Influence of Schistosity Orientation on Failure Mode and Indirect Tensile Strength of Mica Schist
Abstract
:1. Introduction
2. Previous Studies of Indirect Testing of Transversely Isotropic Rock
2.1. Indirect Tensile Strength
2.2. Fracture Patterns
3. Experimental Program
3.1. Core Sampling
3.2. Specimens
3.3. Indirect Tension Testing
4. Results
4.1. Indirect Tensile Strength as a Function of Schistosity Orientation
4.2. Specimen Failure Modes
4.2.1. Single Mode Failure Group
4.2.2. Mixed Mode Failure Group
4.2.3. Hybrid Mode Failure Group
- Axial & Axial–Schistosity: sixteen specimens with foliation orientations between zero and ninety degrees;
- Axial & Axial–Out of Plane: six specimens with foliation orientations between approximately forty and ninety degrees;
- Out of Plane & Axial–Out of Plane: three specimens with foliation orientations between approximately forty-five and fifty-five degrees;
- Axial–Schistosity & Axial–Schistosity: one specimen with foliation orientation of ninety degrees; and
- Axial & Schistosity–Out of Plane: one specimen with foliation orientation of approximately sixty-five degrees.
4.3. Tensile Strength—Failure Mode Relationships
4.3.1. Single Mode Failure Group Tensile Strengths
4.3.2. Mixed Mode Failure Group Tensile Strengths
4.3.3. Hybrid Mode Failure Group Tensile Strengths
4.4. Statistical Analysis of Tensile Strength Based on Failure Modes
5. Discussion
5.1. Comparison with Previous Studies
5.2. Possible Sources of Error and Limitations
5.3. Directions for Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perras, M.A.; Diederichs, M. A review of the tensile strength of rock: Concepts and testing. Geotech. Geol. Eng. 2014, 32, 525–546. [Google Scholar] [CrossRef]
- Diederichs, M.S.; Kaiser, P.K. Tensile strength and abutment relaxation as failure control mechanics in underground excavations. Int. J. Rock Mech. Min. Sci. 1999, 36, 69–96. [Google Scholar] [CrossRef]
- Coviello, A.; Lagioia, R.; Nova, R. On the measurement of the tensile strength of soft rocks. Rock Mech. Rock Eng. 2005, 38, 251–273. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Ebneabbasi, P.; Karimi, H.R.; Nikbakht, E. A novel test device for the direct measurement of tensile strength of rock using ring shape sample. Int. J. Rock Mech. Min. Sci. 2021, 139, 69–96. [Google Scholar] [CrossRef]
- Yilmaz, N.G.; Goktan, R.M.; Kibici, Y. Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones. Int. J. Rock Mech. Min. Sci. 2011, 48, 506–513. [Google Scholar] [CrossRef]
- Ma, T.; Peng, N.; Zhu, Z.; Zhang, Q.; Yang, C.; Zhao, J. Brazilian tensile strength of anisotropic rocks: Review and new insights. Energies 2018, 11, 304. [Google Scholar] [CrossRef]
- Diederichs, M.S.; Martin, C.D. Measurement of spalling parameters from laboratory testing. In Proceedings of the Eurock 2010, Lausanne, Switzerland, 15–18 June 2010. [Google Scholar]
- Diederichs, M.S. The 2003 Canadian geotechnical colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can. Geotech. J. 2007, 44, 1082–1116. [Google Scholar] [CrossRef]
- Kourkoulis, S.K. The problem of direct tension experiments in marble specimens. In Proceedings of the 6th International Conference Achievements in Mechanical and Materials Engineering, AMME’97, Miskolc, Hungary, 1–3 December 1997. [Google Scholar]
- Carneiro, F.L.L.B. A new method to determine the tensile strength of concrete. In Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules, 3rd Section, Lisbon, Portugal, 16 September 1943; pp. 126–129. [Google Scholar]
- Akazawa, T. New test method for evaluating internal stress due to compression of concrete: The splitting tension test. J. Jpn. Soc. Civ. Eng. 1943, 29, 777–787. [Google Scholar]
