Embankments Reinforced by Vertical Inclusions on Soft Soil: Numerical Study of Stress Redistribution
Abstract
:1. Introduction
2. Load Transfer Mechanisms in Pile Supports
2.1. Geosynthetic-Reinforced Piles
2.2. Deep Cement Mixing Columns
2.3. Geosynthetic-Encased Columns
2.4. Determination of Load Transfer Efficiency
2.5. German Design Method [19]
3. Numerical Model
3.1. Description of FEM Simulation
3.2. Numerical Procedure
- -
- The dimensions of inclusions are constant for different solutions. The installation process of inclusions is neglected.
- -
- The soft soil is considered homogenous. The creep effect of soft ground is not considered.
4. Results and Discussions
4.1. Verification of Numerical Modeling
4.2. Inclusion Behaviors
4.3. Total Settlements of Soft Ground
4.4. Stress Distribution
4.5. Arching Effect
4.6. Membrane Effect
5. Conclusions
- -
- The total settlements on soft ground are more effectively reduced when using rigid piles compared to DCM columns and GEC. However, the difference reduces in the case of low-height embankments,
- -
- Geosynthetic reinforcement proves to be more effective when combined with rigid pile solutions, especially for high embankments and low shear resistance of filling material, as it enhances the reinforced system performance to reduce subsoil settlements. On the other hand, geosynthetic reinforcement offers limited support in the case of GEC solutions, and it appears to have no impact on the performance of DCM columns,
- -
- The properties of the fill soil have a significant influence on the performance of inclusion solutions. The use of fill material with high shear resistance enhances the arching effect. Furthermore, the arching phenomenon is more effective in subsoils with a lower modulus.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Low, B.K.; Tang, S.K.; Choa, V. Arching in piled embankments. J. Geotech. Eng. 1994, 120, 1917–1938. [Google Scholar] [CrossRef]
- Hu, S.; Zhuang, Y.; Wu, Y.; Zhang, X.; Dong, X. Numerical Study of Bearing Capacity of the Pile-Supported Embankments for the Flexible Floating, Rigid Floating and End-Bearing Piles. Symmetry 2022, 14, 1981. [Google Scholar] [CrossRef]
- Han, J.; Collin, J.G.; Huang, J. Recent development of geosynthetic- reinforced column-supported embankment. In Proceedings of the 55th Highway Geology Symposium, Kansas City, MO, USA, 7–10 September 2004; pp. 299–321. [Google Scholar]
- Chen, R.P.; Xu, Z.Z.; Chen, Y.M.; Ling, D.S.; Zhu, B. Field tests on pile-supported embankments over soft ground. J. Geotech. Geoenviron. Eng. 2010, 136, 777–785. [Google Scholar] [CrossRef]
- Vo, D.N.; Pham, M.T.; Le, V.A.; To, V.N. Load Transfer Acting in Basal Reinforced Piled Embankments: A Numerical Approach. Transp. Infrastruct. Geotech. 2022. [Google Scholar] [CrossRef]
- Liu, H.L.; Ng, C.W.; Fei, K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: Case study. J. Geotech. Geoenviron. Eng. 2007, 133, 1483–1493. [Google Scholar] [CrossRef]
- Fagundes, D.F.; Almeida, M.S.; Thorel, L.; Blanc, M. Load transfer mechanism and deformation of reinforced piled embankments. Geotext. Geomembr. 2017, 45, 1–10. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, S.; Zhao, H.; Deng, Y. Performance of geosynthetic-reinforced and pile-supported embankment with consideration of soil arching. J. Eng. Mech. 2018, 144, 06018005. [Google Scholar] [CrossRef]
- Lu, W.; Miao, L.; Wang, F.; Zhang, J.; Zhang, Y.; Wang, H. A case study on geogrid-reinforced and pile-supported widened highway embankment. Geosynth. Int. 2019, 27, 261–274. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, C.; El-Korchi, T.; Song, H.; Tao, M. Performance of geogrid-reinforced and PTC pile-supported embankment in a highway widening project over soft soils. J. Geotech. Geoenviron. Eng. 2019, 145, 06019014. [Google Scholar] [CrossRef]
- Pham, A.T.; Dias, D. 3D Numerical study of the performance of geosynthetic-reinforced and pile-supported embankments. Soils Found. 2021, 61, 1319–1342. [Google Scholar] [CrossRef]
- Terzaghi, K. Theoretical Soil Mechanics; John Wiley & Sons: New York, NY, USA, 1943; pp. 11–15. [Google Scholar]
- Guido, V.A.; Kneuppel, J.D.; Sweeney, M.A. Plate loading tests on geogrid reinforced earth slabs (New Orleans). Proc. Geosynthetics. 1987, 87, 216–225. [Google Scholar]
- Hewlett, W.J.; Randolph, M.F. Analysis of piled embankments. Ground Eng. 1988, 21, 12–18. [Google Scholar]
- Carlsson, B. Reinforced Soil, Principles for Calculation; Terratema, A.B., Ed.; Linköping, Sweden, 1987. [Google Scholar]
- Kempfert, H.G.; Gobel, C.; Alexiew, D.; Heitz, C. German recommendations for the reinforced embankments on pile-similar elements. In Proceedings of the 3rd European Geosynthetics Conference, Munich, Germany, 1–4 March 2004; pp. 279–284. [Google Scholar]
- Van Eekelen, S.J.M.; Bezuijen, A.; Van Tol, A.F. Analysis and modification of the British Standard BS8006 for the design of piled embankments. Geotext. Geomembr. 2011, 29, 345–359. [Google Scholar] [CrossRef]
- BS 8006; Code of Practice for Strengthened/Reinforced Soils and Other Fills. British Standard Institution: London, UK, 2010.
