geologic- and Terrain-Based Proxies. Bull. Seismol. Soc. Am. 2014, 104, 2827–2841. [Google Scholar] [CrossRef]
- Di Capua, G.; Peppoloni, S.; Amanti, M.; Cipolloni, C.; Conte, G. Site Classification Map of Italy Based on Surface Geology. In Geological Society Engineering Geology Special Publication; The Geological Society: London, UK, 2016; Volume 27, pp. 147–156. [Google Scholar] [CrossRef]
- Vilanova, S.P.; Narciso, J.; Carvalho, J.P.; Lopes, I.; Quinta-Ferreira, M.; Pinto, C.C.; Moura, R.; Borges, J.; Nemser, E.S. Developing a Geologically Based VS30 Site-Condition Model for Portugal: Methodology and Assessment of the Performance of Proxies. Bull. Seismol. Soc. Am. 2018, 108, 322–337. [Google Scholar] [CrossRef]
- Rosset, P.; Zhu, H.; Chouinard, L.; Sirous, N.; Rimando, J.; Peace, A.; Goda, K. Influence of Local Versus National Datasets on Seismic Loss Estimates: A Case Study for Residential Buildings in the Metropolitan Area of Montreal, Canada. Int. J. Disaster Risk Reduct. 2024, 105, 104404. [Google Scholar] [CrossRef]
- Perret, D.; Lamarche, L. Microzonage Sismique des Villes de Québec—Ancienne-Lorette et Réserve Indienne Wendake (Périodes de Vibration des Terrains) [Seismic Microzonation of the Cities of Quebec—Ancienne-Lorette and Wendake Indigenous Reserve (Ground Vibration Periods)]; Geological Survey of Canada Open File Rep. 6876; Geological Survey of Canada: Quebec, QC, Canada, 2013. [Google Scholar]
- Rodríguez-Marek, A.; Bray, J.D.; Abrahamson, N.A. An Empirical Geotechnical Seismic Site Response Procedure. Earthq. Spectra 2001, 17, 65–87. [Google Scholar] [CrossRef]
- Hunter, J.A.; Crow, H.L.; Pugin, A.; Motazedian, D.; Brooks, G.R. City of Ottawa Seismic Site Classification Map From Combined Geological/Geophysical Data; Geological Survey of Canada Open File 6191; Geological Survey of Canada: Ottawa, ON, Canada, 2011; Scale 1:80,000. [Google Scholar]
- Salsabili, M.; Saeidi, A.; Rouleau, A.; Nastev, M. Seismic Microzonation of a Region with Complex Surficial Geology Based on Different Site Classification Approaches. Geoenviron. Disasters 2021, 8, 27. [Google Scholar] [CrossRef]
- Foulon, T.; Saeidi, A.; Chesnaux, R.; Nastev, M.; Rouleau, A. Spatial Distribution of Soil Shear-Wave Velocity and the Fundamental Period of Vibration—A Case Study of the Saguenay Region, Canada. Georisk 2018, 12, 74–86. [Google Scholar] [CrossRef]
- Nastev, M.; Parent, M.; Benoit, N.; Ross, M.; Howlett, D. Regional VS30 Model for the St. Lawrence Lowlands, Eastern Canada. Georisk 2016, 10, 200–212. [Google Scholar] [CrossRef]
- National Research Council Canada (NRCC). National Building Code of Canada 2015; Institute for Research in Construction, Canadian Commission on Building and Fire Codes: Ottawa, ON, Canada, 2015; Volume 1, pp. 1–1412. [Google Scholar]
- Thompson, E.M.; Wald, D.J.; Worden, C.B. A VS30 Map for California with Geologic and Topographic Constraints. Bull. Seismol. Soc. Am. 2014, 104, 2313–2321. [Google Scholar] [CrossRef]
- SIGEOM. Géologie du Quaternaire. Available online: https://gq.mines.gouv.qc.ca/documents/SIGEOM/TOUTQC/FRA/SHP/SIGEOM_QC_Geologie_du_Quaternaire_SHP.zip (accessed on 25 February 2025). (In French)
