Estimation of Low-Velocity Landfill Thickness with Multi-Method Seismic Surveys
Abstract
:1. Introduction
2. Background and Geological Setting
3. Methods
3.1. Seismic Reflection
3.2. Seismic Refraction
3.3. Surface Waves (SW)
3.4. Horizontal-to-Vertical Spectral Ratio—HVSR
4. Equipment and Acquisition
5. Results
5.1. Seismic Reflection
5.2. Seismic Refraction
5.3. SW
5.4. HVSR
6. Discussion
6.1. Thickness from HVSR Measurements
6.2. Uncertainties of the Different Methods
6.3. Comparing All Results
7. Conclusions
- This study demonstrates the advantages of integrating information from five seismic approaches to estimate landfill thickness and constrain its content via its average shear velocity.
- The results of all methods correlate comparably well with each other. Although the uncertainty of the HVSR results is more significant, the results are still within the uncertainty of the other methods.
- By combining several geophysical methods, which are non-destructive, environmentally friendly, and relatively low-cost, the reliability of the results may increase and yield a more accurate solution.
- All these methods can be jointly interpreted to assess uncertainties better and allow an efficient solution for environmental or engineering purposes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardarelli, E.; Bernabini, M. Two case studies of the determination of parameters of urban waste dumps. J. Appl. Geophys. 1997, 36, 167–174. [Google Scholar] [CrossRef]
- Lanz, E.; Maurer, H.; Green, A.G. Refraction tomography over a buried waste disposal site. Geophysics 1998, 63, 1414–1433. [Google Scholar] [CrossRef]
- Cardarelli, E.; Cercato, M.; Cerreto, A.; Di Filippo, G. Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophys. Prospect. 2010, 58, 685–695. [Google Scholar] [CrossRef]
- Margiotta, S.; Negri, S.; Parise, M.; Quarta, T.A.M. Karst geosites at risk of collapse: The sinkholes at Nociglia (Apulia, SE Italy). Environ. Earth Sci. 2016, 75, 8. [Google Scholar] [CrossRef]
- Sunkpal, D.T.; Ankamah, A.T.; Tuoyang, M.K.; Ankah, M.L.Y. Geophysical investigation of groundwater potential zones, and modeling of subsurface materials using seismic refraction surveys. Model. Earth Syst. Environ. 2022, 8, 4389–4400. [Google Scholar] [CrossRef]
- Granda, A.; Cambero, J. The Use of Geophysical Techniques for the Detection and Characterization of Landfill in Areas of Urban Development; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 1998; pp. 111–114. [Google Scholar] [CrossRef]
- Abidin, M.H.Z.; Saad, R.; Ahmad, F.; Wijeyesekera, D.C.; Baharuddin, M.F.T. Seismic refraction investigation on near surface landslides at the Kundasang area in Sabah, Malaysia. Procedia Eng. 2012, 50, 516–531. [Google Scholar]
- Carpenter, P.J.; Reddy, K.R.; Thompson, M.D. Seismic imaging of a leachate-recirculation landfill: Spatial changes in dynamic properties of municipal solid waste. J. Hazard. Toxic Radioact. Waste 2013, 17, 331–341. [Google Scholar] [CrossRef]
- Konstantaki, L.A.; Ghose, R.; Draganov, D.; Diaferia, G.; Heimovaara, T. Characterization of a heterogeneous landfill using seismic and electrical resistivity data. Geophysics 2015, 80, EN13–EN25. [Google Scholar] [CrossRef] [Green Version]
- Dumont, G.; Robert, T.; Marck, N.; Nguyen, F. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. J. Appl. Geophys. 2017, 145, 74–83. [Google Scholar] [CrossRef]
- Ohori, M.; Nobata, A.; Wakamatsu, K. A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays. Bull. Seismol. Soc. Am. 2002, 92, 2323–2332. [Google Scholar] [CrossRef]
- Okada, H. The Microtremor Survey Method, Geophysical Monograph Series Number 12; Society of Exploration Geophysicists: Tulsa, OK, USA, 2003; 135p. [Google Scholar]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Louie, J.N. Faster, Better: Shear-Wave Velocity to 100 Meters Depth from Refraction Microtremor Arrays. Bull. Seism. Soc. Am. 2001, 91, 347–364. [Google Scholar] [CrossRef]
- Castellaro, S.; Mulargia, F. VS30 estimates using constrained H/V measurements. Bull. Seismol. Soc. Am. 2009, 99, 761–773. [Google Scholar] [CrossRef]
- Yong, A.; Martin, A.; Stokoe, K.; Diehl, J. ARRA-Funded VS30 Measurements Using Multi-Technique Approach at Strong-Motion Stations in California Central-Eastern United States; U.S. Geological Survey Open-File Report 2013; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2013; 60p. Available online: https://pubs.usgs.gov/of/2013/1102/ (accessed on 18 July 2022).