- Andreev, G.E. Brittle Failure of Rock Materials; A.A. Balkema: Rotterdam, The Netherlands, 1995. [Google Scholar]
- Li, D.; Wong, L.Y. The Brazilian disc test for rock mechanics applications: Review and new insights. Rock Mech. Rock Eng. 2013, 46, 269–287. [Google Scholar] [CrossRef]
- Barton, N.; Quadros, E. Anisotropy is everywhere, to see, to measure, and to model. Rock Mech. Rock Eng. 2014, 48, 1323–1339. [Google Scholar] [CrossRef]
- Johnson, P.A.; Rasolofosaon, P.N.J. Nonlinear elasticity and stress-induced anisotropy in rock. J. Geophys. Res. 1996, 101, 3113–3124. [Google Scholar] [CrossRef]
- Chen, C.S.; Pan, E.; Amadei, B. Determination of deformability and tensile strength of anisotropic rocks using Brazilian tests. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1998, 35, 43–61. [Google Scholar] [CrossRef]
- Brenbaum, R.; Brodie, I. The tensile strength of coal. J. Inst. Fuel 1959, 32, 320–327. [Google Scholar]
- Hobbs, D.W. The tensile strength of rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1964, 1, 385–396. [Google Scholar] [CrossRef]
- Barla, G.; Innaurato, N. Indirect tensile strength of anisotropic rocks. Rock Mech. 1973, 5, 215–230. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wong, L.Y.; Wang, S.J.; Han, G.Y. Engineering properties of quartz mica schist. Eng. Geol. 2011, 121, 135–149. [Google Scholar] [CrossRef]
- Wang, P.; Cai, M.; Ren, F. Anisotropy and directionality of tensile behaviours of a jointed rock mass subjected to numerical Brazilian tests. Tunn. Undergr. Space. Tehcnol. 2018, 73, 139–153. [Google Scholar] [CrossRef]
- Chen, C.S.; Hsu, S.C. Measurement of indirect tensile strength of anisotropic rocks by the ring test. Rock Mech. Rock Eng. 2001, 34, 293–321. [Google Scholar] [CrossRef]
- Khanlari, G.; Rafiei, B.; Abdilor, Y. An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstone. Rock Mech. Rock Eng. 2015, 48, 843–852. [Google Scholar] [CrossRef]
- Tavallali, A.; Vervoort, A. Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 2010, 47, 313–322. [Google Scholar] [CrossRef]
- Aliabadian, Z.; Zhao, G.G.; Russell, A.R. Failure, crack initiation, and the tensile strength of transversely isotropic rock using the Brazilian test. Int. J. Rock Mech. Min. Sci. 2019, 122, 313–322. [Google Scholar] [CrossRef]
- Simpson, N.J.; Stroisz, A.; Bauer, A.; Vervoort, A.; Holt, R.M. Failure mechanics of anisotropic shale during Brazilian tests. In Proceedings of the 48th U.S. Rock Mechanics/Geomechanics Symposium, Minneapolis, MN, USA, 1–4 June 2014. [Google Scholar]
- Jin, Z.; Jin, C.; Hambleton, J.; Cusatis, G. Anisotropic elastic, strength, and fracture properties of Marcellus shale. Int. J. Rock Mech. Min. Sci. 2018, 109, 124–137. [Google Scholar] [CrossRef]
- Tan, X.; Konietzky, H.; Frühwirt, T.; Dan, D.Q. Brazilian tests on transversely isotropic rocks: Laboratory testing and numerical simulations. Rock Mech. Rock Eng. 2015, 48, 1341–1351. [Google Scholar] [CrossRef]
- Cho, J.W.; Kim, H.; Jeon, S.; Min, K.B. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int. J. Rock Mech. Min. Sci. 2012, 50, 158–169. [Google Scholar] [CrossRef]
- Khanlari, G.R.; Heidari, M.; Sepahigero, A.A.; Fereidooni, D. Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests. Eng. Geol. 2014, 169, 80–90. [Google Scholar] [CrossRef]
- Kundu, J.; Mahanta, B.; Sarkar, K.; Singh, T.N. The effect of lineation on anisotropy in dry and saturated Himalayan schistose rock under Brazilian test conditions. Rock Mech. Rock Eng. 2018, 51, 5–21. [Google Scholar] [CrossRef]
- Basu, A.; Mishra, D.A.; Roychowdhury, K. Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull. Eng. Geol. Environ. 2013, 72, 457–475. [Google Scholar] [CrossRef]
