The Influence of Running Technique Modifications on Vertical Tibial Load Estimates: A Combined Experimental and Machine Learning Approach in the Context of Medial Tibial Stress Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Sample Size Calculation
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Primary Outcomes
3.1.1. Speed
3.1.2. Cadence
3.1.3. Stride Length
3.1.4. Foot-Strike Pattern
3.2. Secondary Outcomes—Machine Learning Analysis
3.2.1. Impact Peak
3.2.2. Vertical Average Loading Rate
3.2.3. Vertical Instantaneous Loading Rate
3.2.4. Vertical Impulse
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Carroll, D.D.; Watson, K.B.; Paul, P.; Carlson, S.A.; Fulton, J.E. Participation in Types of Physical Activities Among US Adults—National Health and Nutrition Examination Survey 1999–2006. J. Phys. Act. Health 2015, 12 (Suppl. S1), S128–S140. [Google Scholar] [CrossRef] [PubMed]
- Scheerder, J.; Breedveld, K.; Borgers, J. Running Across Europe: The Rise and Size of One of the Largest Sport Markets; Palgrave Macmillan: London, UK, 2015; pp. 1–268. [Google Scholar]
- Lee, D.C.; Brellenthin, A.G.; Thompson, P.D.; Sui, X.; Lee, I.M.; Lavie, C.J. Running as a Key Lifestyle Medicine for Longevity. Prog. Cardiovasc. Dis. 2017, 60, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Hespanhol Junior, L.C.; Pillay, J.D.; van Mechelen, W.; Verhagen, E. Meta-Analyses of the Effects of Habitual Running on Indices of Health in Physically Inactive Adults. Sports Med. 2015, 45, 1455–1468. [Google Scholar] [CrossRef]
- Fields, K.B.; Sykes, J.C.; Walker, K.M.; Jackson, J.C. Prevention of Running Injuries. Curr. Sports Med. Rep. 2010, 9, 176–182. [Google Scholar] [CrossRef]
- Hreljac, A. Impact and overuse injuries in runners. Med. Sci. Sports Exerc. 2004, 36, 845–849. [Google Scholar] [CrossRef]
- Kakouris, N.; Yener, N.; Fong, D.T.P. A systematic review of running-related musculoskeletal injuries in runners. J. Sport Health Sci. 2021, 10, 513–522. [Google Scholar] [CrossRef]
- Deshmukh, N.S.; Phansopkar, P. Medial Tibial Stress Syndrome: A Review Article. Cureus 2022, 14, e26641. [Google Scholar] [CrossRef]
- Moen, M.H.; Tol, J.L.; Weir, A.; Steunebrink, M.; De Winter, T.C. Medial tibial stress syndrome: A critical review. Sports Med. 2009, 39, 523–546. [Google Scholar] [CrossRef]
- Galbraith, R.M.; Lavallee, M.E. Medial tibial stress syndrome: Conservative treatment options. Curr. Rev. Musculoskelet. Med. 2009, 2, 127–133. [Google Scholar] [CrossRef]
- Franklyn, M.; Oakes, B. Aetiology and mechanisms of injury in medial tibial stress syndrome: Current and future developments. World J. Orthop. 2015, 6, 577–589. [Google Scholar] [CrossRef]
- Menéndez, C.; Batalla, L.; Prieto, A.; Rodríguez, M.; Crespo, I.; Olmedillas, H. Medial Tibial Stress Syndrome in Novice and Recreational Runners: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 7457. [Google Scholar] [CrossRef] [PubMed]
- Winters, M.; Eskes, M.; Weir, A.; Moen, M.H.; Backx, F.J.; Bakker, E.W. Treatment of Medial Tibial Stress Syndrome: A Systematic Review. Sports Med. 2013, 43, 1315–1333. [Google Scholar] [CrossRef] [PubMed]
- Moen, M.H.; Holtslag, L.; Bakker, E.; Barten, C.; Weir, A.; Tol, J.L.; Backx, F. The treatment of medial tibial stress syndrome in athletes; a randomized clinical trial. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2012, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Newman, P.; Witchalls, J.; Waddington, G.; Adams, R. Risk factors associated with medial tibial stress syndrome in runners: A systematic review and meta-analysis. Open Access J. Sports Med. 2013, 4, 229–241. [Google Scholar] [CrossRef]