- Molnar, S.; Ventura, C.E.; Boroschek, R.; Archila, M. Site characterization at Chilean strong-motion stations: Comparison of downhole and microtremor shear-wave velocity methods. Soil Dyn. Earthq. Eng. 2015, 79, 22–35. [Google Scholar] [CrossRef]
- Moon, S.-W.; Subramaniam, P.; Zhang, Y.; Vinoth, G.; Ku, T. Bedrock depth evaluation using microtremor measurement: Empirical guidelines at weathered granite formation in Singapore. J. Appl. Geophys. 2019, 171, 103866. [Google Scholar] [CrossRef]
- Molnar, S.; Assaf, J.; Sirohey, A.; Adhikari, S.R. Overview of local site effects and seismic microzonation mapping in Metropolitan Vancouver, British Columbia, Canada. Eng. Geol. 2020, 270, 105568. [Google Scholar] [CrossRef]
- El-Raouf, A.A.; Iqbal, I.; Meister, J.; Abdelrahman, K.; Alzahrani, H.; Badran, O.M. Earthflow reactivation assessment by multichannel analysis of surface waves and electrical resistivity tomography: A case study. Open Geosci. 2021, 13, 1328–1344. [Google Scholar] [CrossRef]
- Wróbel, M.; Stan-Kłeczek, I.; Marciniak, A.; Majdański, M.; Kowalczyk, S.; Nawrot, A.; Cader, J. Integrated Geophysical Imaging and Remote Sensing for Enhancing Geological Interpretation of Landslides with Uncertainty Estimation—A Case Study from Cisiec, Poland. Remote Sens. 2022, 15, 238. [Google Scholar] [CrossRef]
- Bard, P.Y.; Irikura, K.; Kudo, K.; Okada, H.; Sasatani, T. Microtremor measurement: A tool for site effect estimation? In The Effects of Surface Geology on Seismic Motion; Taylor & Francis Group: Boca Raton, FL, USA, 1998. [Google Scholar]
- Mucciarelli, M.; Gallipoli, M.R. A critical review of 10 years of microtremor HVSR technique. Boll. Geofis. Teor. Appl. 2001, 42, 255–266. [Google Scholar]
- Arai, H.; Tokimatsu, K. S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull. Seismol. Soc. Am. 2004, 94, 53–63. [Google Scholar] [CrossRef]
- Guillier, B.; Chatelain, J.-L.; Bonnefoy-Claudet, S.; Haghshenas, E. Use of ambient noise: From spectral amplitude variability to H/V stability. J. Earthq. Eng. 2007, 11, 925–942. [Google Scholar] [CrossRef]
- Felipe, L.; Montalva, G.; Ramírez, P. A preliminary study of seismic microzonation of Concepción based on microtremors, geology and damages patterns. Obras Proy. 2012, 11, 40–46. [Google Scholar]
- Hassani, B.; Yong, A.; Atkinson, G.M.; Feng, T.; Meng, L. Comparison of site dominant frequency from earthquake and microseismic data in California. Bull. Seismol. Soc. Am. 2019, 109, 1034–1040. [Google Scholar] [CrossRef]
- Sameer, L.; Molnar, S.; Palmer, S. Multi-method site characterization to verify the hard rock (Site Class A) assumption at 25 seismograph stations across Eastern Canada. Earthq. Spectra 2021, 37 (Suppl. 1), 1487–1515. [Google Scholar]
- Pastén, C.; Peña, G.; Comte, D.; Díaz, L.; Burgos, J.; Rietbrock, A. On the Use of the H/V Spectral Ratio Method to Estimate the Fundamental Frequency of Tailings Dams. J. Earthq. Eng. 2023, 27, 1649–1664. [Google Scholar] [CrossRef]
- Gosar, A.; Lenart, A. Mapping the thickness of sediments in the Ljubljana Moor basin (Slovenia) using microtremors. Bull. Earthq. Eng. 2009, 8, 501–518. [Google Scholar] [CrossRef]
- Parolai, S.; Bormann, P.; Milkereit, C. New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the cologne area (Germany). Bull. Seismol. Soc. Am. 2002, 92, 2521–2527. [Google Scholar] [CrossRef] [Green Version]