- EBGEO Recommendations for Design and Analysis of Earth Structures Using Geosynthetic Reinforcements; Digital in English; German Geotechnical Society; John Wiley & Sons: London, UK, 2011; ISBN 978-3-433-60093-1.
- Pham, A.T.; Dias, D. Comparison and evaluation of analytical models for the design of geosynthetic-reinforced and pile-supported embankments. Geotext. Geomembr. 2021, 49, 528–549. [Google Scholar] [CrossRef]
- Han, J.; Oztoprak, S.; Parsons, R.L.; Huang, J. Numerical analysis of foundation columns to support widening of embankments. Comput. Geotech. 2007, 34, 435–448. [Google Scholar] [CrossRef]
- Okyay, U.S.; Dias, D. Use of lime and cement treated soils as pile supported load transfer platform. Eng. Geol. 2010, 114, 34–44. [Google Scholar] [CrossRef]
- Liu, S.Y.; Du, Y.J.; Yi, Y.L.; Puppala, A.J. Field investigations on performance of T-shaped deep mixed soil cement column-supported embankments over soft ground. J. Geotech. Geoenviron. Eng. 2012, 138, 718–727. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Chinkulkijniwat, A.; Cholphatsorn, A.; Suebsuk, J.; Liu, M.D. Consolidation behavior of soil cement column improved ground. Comput. Geotech. 2012, 43, 37–50. [Google Scholar] [CrossRef]
- Voottipruex, P.; Suksawat, T.; Bergado, D.T.; Jamsawang, P. Numerical simulations and parametric study of SDCM and DCM piles under full scale axial and lateral loads. Comput. Geotech. 2011, 38, 318–329. [Google Scholar] [CrossRef]
- Jamsawang, P.; Boathong, P.; Mairaing, W.; Jongpradist, P. Undrained creep failure of a drainage canal slope stabilized with deep cement mixing columns. Landslides 2015, 13, 939–955. [Google Scholar] [CrossRef]
- Jamsawang, P.; Yoobanpot, N.; Thanasisathit, N.; Voottipruex, P.; Jongpradist, P. Three-dimensional numerical analysis of a DCM column-supported highway embankment. Comput. Geotech. 2016, 72, 42–56. [Google Scholar] [CrossRef]
- Cui, X.; Cao, Y.; Jin, Y. Three-Dimensional Analysis of Load Transfer Mechanism for Deep Cement Mixing Piled Embankment under Static and Cyclic Load. Sustainability 2023, 15, 6532. [Google Scholar] [CrossRef]
- Bergado, D.T.; Singh, N.; Sim, S.H.; Panichayatum, B.; Sampaco, C.L.; Balasubramaniam, A.S. Improvement of soft Bangkok clay using vertical geotextile band drains compared with granular piles. Geotext. Geomembr. 1990, 9, 203–231. [Google Scholar] [CrossRef]
- Katti, R.K.; Katti, A.R.; Naik, S. Monograph to Analysis of Stone Columns with and without Geosynthetic Encasement; CBIP Publication: New Delhi, India, 1993. [Google Scholar]
- Raithel, M.; Kempfert, H.G. Calculation models for dam foundations with geotextile coated sand columns. In Proceedings of the International Conference on Geotechnical & Geological Engineering, GeoEngg—2000, Melbourne, Australia, 19–24 November 2000. [Google Scholar]
- Raithel, M.; Kempfert, H.G.; Kirchner, A. Geotextile-encased columns (GEC) for foundation of a dike on very soft soils. In Proceedings of the Seventh International Conference on Geosynthetics, Nice, France, 22–27 September 2002; pp. 1025–1028. [Google Scholar]