- Shaw, A.; Newman, P.; Witchalls, J.; Hedger, T. Externally validated machine learning algorithm accurately predicts medial tibial stress syndrome in military trainees: A multicohort study. BMJ Open Sport Exerc. Med. 2023, 9, e001566. [Google Scholar] [CrossRef]
- Sheerin, K.R.; Reid, D.; Besier, T.F. The measurement of tibial acceleration in runners—A review of the factors that can affect tibial acceleration during running and evidence-based guidelines for its use. Gait Posture 2019, 67, 12–24. [Google Scholar] [CrossRef]
- Burr, D.B.; Milgrom, C.; Fyhrie, D.; Forwood, M.; Nyska, M.; Finestone, A.; Hoshaw, S.; Saiag, E.; Simkin, A. In vivo measurement of human tibial strains during vigorous activity. Bone 1996, 18, 405–410. [Google Scholar] [CrossRef]
- Zandbergen, M.A.; Ter Wengel, X.J.; van Middelaar, R.P.; Buurke, J.H.; Veltink, P.H.; Reenalda, J. Peak tibial acceleration should not be used as indicator of tibial bone loading during running. Sports Biomech. 2023, 16, 1–18. [Google Scholar] [CrossRef]
- Scott, R.; James, R.; Barnett, C.T.; Sale, C.; Varley, I. Perspectives from research and practice: A survey on external load monitoring and bone in sport. Front. Sports Act. Living 2023, 5, 1150052. [Google Scholar] [CrossRef]
- Milner, C.E.; Ferber, R.; Pollard, C.D.; Hamill, J.; Davis, I.S. Biomechanical factors associated with tibial stress fracture in female runners. Med. Sci. Sports Exerc. 2006, 38, 323–328. [Google Scholar]
- Haider, I.T.; Lee, M.; Page, R.; Smith, D.; Edwards, W.B. Mechanical fatigue of whole rabbit-tibiae under combined compression-torsional loading is better explained by strained volume than peak strain magnitude. J. Biomech. 2021, 122, 110434. [Google Scholar] [CrossRef]
- Napier, C.; Maclean, C.L.; Maurer, J.; Taunton, J.E.; Hunt, M.A. Kinetic risk factors of running-related injuries in female recreational runners. Scand. J. Med. Sci. Sports 2018, 28, 2164–2172. [Google Scholar] [CrossRef] [PubMed]
- Meardon, S.A.; Derrick, T.R.; Willson, J.D.; Baggaley, M.; Steinbaker, C.R.; Marshall, M.; Willy, R.W. Peak and Per-Step Tibial Bone Stress During Walking and Running in Female and Male Recreational Runners. Am. J. Sports Med. 2021, 49, 2227–2237. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; van Rengs, L.; Meijer, K. Per-step and cumulative load at three common running injury locations: The effect of speed, surface gradient, and cadence. Scand. J. Med. Sci. Sports 2024, 34, e14570. [Google Scholar] [CrossRef]
- Greenhalgh, A.; Sinclair, J.; Protheroe, L.; Chockalingam, N. Predicting impact shock magnitude: Which ground reaction force variable should we use. Int. J. Sports Sci. Eng. 2012, 6, 225–231. [Google Scholar]
- Hennig, E.M.; Lafortune, M.A. Relationships between ground reaction force and tibial bone acceleration parameters. J. Appl. Biomech. 1991, 7, 303–309. [Google Scholar]
- Tenforde, A.S.; Hayano, T.; Jamison, S.T.; Outerleys, J.; Davis, I.S. Tibial Acceleration Measured from Wearable Sensors Is Associated with Loading Rates in Injured Runners. PM&R 2020, 12, 679–684. [Google Scholar] [CrossRef]
- Pohl, M.B.; Mullineaux, D.R.; Milner, C.E.; Hamill, J.; Davis, I.S. Biomechanical predictors of retrospective tibial stress fractures in runners. J. Biomech. 2008, 41, 1160–1165. [Google Scholar]
- Bach, M.M.; Dominici, N.; Daffertshofer, A. Predicting vertical ground reaction forces from 3D accelerometry using reservoir computers leads to accurate gait event detection. Front. Sports Act. Living 2022, 4, 1037438. [Google Scholar] [CrossRef]