- Crickmay, G.W. Geology of the Crystalline Rocks of Georgia; Georgia State Division of Conservation, Department of Mines, Mining and Geology: Atlanta, GA, USA, 1952. [Google Scholar]
- McConnell, K.I.; Abrams, C.E. Geology of the Greater Atlanta Region; Georgia Geologic Survey Bulletin No. 96; Georgia Department of Natural Resources: Atlanta, GA, USA, 1984. [Google Scholar]
- Lawton, D.E.; Moye, F.J.; Murray, J.B.; O’Connor, B.J.; Penley, H.M.; Sandrock, G.S.; Marsalis, W.E.; Friddell, M.S.; Hetrick, J.H.; Huddlestun, P.F.; et al. Geologic Map of Georgia; Georgia Geological Survey: Atlanta, GA, USA, 1976. [Google Scholar]
- Colback, P.S.B. An analysis of brittle fracture initiation and propagation in the Brazilian test. In Proceedings of the 1st ISRM congress, Lisbon, Portugal, 25 September–1 October 1966. [Google Scholar]
- Zhou, T.; Wang, Y. Determination of efficient sampling locations in geotechnical site characterization using information entropy and Bayesian compressive sampling. Can. Geotech. J. 2018, 56, 1622–1637. [Google Scholar] [CrossRef]
- Khadivi, B.; Heidarpour, A.; Zhang, Q.; Masoumi, H. Characterizing the cracking process of various rock types under Brazilian loading based on coupled acoustic emission and high-speed imaging techniques. Int. J. Rock Mech. Min. Sci. 2023, 168, 105417. [Google Scholar] [CrossRef]
- Shams, G.; Rivard, P.; Moradian, O. Micro-scale fracturing mechanisms in rocks during tensile failure. Rock Mech. Rock Eng. 2023, 56, 4019–4041. [Google Scholar] [CrossRef]
- Jin, X.; Hou, C.; Fan, X.; Lu, C.; Yang, H.; Shu, X.; Wang, Z. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs. Sci. Rep. 2017, 7, 15305. [Google Scholar] [CrossRef]
Parameter | Maximum | Average | Minimum | Standard Deviation |
---|---|---|---|---|
Mass (g) | 137.1 | 122.3 | 102.5 | 6.49 |
Thickness (mm) | 28.5 | 25.1 | 20.8 | 1.33 |
Thickness to Diameter | 0.60 | 0.53 | 0.44 | 0.03 |
Density (g/cm3) | 3.0 | 2.7 | 2.4 | 0.05 |
Unit Weight (kN/m3) | 29.6 | 26.9 | 23.9 | 0.55 |
Failure Mode Group (145 Specimens) | ||
---|---|---|
Single Mode Failure (86) | Mixed Mode Failure (32) | Hybrid Mode Failure (27) |
Axial Failure (73) Schistosity Failure (6) Out-of-Plane Failure (7) | Axial & Schistosity (17) Axial & Out of Plane (7) Schistosity & Out of Plane (8) | Axial & Axial–Schistosity (16) Axial & Axial–Out of Plane (6) Out of Plane & Axial–Out of Plane (3) Axial–Schistosity & Axial–Schistosity (1) Axial & Schistosity–Out of Plane (1) |
Failure Mode Group | Number of Specimens | Tensile Strength (MPa) | Standard Deviation (MPa) | |
---|---|---|---|---|
Single Mode | Axial | 73 | 11.27 | 1.27 |
Schistosity | 6 | 7.37 | 0.95 | |
Out of Plane | 7 | 7.66 | 2.13 | |
Mixed Mode | 32 | 9.17 | 1.59 | |
Hybrid Mode | 27 | 10.04 | 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudyma, N.; Avar, B.B.; Chittoori, B. Influence of Schistosity Orientation on Failure Mode and Indirect Tensile Strength of Mica Schist. Geotechnics 2023, 3, 937-954. https://doi.org/10.3390/geotechnics3030050
Hudyma N, Avar BB, Chittoori B. Influence of Schistosity Orientation on Failure Mode and Indirect Tensile Strength of Mica Schist. Geotechnics. 2023; 3(3):937-954. https://doi.org/10.3390/geotechnics3030050
Chicago/Turabian StyleHudyma, Nick, B. Burçin Avar, and Bhaskar Chittoori. 2023. "Influence of Schistosity Orientation on Failure Mode and Indirect Tensile Strength of Mica Schist" Geotechnics 3, no. 3: 937-954. https://doi.org/10.3390/geotechnics3030050
APA StyleHudyma, N., Avar, B. B., & Chittoori, B. (2023). Influence of Schistosity Orientation on Failure Mode and Indirect Tensile Strength of Mica Schist. Geotechnics, 3(3), 937-954. https://doi.org/10.3390/geotechnics3030050