Advances in Deformation and Permeability Evolution during Creep of Rocks
Abstract
:1. Introduction
2. Experimental Research on Creep-Permeability Evolution
3. Permeability Evolution Model
3.1. Relationship between Permeability and Porosity
3.2. Permeability-Stress Relationship
3.3. Permeability-Damage Relationship
3.4. Permeability and Strain
4. Method of Simulation for Creep-Permeable Process
4.1. FEM Models
4.2. DEM Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Xu, W.Y.; Wang, H.L.; Wang, W.; Wang, R.B. Permeability Evolution of Granite Gneiss during Triaxial Creep Tests. Rock Mech. Rock Eng. 2016, 49, 3455–3462. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W.; Gu, J.; Wang, W. Triaxial creep tests of weak sandstone from fracture zone of high dam foundation. J. Cent. South Univ. 2013, 20, 2528–2536. [Google Scholar] [CrossRef]
- Liu, Z.B.; Xie, S.Y.; Shao, J.F.; Conil, N. Multi-step triaxial compressive creep behaviour and induced gas permeability change of clay-rich rock. Géotechnique 2018, 68, 281–289. [Google Scholar] [CrossRef]
- Ghassemi, A. A Review of Some Rock Mechanics Issues in Geothermal Reservoir Development. Geotech. Geol. Eng. 2012, 30, 647–664. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, J.F.; Xu, W.Y.; Jia, Y.; Zhao, H.B. Creep behaviour and permeability evolution of cataclastic sandstone in triaxial rheological tests. Eur. J. Environ. Civ. Eng. 2015, 19, 496–519. [Google Scholar] [CrossRef]
- Jiang, T.; Shao, J.F.; Xu, W.Y.; Zhou, C.B. Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks. Int. J. Rock Mech. Min. Sci. 2010, 47, 703–713. [Google Scholar] [CrossRef]
- Yang, Y.; Aplin, A.C. A permeability-porosity relationship for mudstones. Mar. Pet. Geol. 2010, 27, 1692–1697. [Google Scholar] [CrossRef]
- Ma, J. Review of permeability evolution model for fractured porous media. J. Rock Mech. Geotech. Eng. 2015, 7, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.H.; Liu, J.; Zhu, W.C.; Elsworth, D.; Tham, L.G.; Tang, C.A. A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations. Int. J. Rock Mech. Min. Sci. 2007, 44, 87–97. [Google Scholar] [CrossRef]
- Yu, C.; Li, H.; Wu, R.; Sun, Y. A Novel Method for Stress Calculation Considering the Creep Behaviour of Shale Gas Reservoir. J. Eng. Sci. Technol. Rev. 2016, 9, 120–127. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, J.; Xie, S.; Conil, N. Triaxial Creep Induced Gas Permeability Change and Elastic Modulus Variation in Callovo-Oxfordian Argillite. In Proceedings of the Sixth Biot Conference on Poromechanics, Paris, France, 9–13 July 2017; pp. 1037–1044. [Google Scholar]
- Liu, Z.; Shao, J.; Xie, S.; Secq, J. Gas permeability evolution of clayey rocks in process of compressive creep test. Mater. Lett. 2015, 139, 422–425. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, X.; He, N. Experimental Research on Coal Rock Creep Deformation- seepage Coupling Law. Procedia Eng. 2011, 26, 1526–1531. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wang, R.; Wang, W.; Zhang, Z.; Zhang, J.; Wang, W. Creep properties and permeability evolution in triaxial rheological tests of hard rock in dam foundation. J. Cent. South Univ. Technol. 2012, 19, 252–261. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.B.; Xu, W.Y.; Shao, J.F. Change in the permeability of clastic rock during multi-loading triaxial compressive creep tests. Géotech. Lett. 2015, 5, 167–172. [Google Scholar] [CrossRef]