Score | USGS Site Class | Vs30 (m/s) | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
Zonation Site Class | A | 0 | −1 | −2 | −3 | −4 | >1500 |
B | +1 | 0 | −1 | −2 | −3 | 760–1500 | |
C | +2 | +1 | 0 | −1 | −2 | 360–760 | |
D | +3 | +2 | +1 | 0 | −1 | 180–360 | |
E | +4 | +3 | +2 | +1 | 0 | <180 |
Investigated Regions | |||||
---|---|---|---|---|---|
Statistical Parameters | Greater Montreal | Gatineau | Saguenay | Saint Lawrence Valley | Quebec City * |
Number of samples | 53,966 | 1474 | 95,189 | 182,857 | 2312 |
Mean | 1055 | 690 | 711 | 1167 | 1.9 (B) |
Median | 1109 | 480 | 494 | 1125 | 1.0 (A) |
First quartile | 444 | 212 | 281 | 638 | 1.0 (A) |
Third quartile | 1600 | 1300 | 1040 | 1500 | 3.0 (C) |
Minimum | 110 | 152 | 172 | 159 | 1.0 (A) |
Maximum | 3288 | 2380 | 2330 | 2500 | 4.0 (D) |
% in class A | 38 | 20 | 9 | 17 | 54 |
% in class B | 23 | 22 | 19 | 52 | 15 |
% in class C | 24 | 15 | 35 | 18 | 20 |
% in class D | 14 | 24 | 35 | 11 | 12 |
% in class E | 1 | 19 | 1 | 2 | 0 |
Type of Surficial Deposit (Geological Description) | Code | Vs30 (m/s) | Weighted Average | Weighted Standard Deviation | Site Class | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quebec * | Gatineau | Saguenay | Greater Montreal | St-Lawrence Valley | |||||||||||||||
N | Mean | Stdv | N | Mean | Stdv | N | Mean | Stdv | N | Mean | Stdv | N | Mean | Stdv | |||||
Aeolian sediment | Ed | 312 | 338 | 247 | 873 | 504 | 379 | 1586 | 818 | 366 | 604 | 427 | C | ||||||
Undifferentiated organic sediment | O | 9 | 1.4 | 0.9 | 6 | 451 | 351 | 3152 | 501 | 362 | 3898 | 552 | 327 | 6661 | 936 | 493 | 659 | 477 | C |
Indefferentiated slope deposit | C | 24 | 525 | 342 | 525 | 342 | C | ||||||||||||
Landslide deposit | Cg | 7 | 491 | 449 | 3095 | 243 | 160 | 75 | 750 | 383 | 114 | 469 | 368 | 260 | 171 | D | |||
Undifferentiated alluvium | A | 33 | 2.6 | 1.2 | 125 | 678 | 650 | 8591 | 570 | 456 | 23,501 | 502 | 320 | 15,544 | 604 | 478 | 537 | 432 | C |
Current alluvium | Ap | 12 | 2.9 | 1.0 | 21 | 1247 | 887 | 5110 | 892 | 469 | 13,114 | 805 | 446 | 7537 | 733 | 475 | 813 | 499 | B |
Lake Sediment | L | 2 | 2.0 | 1.4 | 3758 | 1122 | 547 | 250 | 816 | 370 | 2399 | 1578 | 687 | 1212 | 641 | B | |||
Fine deep-water glaciomarine sediment | MGa | 23 | 2.7 | 1.0 | 829 | 574 | 602 | 50,136 | 603 | 436 | 62,234 | 619 | 353 | 32,281 | 642 | 515 | 615 | 439 | C |
Coastal and pre-coastal glaciomarine sediment | MGb | 40 | 2.8 | 1.1 | 61 | 976 | 733 | 5408 | 736 | 511 | 16,467 | 810 | 429 | 29,674 | 876 | 515 | 826 | 616 | B |
Deltaic and prodeltaic glaciomarine sediment | MGd | 5 | 2.4 | 1.3 | 34 | 462 | 517 | 15,052 | 420 | 356 | 1927 | 837 | 453 | 5662 | 913 | 722 | 531 | 469 | C |
Deep-water fine-grained glaciolacustrine sediment | LGa | 516 | 1026 | 359 | 1026 | 359 | B | ||||||||||||
Coastal and pre-coastal glaciolacustrine sediment | LGb | 2 | 680 | 721 | 944 | 1228 | 659 | 11,700 | 461 | 287 | 7127 | 689 | 549 | 556 | 437 | C | |||