- Kiernan, D.; Ng, B.; Hawkins, D.A. Acceleration-Based Estimation of Vertical Ground Reaction Forces during Running: A Comparison of Methods across Running Speeds, Surfaces, and Foot Strike Patterns. Sensors 2023, 23, 8719. [Google Scholar] [CrossRef]
- Scheltinga, B.L.; Kok, J.N.; Buurke, J.H.; Reenalda, J. Estimating 3D ground reaction forces in running using three inertial measurement units. Front. Sports Act. Living 2023, 5, 1176466. [Google Scholar] [CrossRef] [PubMed]
- Ohmi, T.; Aizawa, J.; Hirohata, K.; Ohji, S.; Mitomo, S.; Ohara, T.; Yagishita, K. Biomechanical characteristics of the lower extremities during running in male long-distance runners with a history of medial tibial stress syndrome: A case control study. BMC Musculoskelet. Disord. 2023, 24, 103. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, W.; Linschoten, C.; Beutler, A. Gait retraining as part of the treatment programme for soldiers with exercise-related leg pain: Preliminary clinical experiences and retention. S. Afr. J. Sports Med. 2017, 29, 1–6. [Google Scholar] [CrossRef]
- Diebal, A.R.; Gregory, R.; Alitz, C.; Gerber, J.P. Forefoot running improves pain and disability associated with chronic exertional compartment syndrome. Am. J. Sports Med. 2012, 40, 1060–1067. [Google Scholar] [CrossRef]
- Yates, B.; White, S. The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am. J. Sports Med. 2004, 32, 772–780. [Google Scholar] [CrossRef]
- Giandolini, M.; Horvais, N.; Rossi, J.; Millet, G.Y.; Samozino, P.; Morin, J.-B. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running. J. Biomech. 2016, 49, 1765–1771. [Google Scholar] [CrossRef]
- Chan, Z.Y.S.; Zhang, J.H.; Ferber, R.; Shum, G.; Cheung, R.T.H. The effects of midfoot strike gait retraining on impact loading and joint stiffness. Phys. Ther. Sport 2020, 42, 139–145. [Google Scholar] [CrossRef]
- Gaudette, L.W.; Bradach, M.M.; de Souza Junior, J.R.; Heiderscheit, B.; Johnson, C.D.; Posilkin, J.; Rauh, M.J.; Sara, L.K.; Wasserman, L.; Hollander, K.; et al. Clinical Application of Gait Retraining in the Injured Runner. J. Clin. Med. 2022, 11, 6497. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Hunter, J.G.; Garcia, G.L.; Shim, J.K.; Miller, R.H. Fast Running Does Not Contribute More to Cumulative Load than Slow Running. Med. Sci. Sports Exerc. 2019, 51, 1178–1185. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Z.; Dai, B.; Fu, W. Effects of 12-week cadence retraining on impact peak, load rates and lower extremity biomechanics in running. PeerJ 2020, 8, e9813. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bates, B.; Osternig, L.; Sawhill, J.; James, S. An assessment of subject variability, subject-shoe interaction, and the evaluation of running shoes using ground reaction force data. J. Biomech. 1983, 16, 181–191. [Google Scholar] [PubMed]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Derie, R.; Robberechts, P.; Van den Berghe, P.; Gerlo, J.; De Clercq, D.; Segers, V.; Davis, J. Tibial Acceleration-Based Prediction of Maximal Vertical Loading Rate During Overground Running: A Machine Learning Approach. Front. Bioeng. Biotechnol. 2020, 8, 33. [Google Scholar] [CrossRef]
- Sheerin, K.R.; Besier, T.F.; Reid, D. The influence of running velocity on resultant tibial acceleration in runners. Sports Biomech. 2020, 19, 750–760. [Google Scholar] [CrossRef]
- Keast, A.; Bonacci, J.; Fox, A. Acute effects of gait interventions on tibial accelerations during treadmill running. J. Sci. Med. Sport 2022, 25, S63–S64. [Google Scholar] [CrossRef]
- Yong, J.R.; Silder, A.; Montgomery, K.L.; Fredericson, M.; Delp, S.L. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures. J. Biomech. 2018, 76, 1–7. [Google Scholar] [CrossRef]