- Dal Moro, G. Surface Wave Analysis for Near Surface Applications; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Foti, S.; Lai, C.G.; Rix, G.J.; Strobbia, C. Surface Wave Methods for Near-Surface Site Characterization; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Darvasi, Y. Shear-wave velocity measurements and their uncertainties at six industrial sites. Earthq. Spectra 2021, 37, 2223–2246. [Google Scholar] [CrossRef]
- Nogoshi, M.; Igarashi, T. On the amplitude characteristics of microtremor (part 2). J. Seismol. Soc. Jpn. 1971, 24, 26–40. [Google Scholar]
- Nakamura, Y. Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface, Quarterly Report of RTRI (Railway Technical Research Institute) (Japan); Taylor & Francis: Boca Raton, FL, USA, 1989; Volume 30, pp. 25–33. [Google Scholar]
- Lermo, J.; Chávez-García, F.J. Site effect evaluation using spectral ratios with only one station. Bull. Seismol. Soc. Am. 1993, 83, 1574–1594. [Google Scholar] [CrossRef]
- Wathelet, M.; Chatelain, J.L.; Cornou, C.; Di Giulio, G.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A user-friendly open-source tool set for ambient vibration processing. Seismol. Res. Lett. 2020, 91, 1878–1889. [Google Scholar] [CrossRef]
- Dal Moro, G.; Pipan, M.; Gabrielli, P. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J. Appl. Geophys. 2007, 61, 39–55. [Google Scholar] [CrossRef]
- Cox, B.R.; Wood, C.M. Surface wave benchmarking exercise: Methodologies, results, and uncertainties. In Proceedings of the Geo-Risk 2011: Risk Assessment and Management, Atlanta, GA, USA, 26–28 June 2011; pp. 845–852. [Google Scholar]
- Kamai, R.; Darvasi, Y.; Peleg, Y.; Yagoda-Biran, G. Measurement and interpretation uncertainty in site response of nine seismic network stations in Israel. Seismol. Res. Lett. 2018, 89, 1796–1806. [Google Scholar] [CrossRef]
- Alan, Y.; Antony, M.; John, B. Precision of VS30 values derived from noninvasive surface wave methods at 31 sites in California. Soil Dyn. Earthq. Eng. 2019, 127, 105802. [Google Scholar] [CrossRef]
- Bignardi, S. The uncertainty of estimating the thickness of soft sediments with the HVSR method: A computational point of view on weak lateral variations. J. Appl. Geophys. 2017, 145, 28–38. [Google Scholar] [CrossRef]
Method | Line Number | Source | Stacking | Sampling Interval (ms) | Record Length | Number of Sensors | Geophone Intervals (m) | Length of the Line (m) |
---|---|---|---|---|---|---|---|---|
Seismic reflection and refraction | 1 | 8 kg sledgehammer | 3 | 0.125 | 1 | 48 | 1 | 47 |
2 | 2 | 94 | ||||||
ReMi and ESAC | 3 | --- | --- | 4 | 20–45 (min) | 12 | 4.5 | 49 |
4 | 7.5 | 81 | ||||||
HVSR | --- | --- | --- | 1 | 15–60 (min) | 24 | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darvasi, Y.; Agnon, A. Estimation of Low-Velocity Landfill Thickness with Multi-Method Seismic Surveys. Geotechnics 2023, 3, 731-743. https://doi.org/10.3390/geotechnics3030040
Darvasi Y, Agnon A. Estimation of Low-Velocity Landfill Thickness with Multi-Method Seismic Surveys. Geotechnics. 2023; 3(3):731-743. https://doi.org/10.3390/geotechnics3030040
Chicago/Turabian StyleDarvasi, Yaniv, and Amotz Agnon. 2023. "Estimation of Low-Velocity Landfill Thickness with Multi-Method Seismic Surveys" Geotechnics 3, no. 3: 731-743. https://doi.org/10.3390/geotechnics3030040
APA StyleDarvasi, Y., & Agnon, A. (2023). Estimation of Low-Velocity Landfill Thickness with Multi-Method Seismic Surveys. Geotechnics, 3(3), 731-743. https://doi.org/10.3390/geotechnics3030040