Deltaic and prodeltaic glaciolacustrine sediment | LGd | 1244 | 439 | 198 | 802 | 833 | 409 | 535 | 294 | C | |||||||||
Subaerial proglacial outwash sediment | Go | 7 | 1.3 | 0.8 | 815 | 545 | 355 | 1337 | 1696 | 774 | 1063 | 785 | B | ||||||
Subaqueous proglacial outwash sediment | Gs | 272 | 1017 | 462 | 1017 | 462 | B | ||||||||||||
Juxtaglacial sediment | Gx | 8 | 2.6 | 1.1 | 31 | 907 | 621 | 1469 | 799 | 530 | 817 | 963 | 419 | 2209 | 1119 | 483 | 942 | 572 | B |
Frontal moraine sediment | GxT | 248 | 832 | 550 | 832 | 550 | B | ||||||||||||
Undifferentiated till | T | 39 | 2.8 | 1.0 | 43 | 1124 | 549 | 5429 | 1697 | 684 | 37,506 | 991 | 394 | 81,005 | 1297 | 551 | 1185 | 692 | B |
Melt-out or ablation till | Tf | 86 | 1097 | 395 | 1097 | 395 | B | ||||||||||||
Altered ancient Quaternary formation | Q | 88 | 1416 | 127 | 1416 | 127 | B | ||||||||||||
Undifferentiated bedrock | R | 54 | 2.2 | 1.1 | 315 | 1496 | 609 | 4737 | 1720 | 708 | 9147 | 1472 | 256 | 61,552 | 1703 | 584 | 1657 | 974 | A |
Type of Deposit | Description | Mean | Median | 25th Percentile | 75th Percentile | Min | Max | Number of Samples | Site Class |
---|---|---|---|---|---|---|---|---|---|
All | 695 | 487 | 281 | 1047 | 110 | 2195 | 97,617 | C | |
O | Organic | 508 | 356 | 239 | 714 | 110 | 1411 | 2773 | C |
C | Slope | 234 | 189 | 182 | 237 | 170 | 319 | 2652 | D |
E | Eolian | 314 | 284 | 230 | 334 | 128 | 490 | 289 | D |
A | Alluvial | 692 | 568 | 298 | 1085 | 117 | 2230 | 11,741 | C |
L | Lake | 1100 | 1103 | 745 | 1149 | 271 | 1576 | 3288 | B |
MG | Glacio-marine | 565 | 440 | 269 | 729 | 110 | 1414 | 68,519 | C |
LG | Glacio-lacustrine | 970 | 763 | 374 | 1168 | 124 | 2230 | 774 | B |
G | Glacio-fluvial | 659 | 554 | 348 | 825 | 146 | 1479 | 1938 | C |
T | Till | 1627 | 2230 | 1061 | 2230 | 126 | 2380 | 5090 | A |
R | Rock | 1901 | 2230 | 1658 | 2230 | 803 | 2380 | 3326 | A |
Power–Law Regression Parameters by Sediment’s Type (Vs30 = a × Zb) | |||||||
---|---|---|---|---|---|---|---|
A | Gx | LG | MG | O | Ed | All Types | |
N | 608 | 34 | 175 | 2886 | 62 | 21 | 3789 |
a | 1274.5 | 2764.9 | 428.2 | 1417.5 | 1414.9 | 165.2 | 1274.5 |
b | −0.47 | −0.62 | −0.27 | −0.54 | −0.60 | 0.06 | −0.47 |
R2 | 0.43 | 0.56 | 0.32 | 0.52 | 0.40 | 0.13 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosset, P.; Elrawy, A.; Nadarajah, S.; Chouinard, L. Vs30 Derived from Geology: An Attempt in the Province of Quebec, Canada. Geotechnics 2025, 5, 24. https://doi.org/10.3390/geotechnics5020024
Rosset P, Elrawy A, Nadarajah S, Chouinard L. Vs30 Derived from Geology: An Attempt in the Province of Quebec, Canada. Geotechnics. 2025; 5(2):24. https://doi.org/10.3390/geotechnics5020024
Chicago/Turabian StyleRosset, Philippe, Abdelrahman Elrawy, Surya Nadarajah, and Luc Chouinard. 2025. "Vs30 Derived from Geology: An Attempt in the Province of Quebec, Canada" Geotechnics 5, no. 2: 24. https://doi.org/10.3390/geotechnics5020024
APA StyleRosset, P., Elrawy, A., Nadarajah, S., & Chouinard, L. (2025). Vs30 Derived from Geology: An Attempt in the Province of Quebec, Canada. Geotechnics, 5(2), 24. https://doi.org/10.3390/geotechnics5020024