Longitudinal Assessment of Land Use Change Impacts on Carbon Services in the Southeast Region, Vietnam
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Research Data Collection and Data Analysis
2.2.1. Data Collection
2.2.2. Data Analysis
3. Results
3.1. Changes in Land Use
3.2. Land Use Trajectories and Main Driving Processes
3.3. Carbon Storage
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Categories | Built-Up Land | Agricultural Land | Grass Land | Bare Land | Forests | Wetland | Open Water | Total | ||
|---|---|---|---|---|---|---|---|---|---|---|
| 1990 | Dong Nai | ha | 1746.90 | 306,128.52 | 0.09 | 15,154.83 | 940,900.95 | 5581.35 | 37,261.80 | 1,306,774.44 |
| % | 0.13 | 23.43 | 0.00 | 1.16 | 72.00 | 0.43 | 2.85 | 100.00 | ||
| Ho Chi Minh | ha | 16,628.13 | 256,334.49 | 1367.91 | 39,457.53 | 266,915.88 | 56,193.84 | 47,925.27 | 684,823.05 | |
| % | 2.43 | 37.43 | 0.20 | 5.76 | 38.98 | 8.21 | 7.00 | 100.00 | ||
| Tay Ninh | ha | 3852.63 | 479,036.97 | 3507.75 | 31,789.89 | 284,587.83 | 28,450.62 | 42,633.45 | 873,859.14 | |
| % | 0.44 | 54.82 | 0.40 | 3.64 | 32.57 | 3.26 | 4.88 | 100.00 | ||
| Total | ha | 22,227.66 | 1,041,499.98 | 4875.75 | 86,402.25 | 1,492,404.66 | 90,225.81 | 127,820.52 | 2,865,456.63 | |
| % | 0.78 | 36.35 | 0.17 | 3.02 | 52.08 | 3.15 | 4.46 | 100.00 | ||
| 2000 | Dong Nai | ha | 5018.40 | 225,131.85 | 13.68 | 14,311.44 | 1,009,415.97 | 4946.22 | 47,915.46 | 1,306,753.02 |
| % | 0.38 | 17.23 | 0.00 | 1.10 | 77.25 | 0.38 | 3.67 | 100.00 | ||
| Ho Chi Minh | ha | 29,214.90 | 190,388.97 | 3535.20 | 15,844.05 | 344,593.62 | 52,597.08 | 48,607.38 | 684,781.20 | |
| % | 4.27 | 27.80 | 0.52 | 2.31 | 50.32 | 7.68 | 7.10 | 100.00 | ||
| Tay Ninh | ha | 6315.30 | 500,393.34 | 11,522.52 | 12,460.32 | 282,525.93 | 22,253.04 | 38,366.82 | 873,837.27 | |
| % | 0.72 | 57.26 | 1.32 | 1.43 | 32.33 | 2.55 | 4.39 | 100.00 | ||
| Total | ha | 40,548.60 | 915,914.16 | 15,071.40 | 42,615.81 | 1,636,535.52 | 79,796.34 | 134,889.66 | 2,865,371.49 | |
| % | 1.42 | 31.96 | 0.53 | 1.49 | 57.11 | 2.78 | 4.71 | 100.00 | ||
| 2010 | Dong Nai | ha | 14,673.60 | 147,666.33 | 1.80 | 26,381.43 | 1,064,181.33 | 6646.68 | 47,223.27 | 1,306,774.44 |
| % | 1.12 | 11.30 | 0.00 | 2.02 | 81.44 | 0.51 | 3.61 | 100.00 | ||
| Ho Chi Minh | ha | 60,145.11 | 125,882.82 | 3407.40 | 30,703.50 | 363,330.45 | 55,785.15 | 45,568.62 | 684,823.05 | |
| % | 8.78 | 18.38 | 0.50 | 4.48 | 53.05 | 8.15 | 6.65 | 100.00 | ||
| Tay Ninh | ha | 22,492.53 | 487,880.19 | 10,250.82 | 27,660.96 | 274,529.88 | 24,734.25 | 26,310.51 | 873,859.14 | |
| % | 2.57 | 55.83 | 1.17 | 3.17 | 31.42 | 2.83 | 3.01 | 100.00 | ||
| Total | ha | 97,311.24 | 761,429.34 | 13,660.02 | 84,745.89 | 1,702,041.66 | 87,166.08 | 119,102.40 | 2,865,456.63 | |
| % | 3.40 | 26.57 | 0.48 | 2.96 | 59.40 | 3.04 | 4.16 | 100.00 | ||
| 2020 | Dong Nai | ha | 32,209.11 | 291,163.50 | 232.47 | 20,404.71 | 899,169.84 | 9670.23 | 53,924.58 | 1,306,774.44 |