- Malarvizhi, S.N.; Ilamparuthi, K. Load versus settlement of clay bed stabilized with stone and reinforced stone columns. In Proceedings of the GeoAsia–2004, Seoul, Republic of Korea, 21–23 June 2004; pp. 322–329. [Google Scholar]
- Ayadat, T.; Hanna, A.M. Encapsulated stone columns as a soil improvement technique for collapsible soil. Ground Improv. 2005, 9, 137–147. [Google Scholar] [CrossRef]
- Murugesan, S.; Karpurapu, R. Geosynthetic-encased stone columns: Numerical evaluation. Geotext. Geomembr. 2006, 24, 349–358. [Google Scholar] [CrossRef]
- Yoo, C. Performance of Geosynthetic-Encased Stone Columns in Embankment Construction: Numerical Investigation. J. Geotech. Geoenviron. Eng. 2010, 136, 1148–1160. [Google Scholar] [CrossRef]
- Keykhosropour, L.; Soroush, A.; Imam, R. 3D numerical analyses of geosynthetic encased stone columns. Geotext. Geomembr. 2012, 35, 61–68. [Google Scholar] [CrossRef]
- PLAXIS. PLAXIS 2D-Reference Manual. Bentley. 2020. Available online: https://communities.bentley.com/cfs-file/__key/communityserver-wikis-components-files/00-00-00-05-58/3113.PLAXIS2DCE_2D00_V20.02_2D00_2_2D00_Reference.pdf (accessed on 20 September 2023).
- Villard, P.; Huckert, A.; Briançon, L. Load transfer mechanisms in geotextile-reinforced embankments overlying voids: Numerical approach and design. Geotext. Geomembr. 2016, 44, 381–395. [Google Scholar] [CrossRef]
Materials | Constitutive Model | Parameters |
---|---|---|
Embankment fill | Mohr–Coulomb | γ = 18.5 (kN/m3), Ε = 20 × 103 (kN/m2), ν = 0.2, c = 10 (kN/m2), φ = 30° |
Reinforced geosynthetic | Linear elastic | J = 1000 kN/m |
Soft ground | Mohr–Coulomb | γ = 17 (kN/m3), Ε = 1.5 × 103 (kN/m2), ν = 0.4, c = 8 (kN/m2), φ = 10° |
Rigid pile | Linear elastic | γ = 24 (kN/m3), Ε = 20 × 106 (kN/m2), ν = 0.2 |
DCM columns | Mohr–Coulomb | γ = 15 (kN/m3), Ε = 80 × 103 (kN/m2), ν = 0.33 |
GEC | Mohr–Coulomb | γ = 23 (kN/m3), Ε = 80 × 103 (kN/m2), ν = 0.3, c = 5 (kN/m2), φ = 40°,Jencasement = 1000 kN/m |
Embankment Height (m) | FEM (%) | EBGEO [19] (%) | Variation |
---|---|---|---|
1.0 | 30.16 | 25.07 | 16.9% |
1.5 | 39.03 | 37.99 | 2.6% |
2.0 | 41.34 | 44.28 | 6.6% |
3.0 | 43.45 | 50.58 | 14.1% |
5.0 | 45.41 | 55.61 | 18.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, M.-T.; Pham, D.-D.; Vu, D.-L.; Dias, D. Embankments Reinforced by Vertical Inclusions on Soft Soil: Numerical Study of Stress Redistribution. Geotechnics 2023, 3, 1279-1293. https://doi.org/10.3390/geotechnics3040069
Pham M-T, Pham D-D, Vu D-L, Dias D. Embankments Reinforced by Vertical Inclusions on Soft Soil: Numerical Study of Stress Redistribution. Geotechnics. 2023; 3(4):1279-1293. https://doi.org/10.3390/geotechnics3040069
Chicago/Turabian StylePham, Minh-Tuan, Duc-Dung Pham, Duy-Liem Vu, and Daniel Dias. 2023. "Embankments Reinforced by Vertical Inclusions on Soft Soil: Numerical Study of Stress Redistribution" Geotechnics 3, no. 4: 1279-1293. https://doi.org/10.3390/geotechnics3040069
APA StylePham, M. -T., Pham, D. -D., Vu, D. -L., & Dias, D. (2023). Embankments Reinforced by Vertical Inclusions on Soft Soil: Numerical Study of Stress Redistribution. Geotechnics, 3(4), 1279-1293. https://doi.org/10.3390/geotechnics3040069