- Yi, H.; Zhou, H.; Wang, R.; Liu, D.; Ding, J. On the Relationship between Creep Strain and Permeability of Granite: Experiment and Model Investigation. Energies 2018, 11, 2859. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, C.P.; Liu, J.F.; Li, Y.; Liu, J.; Wang, J. Effects of temperature and stress on the time-dependent behavior of Beishan granite. Int. J. Rock Mech. Min. Sci. 2017, 93, 316–323. [Google Scholar] [CrossRef]
- Zhang, F.; He, T.; Kang, J.; Hu, D. Experimental Study on Influence of Chemical Corrosion on Mechanical Property of Fissured Granite. Geofluids 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Hu, D.; Zhou, H.; Zhang, F. Stress-induced permeability evolutions and erosion damage of porous rocks. In Porous Rock Failure Mechanics; Woodhead Publishing: Sawston, UK, 2017; pp. 63–92. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, J.; Hu, D.; Sheng, Q.; Shao, J. Creep Strain and Permeability Evolution in Cracked Granite Subjected to Triaxial Stress and Reactive Flow. Geofluids 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-Q. Creep and Long-Term Permeability of a Red Sandstone Subjected to Cyclic Loading After Thermal Treatments. Rock Mech. Rock Eng. 2018, 51, 2981–3004. [Google Scholar] [CrossRef]
- Chen, S.; Yang, C.; Wang, G. Evolution of thermal damage and permeability of Beishan granite. Appl. Therm. Eng. 2017, 110, 1533–1542. [Google Scholar] [CrossRef]
- Pan, X.; Berto, F.; Zhou, X. Investigation of creep damage mechanical behaviors of red sandstone considering temperature effect. Fatigue Fract. Eng. Mat. Struct. 2022, 45, 411–424. [Google Scholar] [CrossRef]
- Feng, Z.; Zhao, Y.; Zhang, Y.; Wan, Z. Real-time permeability evolution of thermally cracked granite at triaxial stresses. Appl. Therm. Eng. 2018, 133, 194–200. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, H.; Wang, X.; Wang, L.; Su, T.; Wei, Q.; Deng, T. A triaxial creep model for deep coal considering temperature effect based on fractional derivative. Acta Geotech. 2021. [Google Scholar] [CrossRef]
- Sha, Z.; Pu, H.; Li, M.; Cao, L.; Liu, D.; Ni, H.; Lu, J. Experimental Study on the Creep Characteristics of Coal Measures Sandstone under Seepage Action. Processes 2018, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Lv, R.; Wei, J.; Fu, Q.; Wang, Y. An experimental study of seepage properties of gas-saturated coal under different loading conditions. Energy Sci. Eng. 2019, 7, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.W.; Wang, L.J.; Rong, T.L.; Zhang, L.; Ren, W.G.; Su, T. Creep-based permeability evolution in deep coal under unloading confining pressure. J. Nat. Gas Sci. Eng. 2019, 65, 185–196. [Google Scholar] [CrossRef]
- Sheng, Q.; Hu, B. Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa. Sci. Rep. 2020, 10, 1900. [Google Scholar] [CrossRef]
- Walsh, J.B.; Brace, W.F. Effect of pressure on porosity and the transport properties of rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985, 22, 116. [Google Scholar] [CrossRef]
- Bernabé, Y.; Mok, U.; Evans, B. Permeability-porosity Relationships in Rocks Subjected to Various Evolution. Processes 2003, 160, 937–960. [Google Scholar] [CrossRef]
- Costa, A. Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Mortensen, N.A.; Okkels, F.; Bruus, H. Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005, 71, 57301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, E.; Giacomelli, F.; Vazquez, A. Permeability-Porosity Relationship in RTM for Different Fiberglass and Natural Reinforcements. J. Compos. Mater. 2004, 38, 259–268. [Google Scholar] [CrossRef]
