Burn Severity and Its Impact on Soil Properties: A Study of the 2016 Erskine Fire in the Southern Sierra Nevada, California
Abstract
:1. Introduction
2. Background
2.1. Wildfire in the Western United States
2.2. 2016 Erskine Fire Burn Area
3. Materials and Methods
3.1. Sample Collection
3.2. Soil Physical Property Analyses
3.2.1. Atterberg Limits Analyses
3.2.2. Direct Shear Strength Test
3.3. Soil Compositional Characterization
3.3.1. Grain Size Analysis and SEM Imaging Characterization
3.3.2. Total Organic Carbon Measurement
3.3.3. X-ray Diffraction Mineralogy Analysis
3.4. One-Way Analysis of Variance
4. Results
4.1. Atterberg Limits and Plasticity Index
4.2. Total Organic Carbon
4.3. Grain Size Analysis and SEM Imaging Characterization
4.4. Direct Shear Strength
4.5. X-ray Diffraction Analysis
5. Discussion
5.1. Total Organic Carbon
5.2. Soil Particle Size
5.3. Soil Mineralogy
5.4. Soil Atterberg Limits and Plasticity Index
5.5. Soil Direct Shear Strength
6. Conclusions
- (1)
- LL and PL decrease with lower burn severity.
- (2)
- TOC is less abundant with decreasing burn severity, and XRD analysis reveals lower smectite and kaolinite/chlorite abundances in HBS soils compared to soils with lower burn severities. Mineralogical trends may have been influenced by localized fire temperatures.
- (3)
- No correlation was found between burn severity and the size of clay- or silt-size grains. Direct shear test results indicate higher shear strengths with greater burn severity.
- (4)
- Previous studies on the effects of wildfires on soil properties have produced varied results, with some revealing correlations between burn severity and physical properties, while others did not. The results of this study suggest that multiple factors influence soil physical and mechanical properties, with TOC content being the most significant factor impacting Atterberg limits and shear strength. Other soil properties likely have a lesser impact on soil shear strength, but their influence can be moderated or amplified by other factors.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.M.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire and post-fire effects. Int. J. Wildland Fire 2006, 5, 319–345. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Cannon, S.H.; DeGraff, J. The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change. In Landslides–Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 177–190. [Google Scholar]
- Staley, D.M.; Tillery, A.C.; Kean, J.W.; McGuire, L.A.; Pauling, H.E.; Renger, F.K.; Smith, J.B. Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data. Int. J. Wildland Fire 2018, 27, 595–608. [Google Scholar] [CrossRef]
- Deng, Y.; Cai, C.; Xia, D.; Ding, S.; Chen, J.; Wang, T. Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth 2017, 8, 499–513. [Google Scholar] [CrossRef]
- Moody, J.A.; Ebel, B.A. Infiltration and runoff generation processes in fire-affected soils. Hydrol. Process. 2014, 28, 3432–3453. [Google Scholar] [CrossRef]
- Parise, M.; Cannon, S.H. Wildfire impacts on the processes that generate debris flows in burned watersheds. Nat. Hazards 2012, 61, 217–227. [Google Scholar] [CrossRef]
- Casadei, M.; Dietrich, W.E.; Miller, N.L. Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf. Process. Landf. 2003, 28, 925–950. [Google Scholar] [CrossRef]
- Qi, G.Q.; Huang, R.Q. Study on formation mechanism of debris flow based on unsaturated soil mechanics theory. Chin. J. Geol. Hazard Control 2003, 14, 12–15. [Google Scholar]
- Mataix-Solera, J.; Arcenegui, V.; Tessler, N.; Zornoza, R.; Wittenberg, L.; Martínez, C.; Caselles, P.; Pérez-Bejarano, A.; Malkinson, D.; Jordán, M.M. Soil properties as key factors controlling water repellency in fire-affected areas: Evidences from burned sites in Spain and Israel. Catena 2013, 108, 6–13. [Google Scholar] [CrossRef]
- Vacchiano, G.; Stanchi, S.; Marinari, G.; Ascoli, D.; Zanini, E.; Motta, R. Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps. Sci. Total Environ. 2014, 472, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Cannon, S.H.; Gartner, J.E.; Rupert, M.G.; Michael, J.A.; Rea, A.H.; Parrett, C. Predicting the probability and volume of postwildfire debris flows in the intermountain western United States. GSA Bull. 2010, 122, 127–144. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Tan, Ö.; Yılmaz, L.; Zaimoğlu, A.S. Variation of some engineering properties of clays with heat treatment. Mater. Lett. 2004, 58, 1176–1179. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Wondzell, S.M.; King, J.G. Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions. For. Ecol. Manag. 2003, 178, 75–87. [Google Scholar] [CrossRef]
- Zavala, L.L.; De Celis, R.; Jordán, A. How wildfires affect soil properties. A brief review. Cuad. Investig. Geogr. 2014, 40, 311–331. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Steel, Z.L.; Safford, H.D.; Viers, J.H. The fire frequency-severity relationship and the legacy of fire suppression in California forests. Ecosphere 2015, 6, 1–23. [Google Scholar] [CrossRef]
- Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A.; Fontúrbel, T.; Llorens, R.; Sobrino, J.A. Exploring the use of spectral indices to assess alterations in soil properties in pine stands affected by crown fire in Spain. Fire Ecol. 2021, 17, 2. [Google Scholar] [CrossRef]
- Bureau Land of Management. Erskine Fire Investigation Report. 2017. Available online: https://www.blm.gov/documents/california/foia/records-released-under-foia/erskine-fire-investigation-report (accessed on 16 April 2023).