| % | 2.46 | 22.28 | 0.02 | 1.56 | 68.81 | 0.74 | 4.13 | 100.00 | ||
| Ho Chi Minh | ha | 90,836.55 | 152,091.27 | 1561.77 | 26,670.96 | 307,770.93 | 64,491.93 | 41,399.64 | 684,823.05 | |
| % | 13.26 | 22.21 | 0.23 | 3.89 | 44.94 | 9.42 | 6.05 | 100.00 | ||
| Tay Ninh | ha | 47,241.72 | 491,458.86 | 3925.35 | 9863.91 | 268,371.27 | 29,017.35 | 23,980.68 | 873,859.14 | |
| % | 5.41 | 56.24 | 0.45 | 1.13 | 30.71 | 3.32 | 2.74 | 100.00 | ||
| Total | ha | 170,287.38 | 934,713.63 | 5719.59 | 56,939.58 | 1,475,312.04 | 103,179.51 | 119,304.90 | 2,865,456.63 | |
| % | 5.94 | 32.62 | 0.20 | 1.99 | 51.49 | 3.60 | 4.16 | 100.00 | ||
References
- Gurgel, A.C.; Reilly, J.; Blanc, E. Agriculture and forest land use change in the continental United States: Are there tipping points? iScience 2021, 24, 102772. [Google Scholar] [CrossRef]
- Robinson, G.M. Global sustainable agriculture and land management systems. Geogr. Sustain. 2024, 5, 637–646. [Google Scholar] [CrossRef]
- Fu, M.; Jiao, L.; Su, J. Urban land system change: Spatial heterogeneity and driving factors of land use intensity in Wuhan, China. Habitat Int. 2025, 159, 103380. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Borsky, S.; Braun, M.; Eitzinger, J.; Gaube, V.; Getzner, M.; Glatzel, S.; Gschwantner, T.; Kirchner, M.; et al. Past and future impacts of land-use changes on ecosystem services in Austria. J. Environ. Manag. 2023, 345, 118728. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Lei, X.; Zhou, Y.; Huo, P. Impacts of multi-scenario land use change on carbon storage and its economic value in the Qilian Mountains Region, China. J. Nat. Conserv. 2025, 88, 127042. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, J. Recognizing ecosystem service’s contribution to SDGs: Ecological foundation of sustainable development. Geogr. Sustain. 2024, 5, 511–525. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Afuye, G.A.; Nduku, L.; Kalumba, A.M.; Santos, C.A.G.; Orimoloye, I.R.; Ojeh, V.N.; Thamaga, K.H.; Sibandze, P. Global trend assessment of land use and land cover changes: A systematic approach to future research development and planning. J. King Saud Univ. Sci. 2024, 36, 103262. [Google Scholar] [CrossRef]
- Semenchuk, P.; Plutzar, C.; Kastner, T.; Matej, S.; Bidoglio, G.; Erb, K.-H.; Essl, F.; Haberl, H.; Wessely, J.; Krausmann, F.; et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 615. [Google Scholar] [CrossRef]
- Cabernard, L.; Pfister, S.; Hellweg, S. Biodiversity impacts of recent land-use change driven by increases in agri-food imports. Nat. Sustain. 2024, 7, 1512–1524. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.-J.; Jiang, J.; Zhao, Y.-G. Land use/land cover change and soil property variation increased flood risk in the black soil region, China, in the last 40 years. Environ. Impact Assess. Rev. 2024, 104, 107314. [Google Scholar] [CrossRef]