- Ghabezloo, S.; Sulem, J.; Saint-Marc, J. Evaluation of a permeability-porosity relationship in a low-permeability creeping material using a single transient test. Int. J. Rock Mech. Min. Sci. 2009, 46, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Alkan, H. Percolation model for dilatancy-induced permeability of the excavation damaged zone in rock salt. Int. J. Rock Mech. Min. Sci. 2009, 46, 716–724. [Google Scholar] [CrossRef]
- Sahimi, M. Linear and nonlinear, scalar and vector transport processes in heterogeneous media: Fractals, percolation, and scaling laws. Chem. Eng. J. Biochem. Eng. J. 1996, 64, 21–44. [Google Scholar] [CrossRef]
- Garavito, A.M.; Kooi, H.; Neuzil, C.E. Numerical modeling of a long-term in situ chemical osmosis experiment in the Pierre Shale, South Dakota. Adv. Water Resour. 2006, 29, 481–492. [Google Scholar] [CrossRef]
- Morris, J.P.; Lomov, I.N.; Glenn, L.A. A constitutive model for stress-induced permeability and porosity evolution of Berea sandstone. J. Geophys. Res. 2003, 108, 2485. [Google Scholar] [CrossRef]
- Bethke, C.M. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. J. Geophys. Res. Solid Earth 1985, 90, 6817–6828. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, C.-Y. Pore pressure generation in sedimentary basins: Overloading versus aquathermal. J. Geophys. Res. 1986, 91, 2153. [Google Scholar] [CrossRef]
- David, C.; Wong, T.-F.; Zhu, W.; Zhang, J. Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust. PAGEOPH 1994, 143, 425–456. [Google Scholar] [CrossRef]
- Rice, J.R. Fault Stress States, Pore Pressure Distributions, and the Weakness of the San Andreas Fault. In International Geophysics: Fault Mechanics and Transport Properties of Rocks; Evans, B., Wong, T.-F., Eds.; Academic Press: Cambridge, MA, USA, 1992; pp. 475–503. ISBN 0074-6142. [Google Scholar]
- Chen, D.; Pan, Z.; Ye, Z.; Hou, B.; Wang, D.; Yuan, L. A unified permeability and effective stress relationship for porous and fractured reservoir rocks. J. Nat. Gas Sci. Eng. 2016, 29, 401–412. [Google Scholar] [CrossRef]
- Ghabezloo, S.; Sulem, J.; Guédon, S.; Martineau, F. Effective stress law for the permeability of a limestone. Int. J. Rock Mech. Min. Sci. 2009, 46, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zheng, L.; Liu, H.-H.; Ju, Y. Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock. Int. J. Rock Mech. Min. Sci. 2015, 78, 304–318. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.; Kronenberg, A.K.; Gangi, A.F.; Johnson, B. Permeability of Wilcox shale and its effective pressure law. J. Geophys. Res. 2001, 106, 19339–19353. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J. A Stress-Induced Permeability Evolution Model for Fissured Porous Media. Rock Mech. Rock Eng. 2016, 49, 477–485. [Google Scholar] [CrossRef]
- Pogacnik, J.; O’Sullivan, M.; O’Sullivan, J. A Damage Mechanics Approach to Modeling Permeability Enhancement in Thermo-Hydro-Mechanical Simulations. In Proceedings of the Thirty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 February 2014; pp. 1–12. [Google Scholar]
- Keyvan, M.; Ahmad, P. Numerical simulation of damage-Permeability relationship in brittle geomaterials. Comput. Geotech. 2010, 37, 619–628. [Google Scholar] [CrossRef]