- USDA. Soil Survey of Kern County, Northeastern Part, and Southeastern Part of Tulare County, California. 2007. Available online: https://www.conservation.ca.gov/dlrp/fmmp/Documents/fmmp/pubs/soils/Kern_gSSURGO.pdf (accessed on 16 April 2023).
- Saleeby, J.B.; Busby, C. Paleogeographic and tectonic setting of axial and western metamorphic framework rocks of the southern Sierra Nevada, California. In Mesozoic Paleogeography of the Western United States II. Pacific Section SEPM. No. 71; Society of Economic Paleontologists and Mineralogists: Los Angeles, CA, USA, 1993; pp. 197–225. [Google Scholar]
- Saleeby, J.B.; Ducea, M.N.; Busby, C.; Nadin, E.; Wetmore, P.H. Chronology of Pluton Emplacement and Regional Deformation in the Southern Sierra Nevada Batholith, California; GSA Special Papers; Geological Society of America: Boulder, CO, USA, 2008; Volume 438, pp. 397–427. [Google Scholar]
- Staley, D.M.; Negri, J.A.; Kean, J.W.; Laber, J.M.; Tillery, A.C.; Youberg, A.M. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States. In U.S. Geological Survey Open-File Report; Series No. 2016–1106; US Geological Survey: Washington, DC, USA, 2016. [Google Scholar]
- Lavé, J.; Burbank, D. Denudation processes and rates in the Transverse Ranges, southern California: Erosional response of a transitional landscape to external and anthropogenic forcing. J. Geophys. Res. 2004, 109, 148–227. [Google Scholar] [CrossRef]
- Rengers, F.K.; McGuire, L.A.; Oakley, N.S.; Kean, J.W.; Staley, D.M.; Tang, H. Landslides after wildfire: Initiation, magnitude, and mobility. Landslides 2020, 17, 2631–2641. [Google Scholar] [CrossRef]
- ASTM D4318-05; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2005. Available online: https://www.astm.org/d4318-05.html (accessed on 16 April 2023).
- ASTM D2216-10; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2010. Available online: https://www.astm.org/d2216-10.html (accessed on 16 April 2023).
- Sperazza, M.; Moore, J.N.; Hendrix, M.S. High-resolution particle size analysis of naturally occurring very fine-grained sediment through laser diffractometry. J. Sediment. Res. 2004, 74, 736–743. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar]
- ASTM D3080-98; Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. ASTM International: West Conshohocken, PA, USA, 1998. Available online: https://www.astm.org/d3080-98.html (accessed on 16 April 2023).