- Lang, Y.; Chao, H.; Xiao, J. The Relationship Between Carbon Emissions and Ecosystem Services in Guangdong Province, China: The Perspective of Ecological Function Zones. Land 2024, 13, 2227. [Google Scholar] [CrossRef]
- Wang, R.-Y.; Mo, X.; Ji, H.; Zhu, Z.; Wang, Y.-S.; Bao, Z.; Li, T. Comparison of the CASA and InVEST models’ effects for estimating spatiotemporal differences in carbon storage of green spaces in megacities. Sci. Rep. 2024, 14, 5456. [Google Scholar] [CrossRef]
- Shao, Y.; Yuan, X.; Ma, C.; Ma, R.; Ren, Z. Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China. Sustainability 2020, 12, 4449. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, X.; Feng, X.; Ma, J.; Wang, X.; Zhang, X.; Zhou, J.; Sun, Z.; Yao, W.; Tu, Y. Exploring the spatial heterogeneity of ecosystem services and influencing factors on the Qinghai Tibet Plateau. Ecol. Indic. 2023, 154, 110521. [Google Scholar] [CrossRef]
- Ali, R.; Bakhsh, K.; Yasin, M.A. Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sustain. Cities Soc. 2019, 48, 101553. [Google Scholar] [CrossRef]
- Wang, W.-Z.; Liu, L.-C.; Liao, H.; Wei, Y.-M. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Deng, L.; Li, Y.; Cao, Z.; Hao, R.; Wang, Z.; Zou, J.; Wu, Q.; Qiao, J. Revealing Impacts of Human Activities and Natural Factors on Dynamic Changes of Relationships among Ecosystem Services: A Case Study in the Huang-Huai-Hai Plain, China. Int. J. Environ. Res. Public Health 2022, 19, 10230. [Google Scholar] [CrossRef] [PubMed]
- Limazie, M.S.; Woni, S. Foreign direct investment and carbon emissions in ECOWAS: Does good governance matter? J. Econ. Dev. 2024, 26, 139–153. [Google Scholar] [CrossRef]
- Tuan, N.T. Comparing the process of converting land use purposes between socio-economic regions in Vietnam from 2007 to 2020. Environ. Socio-Econ. Stud. 2024, 12, 51–62. [Google Scholar] [CrossRef]
- Yuan, W.; Xia, J.; Song, C.; Wang, Y.-P. Simulating the land carbon sink: Progresses and challenges of terrestrial ecosystem models. Agric. For. Meteorol. 2024, 358, 110264. [Google Scholar] [CrossRef]
- Qin, Z.; Zhu, Y.; Canadell, J.G.; Chen, M.; Li, T.; Mishra, U.; Yuan, W. Global spatially explicit carbon emissions from land-use change over the past six decades (1961–2020). One Earth 2024, 7, 835–847. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Chen, K.; Chen, Y. Progress and Hotspots of Research on Land-Use Carbon Emissions: A Global Perspective. Sustainability 2023, 15, 7245. [Google Scholar] [CrossRef]
- Jia, L. China’s Large-Scale Afforestation Captured 400 m Tons of CO2 Annually over Past 40 Years: Report. 2023. Available online: https://english.cas.cn/newsroom/cas_media/202307/t20230726_333927.shtml (accessed on 15 July 2025).
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Ritchie, H. Carbon Emissions from Deforestation: Are They Driven by Domestic Demand or International Trade? 2021. Available online: https://ourworldindata.org/carbon-deforestation-trade (accessed on 15 July 2025).