- Picandet, V.; Khelidj, A.; Bastian, G. Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete. Cem. Concr. Res. 2001, 31, 1525–1532. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Su, X.; Wu, B.; Wang, W.; Yuan, W. A Coupled Damage-Permeability Constitutive Model for Brittle Rocks Subjected to Explosive Loading. Adv. Civ. Eng. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Liu, Q.; Liu, X. Analysis of Damage and Permeability Evolution for Mudstone Material under Coupled Stress-Seepage. Materials 2020, 13, 3755. [Google Scholar] [CrossRef]
- Zhao, E.; Jiang, Y. Seepage Evolution Model of the Fractured Rock Mass under High Seepage Pressure in Dam Foundation. Adv. Civ. Eng. 2021, 2021, 8832774. [Google Scholar] [CrossRef]
- Zhang, L.; Scholtès, L.; Donzé, F.V. Discrete Element Modeling of Permeability Evolution during Progressive Failure of a Low-Permeable Rock Under Triaxial Compression. Rock Mech. Rock Eng. 2021, 54, 6351–6372. [Google Scholar] [CrossRef]
- Gordeliy, E.; Peirce, A. Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput. Methods Appl. Mech. Engrgy 2013, 253, 305–322. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Tang, C.; Li, H.; Wang, S. Experimental and Numerical Investigation of Permeability Evolution with Damage of Sandstone under Triaxial Compression. Rock Mech. Rock Eng. 2017, 50, 1529–1549. [Google Scholar] [CrossRef]
- Li, M.; Guo, P.; Stolle, D.F.E.; Liang, L.; Shi, Y. Modeling hydraulic fracture in heterogeneous rock materials using permeability-based hydraulic fracture model. Undergr. Space 2020, 5, 167–183. [Google Scholar] [CrossRef]
- Rutqvist, J.; Wu, Y.-S.; Tsang, C.-F.; Bodvarsson, G. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 2002, 39, 429–442. [Google Scholar]
- Zhang, C.; Chu, W.; Liu, N.; Zhu, Y.; Hou, J. Laboratory tests and numerical simulations of brittle marble and squeezing schist at Jinping II hydropower station, China. J. Rock Mech. Geotech. Eng. 2011, 3, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Dahhaoui, H.; Belayachi, N.; Zadjaoui, A. Modeling of Creep Behavior of an Argillaceous Rock by Numerical Homogenization Method. Period. Polytech. Civ. Eng. 2018, 62, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, W.; He, Z.; Lyv, S.; Yang, Q. Nonlinear creep damage model considering effect of pore pressure and analysis of long-term stability of rock structure. Int. J. Damage Mech. 2020, 29, 144–165. [Google Scholar] [CrossRef]
- Jia, S.; Wen, C.; Wu, B. A nonlinear elasto-viscoplastic model for clayed rock and its application to stability analysis of nuclear waste repository. Energy Sci. Eng. 2020, 8, 150–165. [Google Scholar] [CrossRef]
- Jia, S.P.; Zhang, L.W.; Wu, B.S.; Yu, H.D.; Shu, J.X. A coupled hydro-mechanical creep damage model for clayey rock and its application to nuclear waste repository. Tunn. Undergr. Space Technol. 2018, 74, 230–246. [Google Scholar] [CrossRef]
- Pakzad, R.; Wang, S.Y.; Sloan, S.W. Numerical Simulation of Hydraulic Fracturing in Low-/High-Permeability, Quasi-Brittle and Heterogeneous Rocks. Rock Mech. Rock Eng. 2018, 51, 1153–1171. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, J.; Nie, R.; Zeng, Y.; Xu, B.; Sun, X. A Full Coupled Thermal-Hydraulic-Chemical Model for Heterogeneity Rock Damage and Its Application in Predicting Water Inrush. Appl. Sci. 2019, 9, 2195. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yun, M.L.; Yan, G. Examining the mechanisms of sand creep using DEM simulations. Granul. Matter 2014, 16, 733–750. [Google Scholar] [CrossRef]