- Guo, J.; Underwood, M.B. Data report: Clay mineral assemblages from the Nankai Trough accretionary prism and the Kumano Basin, IODP Expeditions 315 and 316, NanTroSEIZE Stage 1. In Proc. IODP, 314/315/316; IODP Management International, Inc.: Washington, DC, USA, 2012. [Google Scholar]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford Univ. Press: Oxford, UK, 1997. [Google Scholar]
- Petschick, R.; Kuhn, G.; Gingele, F. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar. Geol. 1996, 130, 203–229. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Gómez, I.; Navarro-Pedreño, J.; Guerrero, C.; Moral, R. Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment. Int. J. Wildland Fire 2002, 11, 107–114. [Google Scholar] [CrossRef]
- Francos, M.; Pereira, P.; Alcañiz, M.; Mataix-Solera, J.; Úbeda, X. Impact of an intense rainfall event on soil properties following a wildfire in a Mediterranean environment (North-East Spain). Sci. Total Environ. 2016, 572, 1353–1362. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Horn, R.; Taubner, H.; Wuttke, M.; Baumgartl, T. Soil physical properties related to soil structure. Soil Tillage Res. 1994, 30, 187–216. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; Gyssels, G.; Nachtergaele, J. Resistance of soils to concentrated flow erosion: A review. Earth Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R.; Owens, L.B.; Post, W.M.; Izaurralde, R.C. Strength properties and organic carbon of soils in the north Appalachian region. Soil Sci. Soc. Am. J. 2005, 69, 663–673. [Google Scholar] [CrossRef]
- Ohu, O.J.; Raghavan, G.S.V.; Mckyes, E.; Mehuys, G. Shear strength prediction of compacted soils with varying added organic matter contents. Trans. ASABE 1986, 29, 351–355. [Google Scholar] [CrossRef]
- Kay, B.D.; da Silva, A.P.; Baldock, J.A. Sensitivity of soil structure to changes in organic carbon content: Predictions using pedotransfer functions. Can. J. Soil Sci. 1997, 77, 655–667. [Google Scholar] [CrossRef]
- Kay, B.D.; Angers, D.A. Soil structure. In Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: New York, NY, USA, 1999; pp. A-229–A-269. [Google Scholar]
- Davies, P. Influence of organic matter content, moisture status and time after reworking on soil shear strength. J. Soil Sci. 1985, 36, 299–306. [Google Scholar] [CrossRef]
- Gantzer, C.J.; Buyanovsky, G.A.; Alberts, E.E.; Remley, P.A. Effects of soybean and corn residue decomposition on soil strength and splash detachment. Soil Sci. Soc. Am. J. 1987, 51, 202–207. [Google Scholar] [CrossRef]
- Ekwue, E.I. Organic-matter effects on soil strength properties. Soil Tillage Res. 1990, 16, 289–297. [Google Scholar] [CrossRef]
- Cruse, R.M.; Berghoefer, B.E.; Mize, C.W.; Ghaffarzadeh, M. Water drop impact angle and soybean protein amendment effects on soil detachment. Soil Sci. Soc. Am. J. 2000, 64, 1474–1478. [Google Scholar] [CrossRef]
- Rachman, A.; Anderson, S.H.; Gantzer, C.J.; Thompson, A.L. Influence of long-term cropping systems on soil physical properties related to soil erodibility. Soil Sci. Soc. Am. J. 2003, 67, 637–644. [Google Scholar] [CrossRef]
- To, J.; Kay, B.D. Variation in penetrometer resistance with soil properties: The contribution of effective stress and implications for pedotransfer functions. Geoderma 2005, 126, 261–276. [Google Scholar] [CrossRef]
(a) LL Summary | ||||||
Groups | - | - | Count | Sum | Average | Variance |
HBS | - | - | 10 | 342 | 34.200 | 103.956 |
MBS | - | - | 10 | 326 | 32.600 | 9.600 |
LBS | - | - | 10 | 329 | 32.900 | 16.544 |
VLBS | - | - | 10 | 275 | 27.500 | 10.278 |
(b) ANOVA | ||||||
Source of Variance | SS | df | MS | F | p-value | F crit |
Between Groups | 261 | 3 | 87.000 | 2.479 | 0.077 | 2.866 |
Within Groups | 1263 | 36 | 35.094 | - | - | - |
Total | 1524 | 39 | - | - | - | - |
(a) PL Summary | ||||||
Groups | - | - | Count | Sum | Average | Variance |
HBS | - | - | 10 | 348 | 34.800 | 165.733 |
MBS | - | - | 10 | 290 | 29.000 | 16.444 |
LBS | - | - | 10 | 270 | 27.000 | 10.889 |
VLBS | - | - | 10 | 236 | 23.600 | 12.489 |
(b) ANOVA | ||||||