- Sasmito, S.D.; Taillardat, P.; Adinugroho, W.C.; Krisnawati, H.; Novita, N.; Fatoyinbo, L.; Friess, D.A.; Page, S.E.; Lovelock, C.E.; Murdiyarso, D.; et al. Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration. Nat. Commun. 2025, 16, 740. [Google Scholar] [CrossRef]
- Luqman, M.; Rayner, P.J.; Gurney, K.R. On the impact of urbanisation on CO2 emissions. NPJ Urban Sustain. 2023, 3, 6. [Google Scholar] [CrossRef]
- Yazdi, S.K.; Dariani, A.G. CO2 emissions, urbanisation and economic growth: Evidence from Asian countries. Econ. Res. Istraz. 2019, 32, 510–530. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, Y.; Liu, M.; Gao, Y.; Gu, T. Assessing land urbanization and ecological planning impact on carbon stock and its economic value from coupled InVEST-PLUS models. Sci. Rep. 2025, 15, 30494. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Aldegheishem, A. The relationship between urbanization, energy consumption, economic growth, and carbon dioxide emissions in middle eastern countries: Saudi Arabia, Jordan and Egypt. Environ. Res. Commun. 2024, 6, 065011. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Grote, U.; Neubacher, F.; Rahut, D.B.; Do, M.H.; Paudel, G.P. Security risks from climate change and environmental degradation: Implications for sustainable land use transformation in the Global South. Curr. Opin. Environ. Sustain. 2023, 63, 101322. [Google Scholar] [CrossRef]
- Tuan, N.T. Urbanization and land use change: A study in Vietnam. Environ. Socio-Econ. Stud. 2022, 10, 19–29. [Google Scholar] [CrossRef]
- Niu, X.; Hu, Y.; Lei, Z.; Yan, H.; Ye, J.; Wang, H. Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Cover in Vietnam from 2000 to 2020. Land 2022, 11, 920. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K.; Peng, Z.; Zou, T.; Su, D.; Sun, R.; Ma, J. Land use and land cover classification and terrestrial ecosystem carbon storage changes in Vietnam based on Sentinel images. Sci. Rep. 2025, 15, 22114. [Google Scholar] [CrossRef] [PubMed]
- Avitabile, V.; Schultz, M.; Herold, N.; de Bruin, S.; Pratihast, A.K.; Manh, C.P.; Quang, H.V.; Herold, M. Carbon emissions from land cover change in Central Vietnam. Carbon Manag. 2016, 7, 333–346. [Google Scholar] [CrossRef]
- Jamilah, M.; Becker, A.; Lee, S.L.; Quiros, T.A.L.; Chee, S.Y.; Evans, C.; Tan, Y.Y.; Ti, L.L.; Pishal, I.; Then, A.Y.H. Socioeconomic impacts linked to land use and land use changes affecting blue carbon ecosystems in Southeast Asia: A systematic map. Ocean Coast. Manag. 2025, 267, 107643. [Google Scholar] [CrossRef]
- Le, P. Chỉ Chiếm 9% Diện Tích Nhưng 1 Vùng Đóng Góp 1/3 GDP và Hơn 44% Nguồn Thu Ngân Sách Cả Nước. 2024. Available online: https://cafef.vn/chi-chiem-9-dien-tich-nhung-1-vung-dong-gop-1-3-gdp-va-hon-44-nguon-thu-ngan-sach-ca-nuoc-188240812094639636.chn (accessed on 15 July 2025).