- Hamza, O.; Stace, R. Creep properties of intact and fractured muddy siltstone. Int. J. Rock Mech. Min. Sci. 2018, 106, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Han, Y.; Wang, T.; Ma, J. DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock. J. Nat. Gas Sci. Eng. 2017, 46, 38–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W.; Shao, J.; Zhao, H.; Wang, W. Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project. Water Sci. Eng. 2015, 8, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Ch, J.G.; Senent, S.; Estebanez, E.; Jimenez, R. Discrete element modelling of rock creep behaviour using rate process theory. Can. Geotech. J. 2021, 58, 1231–1246. [Google Scholar] [CrossRef]
- Kwok, C.-Y.; Bolton, M.D. DEM simulations of thermally activated creep in soils. Géotechnique 2010, 60, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Papachristos, E.; Scholtès, L.; Donzé, F.V.; Chareyre, B. Intensity and volumetric characterizations of hydraulically driven fractures by hydro-mechanical simulations. Int. J. Rock Mech. Min. Sci. 2017, 93, 163–178. [Google Scholar]
- Krzaczek, M.; Nitka, M.; Kozicki, J.; Tejchman, J. Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach. Acta Geotech. 2020, 15, 297–324. [Google Scholar] [CrossRef] [Green Version]
Literature | Experimental Material | Experimental Method | Result Analysis | Saturated/Unsaturated | Gas or Liquid | Duration of Creep Deformation | Project | Experiment Equipment |
---|---|---|---|---|---|---|---|---|
[13] | Coal | MS-TCCT CP; 2, 6 MPa PP; 1.5 MPa | Curve of “εa-t”, “εv-t”, “εa-εv”, “k-t”, “k-εa” | Unsaturated | N2 | 25 h/step | dynamic disaster and water damage prevention and control of gas in coal mine | CSCG-160- type gravity hydraulic constant load creep seepage test system developed by China University of Mining & Technology (Beijing) |
[12] | Argillite | SS-TCCT CP: 6 MPa PP; 1 MPa | Curve of “εa-t, εv-t, k-t”, “σ-εa” | Unsaturated (RH; 59% (NaBr)) | N2 | 340 h/step | Disposal of radioactive waste | Auto-compensated hydro-auto-servo testing device designed at LML Scanning electron microscopy (SEM) |
[11] | COx claystone | MS-TCCT CP; 6 MPa PP; 1 MPa | Curve of “σ-εa”, “k-εa” | Unsaturated (RH;59% (NaBr)) | N2 | 300 h/step | Disposal of radioactive waste | Auto-compensated hydro-auto-servo testing device designed at LML |
[3] | COx claystone | MS-TCCT CP (2, 6, 12 MPa), PP; 1 MPa | “εa-t, k-t” Power law of creep rate with time | Unsaturated (RH;59%(NaBr)) | N2 | 140 h or 170 h/step | Disposal of radioactive waste | Auto-compensated hydro-auto-servo testing device designed at LML |
[27] | Coal | HM&MSCT-TCCT CP; 2, 3, 4, 5 MPa PP; 0.2, 0,4, 0.8, 1.2 MPa Creep Test (CP; 2 MPa, PP; 0.4 MPa) | “k-CP(PP)”, “k-εa, σ-εa”, “εa-t, k-t” | Gas-saturated | methane gas | 4 h/step | safe production of coal underground and efficient exploitation of coalbed methane | adsorption-desorption-seepage experimental system |
[28] | Coal | MSCT-TCCT-(URS) Initial CP; 25 MPa PP; 2 MPa | “εa-t, εr-t, “k-t”, “εr-εa”, ““k-εv” | Natural sate | N2 | 10~20 h/step | to characterize the timeliness of simultaneous exploitation of coal and gas at depth. | a servo-controlled triaxial rheology equipment |
[29] | Red sandstone (single fissure) | MSCT-TCCT (Loading-Unloading) CP; 30 MPa PP; 3 MPa | “εa-t, k-t” | Natural sate | Gas | 48 h/step | Geoscience research and energy resource. | Rock triaxial rheological testing device |