Source of Variance | SS | df | MS | F | p-value | F crit |
Between Groups | 662 | 3 | 220.533 | 4.291 | 0.011 | 2.866 |
Within Groups | 1850 | 36 | 51.389 | - | - | - |
Total | 2512 | 39 | - | - | - | - |
(a) TOC Summary | ||||||
Groups | - | - | Count | Sum | Average | Variance |
HBS | - | - | 10 | 120 | 12.007 | 38.377 |
MBS | - | - | 10 | 107 | 10.684 | 4.171 |
LBS | - | - | 10 | 101 | 10.091 | 3.287 |
VLBS | - | - | 10 | 87 | 8.679 | 1.536 |
(b) ANOVA | ||||||
Source of Variance | SS | df | MS | F | p-value | F crit |
Between Groups | 57 | 3 | 19.047 | 1.608 | 0.204 | 2.866 |
Within Groups | 426 | 36 | 11.843 | - | - | - |
Total | 483 | 39 | - | - | - | - |
(a) Clay-size particle Summary | ||||||
Groups | - | - | Count | Sum | Average | Variance |
HBS | - | - | 10 | 175 | 17.544 | 23.429 |
MBS | - | - | 10 | 171 | 17.053 | 12.407 |
LBS | - | - | 10 | 186 | 18.559 | 5.628 |
VLBS | - | - | 10 | 191 | 19.062 | 18.201 |
(b) ANOVA | ||||||
Source of Variance | SS | df | MS | F | p-value | F crit |
Between Groups | 25 | 3 | 8.447 | 0.566 | 0.641 | 2.866 |
Within Groups | 537 | 36 | 14.916 | - | - | - |
Total | 562 | 39 | - | - | - | - |
(a) Silt-size particle Summary | ||||||
Groups | - | - | Count | Sum | Average | Variance |
HBS | - | - | 10 | 372 | 37.226 | 19.340 |
MBS | - | - | 10 | 376 | 37.578 | 35.181 |
LBS | - | - | 10 | 424 | 42.376 | 10.323 |
VLBS | - | - | 10 | 379 | 37.938 | 27.587 |
(b) ANOVA | ||||||
Source of Variance | SS | df | MS | F | p-value | F crit |
Between Groups | 175 | 3 | 58.327 | 2.524 | 0.073 | 2.866 |
Within Groups | 832 | 36 | 23.107 | - | - | - |
Total | 1007 | 39 | - | - | - | - |
(a) 48 kPa Summary | ||||||
Groups | - | - | Count | Sum | Average | Variance |
HBS | - | - | 10 | 54 | 10.760 | 0.908 |
MBS | - | - | 10 | 46 | 9.240 | 1.213 |
LBS | - | - | 10 | 44 | 8.740 | 0.238 |
VLBS | - | - | 10 | 44 | 8.720 | 0.047 |
(b) ANOVA | ||||||
Source of Variance | SS | df | MS | F | p-value | F crit |
Between Groups | 14 | 3 | 4.614 | 7.671 | 0.002 | 3.239 |
Within Groups | 10 | 16 | 0.602 | - | - | - |
Total | 23 | 19 | - | - | - | - |
(a) 96 kPa Summary | ||||||
Groups | - | - | Count | Sum | Average | Variance |
HBS | - | - | 10 | 85 | 16.920 | 2.097 |
MBS | - | - | 10 | 84 | 16.800 | 0.505 |
LBS | - | - | 10 | 74 | 14.760 | 0.893 |
VLBS | - | - | 10 | 74 | 14.780 | 1.002 |
(b) ANOVA | ||||||
Source of Variance | SS | df | MS | F | p-value | F crit |
Between Groups | 22 | 3 | 7.293 | 6.487 | 0.004 | 3.239 |
Within Groups | 18 | 16 | 1.124 | - | - | - |
Total | 40 | 19 | - | - | - | - |
(a) 192 kPa Summary | ||||||
Groups | - | - | Count | Sum | Average | Variance |
HBS | - | - | 10 | 147 | 29.300 | 2.505 |
MBS | - | - | 10 | 143 | 28.600 | 6.265 |
LBS | - | - | 10 | 126 | 25.220 | 3.757 |
VLBS | - | - | 10 | 127 | 25.440 | 16.208 |
(b) ANOVA | ||||||
Source of Variance | SS | df | MS | F | p-value | F crit |
Between Groups | 67 | 3 | 22.289 | 3.103 | 0.056 | 3.239 |
Within Groups | 115 | 16 | 7.184 | - | - | - |
Total | 182 | 19 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haake, S.; Krugh, W.; Montoya, E.; Guo, J. Burn Severity and Its Impact on Soil Properties: A Study of the 2016 Erskine Fire in the Southern Sierra Nevada, California. Geotechnics 2023, 3, 446-464. https://doi.org/10.3390/geotechnics3020025
Haake S, Krugh W, Montoya E, Guo J. Burn Severity and Its Impact on Soil Properties: A Study of the 2016 Erskine Fire in the Southern Sierra Nevada, California. Geotechnics. 2023; 3(2):446-464. https://doi.org/10.3390/geotechnics3020025
Chicago/Turabian StyleHaake, Sade, William Krugh, Eduardo Montoya, and Junhua Guo. 2023. "Burn Severity and Its Impact on Soil Properties: A Study of the 2016 Erskine Fire in the Southern Sierra Nevada, California" Geotechnics 3, no. 2: 446-464. https://doi.org/10.3390/geotechnics3020025
APA StyleHaake, S., Krugh, W., Montoya, E., & Guo, J. (2023). Burn Severity and Its Impact on Soil Properties: A Study of the 2016 Erskine Fire in the Southern Sierra Nevada, California. Geotechnics, 3(2), 446-464. https://doi.org/10.3390/geotechnics3020025