- Tuan, N.T.; Hegedűs, G.; Phuong, N.T.T. Urbanization and forecast possibilities of land use changes by 2050: New evidence in Ho Chi Minh city, Vietnam. Open Agric. 2025, 10, 20250421. [Google Scholar] [CrossRef]
- Zhi, L.; Abdullahi, U.; Zhang, Q.; Wang, X.; Li, X. Dynamics of Ecosystem Services Driven by Land Use Change Under Natural and Anthropogenic Driving Trajectories in the Kaduna River Basin, Nigeria. Land 2025, 14, 706. [Google Scholar] [CrossRef]
- Ngo, D.; Nguyen, H.; Nguyen, K.; Dang, C.; Nguyen, H.; Dang, N.; Pham, T. Application of multispectral UAV to estimate mangrove biomass in Vietnam: A case study in Dong Rui commune, Quang Ninh Province. One Ecosyst. 2023, 8, e103760. [Google Scholar] [CrossRef]



| Code | Land Use Type | Cabove (t/ha) | Cbelow (t/ha) | Csoil (t/ha) | Cdead (t/ha) |
|---|---|---|---|---|---|
| 1 | Built-up land | 0 | 0 | 7 | 0 |
| 2 | Agricultural land | 20 | 8.5 | 50.23 | 13.95 |
| 3 | Grass land | 17.31 | 4.07 | 23.6 | 13.95 |
| 4 | Bare land | 0 | 1 | 17.7 | 0 |
| 5 | Forests | 118.19 | 27.77 | 93.62 | 9.62 |
| 6 | Wetland | 10 | 23.4 | 19.8 | 0 |
| 7 | Open Water | 0 | 0 | 0 | 0 |
| Driving Process | Land Use Change | Driving Process Properties |
|---|---|---|
| Urbanization | 2, 3, 4, 5, 6–1 | Anthropogenic |
| Succession | 4–3, 5, 6, 7; 3–5, 6, 7; 5–6, 7; 7–5, 6 | Natural |
| Restoration | 2–3, 4, 5, 6, 7; 1–2, 3, 4, 5, 6, 7 | Natural and Anthropogenic |
| Reverse succession | 3, 5–4; 5–3, 6; 6–3, 4; 7–3, 4 | Natural |
| Reclamation | 3, 4, 5, 6, 7–2 | Anthropogenic |
| Categories | 1990 (Million Tons) | ||||
| C_above | C_below | C_soil | C_dead | C | |
| Dong Nai | 117.38 | 28.88 | 103.85 | 13.35 | 263.47 |
| HCM city | 37.26 | 10.95 | 39.82 | 6.17 | 94.20 |
| Tay Ninh | 43.56 | 12.69 | 51.94 | 9.48 | 117.67 |
| Total | 198.20 | 52.51 | 195.62 | 29.00 | 475.34 |
| 2000 (Million Tons) | |||||
| Dong Nai | 123.86 | 30.08 | 106.20 | 12.88 | 273.01 |
| HCM city | 45.12 | 12.45 | 43.43 | 6.03 | 107.04 |
| Tay Ninh | 43.82 | 12.68 | 52.56 | 9.87 | 118.93 |
| Total | 212.80 | 55.20 | 202.19 | 28.78 | 498.97 |
| 2010 (Million Tons) | |||||
| Dong Nai | 128.80 | 30.99 | 107.75 | 12.33 | 279.86 |
| HCM city | 46.08 | 12.51 | 42.49 | 5.31 | 106.38 |
| Tay Ninh | 42.63 | 12.42 | 51.59 | 9.60 | 116.23 |
| Total | 217.50 | 55.92 | 201.82 | 27.24 | 502.48 |
| 2020 (Million Tons) | |||||
| Dong Nai | 112.20 | 27.69 | 99.59 | 12.74 | 252.22 |
| HCM city | 40.09 | 11.38 | 38.87 | 5.11 | 95.46 |
| Tay Ninh | 41.91 | 12.33 | 50.98 | 9.50 | 114.72 |
| Total | 194.19 | 51.41 | 189.45 | 27.36 | 462.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuan, N.T. Longitudinal Assessment of Land Use Change Impacts on Carbon Services in the Southeast Region, Vietnam. Geographies 2025, 5, 62. https://doi.org/10.3390/geographies5040062
Tuan NT. Longitudinal Assessment of Land Use Change Impacts on Carbon Services in the Southeast Region, Vietnam. Geographies. 2025; 5(4):62. https://doi.org/10.3390/geographies5040062
Chicago/Turabian StyleTuan, Nguyen Tran. 2025. "Longitudinal Assessment of Land Use Change Impacts on Carbon Services in the Southeast Region, Vietnam" Geographies 5, no. 4: 62. https://doi.org/10.3390/geographies5040062
APA StyleTuan, N. T. (2025). Longitudinal Assessment of Land Use Change Impacts on Carbon Services in the Southeast Region, Vietnam. Geographies, 5(4), 62. https://doi.org/10.3390/geographies5040062