[15] | Clastic rock | MS-TCCT CP; 1.5, 2.0, 2.5 MPa PP; 0.25 MPa | Curve of “εa-t, k-t”, “σ-εa, k-εa”, | Wi: 6.6% | water | 48~50/step | a hydropower station | Scanning electron microscopy (SEM), triaxial creep testing device |
[14] | Volcanic breccia | MS-TCCT CP; 2, 6 MPa PP; 1.5 MPa | Curve of “εa-t, εr-t”, “εa-t, dεc-t”, “εr-t, dεc-t”, “k-t” | Saturated | water | 50 h/step | Huangdeng Hydropower Project | Rock servo-controlled triaxial rheology equipment, developed by LML |
[5] | Cataclastic sandstone | MS-TCCT CP;1.0, 1.5, 20 MPa PP;0.25, 0.35 MPa | Curve of “ε-T-t”, “k-t”, “εc-t” | Wi: 4.61–7.70% | water | 48~50/step | dam foundation of a hydropower station | |
[1] | Granite gneiss | MS-TCCT CP;4 MPa PP; 1, 2, 3 MPa | Curve of “εa-t”, “k-t”, “σ-εa, k- εa”, “k-PP” | Saturated | Water | 72 h/step | underground oil storage cavern | |
[16] | Granite | MS-TCCT CP (3, 6, 9 MPa) GB/T50266-99, China | “ε-t”, “k-t”, “AE hits-step” | saturated | water | 12 h/step | high-level radioactive waste (HLW) | MTS815, a three-dimensional AE system |
[20] | Cracked granite | SS-TCCT CP; 2, 5, 10 MPa PP; 1 MPa pH; 2, 12 | Curve of “εa-t, εr-t”, “dεa-t, dεc-t”, “εr-t, dεc-t”, “k-t with pH&CP” | Saturated | Water (pH; 2, 12) | 300/h, 2700/h | EGS, conventional and unconventional gas, and oil | thermal-hydrological-mechanical-reactive flow coupling testing system |
[21] | Red sandstone | MSCT-TCCT (Loading-Unloading) CP; 25 MPa PP; 1 MPa T; 25, 300, 700, 1000 | “εa-t, dεa-t (T )” “εa-t, k-t” (T ) | Saturated | water | Loading 90 h, unloading 20 h/step | to characterize the timeliness of simultaneous exploitation of coal and gas at depth. | |
[26] | Coal measures sandstone | MSCT-TCCT CP; 1, 2, 3, 4 MPa PP; 0.5, 1.5, 2.5, 3.5 MPa (CP; 4 MPa) | “εa-t”, “dεc-t”, “k-t (PP; 0.5, 1.5, 2.5, 3.5 MPa)” | Saturated/unsaturated | water | 4 h/step | stability control of roadway surrounding rock in water-rich areas | Electro-hydraulic servo rock mechanics test system of MTS816 |
T | M | H | C | |
---|---|---|---|---|
T | Change porosity and mechanical properties by thermal damage | Change in fluid flow Permeability change by thermal damage | Reaction rate change due to change in temperature | |
M | Change temperature distribution | Pore pressure change, permeability change | Change in flow channel, reactive rate | |
H | Temperature distribution change due to porosity and fluid flow | Hydraulic damage and permeability change | Change in chemical concentration due to hydraulic field | |
C | Change in thermal conductivity by chemical process | Microstructure change by chemical damage | Change in permeability induced by chemical damage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Liu, Z. Advances in Deformation and Permeability Evolution during Creep of Rocks. Geotechnics 2022, 2, 317-334. https://doi.org/10.3390/geotechnics2020014
Wu X, Liu Z. Advances in Deformation and Permeability Evolution during Creep of Rocks. Geotechnics. 2022; 2(2):317-334. https://doi.org/10.3390/geotechnics2020014
Chicago/Turabian StyleWu, Xiancheng, and Zaobao Liu. 2022. "Advances in Deformation and Permeability Evolution during Creep of Rocks" Geotechnics 2, no. 2: 317-334. https://doi.org/10.3390/geotechnics2020014
APA StyleWu, X., & Liu, Z. (2022). Advances in Deformation and Permeability Evolution during Creep of Rocks. Geotechnics, 2(2), 317-334. https://doi.org/10.3390/geotechnics2020014