- Willy, R.W.; Buchenic, L.; Rogacki, K.; Ackerman, J.; Schmidt, A.; Willson, J.D. In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture. Scand. J. Med. Sci. Sports 2016, 26, 197–205. [Google Scholar] [CrossRef]
- Hunter, J.P.; Marshall, R.N.; McNair, P.J. Interaction of step length and step rate during sprint running. Med. Sci. Sports Exerc. 2004, 36, 261–271. [Google Scholar]
- Derrick, T.R.; Hamill, J.; Caldwell, G.E. Energy absorption of impacts during running at various stride lengths. Med. Sci. Sports Exerc. 1998, 30, 128–135. [Google Scholar]
- Gruber, A.H.; Boyer, K.A.; Derrick, T.R.; Hamill, J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J. Sport Health Sci. 2014, 3, 113–121. [Google Scholar] [CrossRef]
- Ruder, M.; Jamison, S.T.; Tenforde, A.; Mulloy, F.; Davis, I.S. Relationship of Foot Strike Pattern and Landing Impacts during a Marathon. Med. Sci. Sports Exerc. 2019, 51, 2073–2079. [Google Scholar] [CrossRef] [PubMed]
- Boyer, E.R.; Derrick, T.R. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths. J. Sports Sci. 2018, 36, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Nordin, A.D.; Dufek, J.S.; Mercer, J.A. Three-dimensional impact kinetics with foot-strike manipulations during running. J. Sport Health Sci. 2017, 6, 489–497. [Google Scholar] [CrossRef]
- Ahn, A.N.; Brayton, C.; Bhatia, T.; Martin, P. Muscle activity and kinematics of forefoot and rearfoot strike runners. J. Sport Health Sci. 2014, 3, 102–112. [Google Scholar] [CrossRef]
- Molloy, J.M. Factors Influencing Running-Related Musculoskeletal Injury Risk Among U.S. Military Recruits. Mil. Med. 2016, 181, 512–523. [Google Scholar] [CrossRef]
- Daoud, A.I.; Geissler, G.J.; Wang, F.; Saretsky, J.; Daoud, Y.A.; Lieberman, D.E. Foot strike and injury rates in endurance runners: A retrospective study. Med. Sci. Sports Exerc. 2012, 44, 1325–1334. [Google Scholar] [CrossRef]
- Goulet, M.-A.; Cousineau, D. The Power of Replicated Measures to Increase Statistical Power. Adv. Meth. Pract. Psychol. Sci. 2019, 2, 199–213. [Google Scholar] [CrossRef]
- Kasmer, M.E.; Liu, X.-C.; Roberts, K.G.; Valadao, J.M. Foot-Strike Pattern and Performance in a Marathon. Int. J. Sports Physiol. Perform. 2013, 8, 286–292. [Google Scholar] [CrossRef]
- Hayes, P.; Caplan, N. Foot strike patterns and ground contact times during high-calibre middle-distance races. J. Sports Sci. 2012, 30, 1275–1283. [Google Scholar] [CrossRef]
- Edwards, B.; Taylor, D.; Rudolphi, T.J.; Gillette, J.C.; Derrick, T.R. Effects of running speed on a probabilistic stress fracture model. Clin. Biomech. 2010, 25, 372–377. [Google Scholar] [CrossRef]
- Edwards, W.B.; Taylor, D.; Rudolphi, T.J.; Gillette, J.C.; Derrick, T.R. Effects of stride length and running mileage on a probabilistic stress fracture model. Med. Sci. Sports Exerc. 2009, 41, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Firminger, C.R.; Vernillo, G.; Savoldelli, A.; Stefanyshyn, D.J.; Millet, G.Y.; Edwards, W.B. Joint kinematics and ground reaction forces in overground versus treadmill graded running. Gait Posture 2018, 63, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Gottschall, J.S.; Kram, R. Ground reaction forces during downhill and uphill running. J. Biomech. 2005, 38, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Chan, Z.Y.S.; Au, I.P.H.; An, W.W.; Cheung, R.T.H. Can runners maintain a newly learned gait pattern outside a laboratory environment following gait retraining? Gait Posture 2019, 69, 8–12. [Google Scholar] [CrossRef]
Mean | SD | |
---|---|---|
Age (years) | 21.69 | 1.62 |
Height (m) | 1.74 | 0.08 |
Mass (kg) | 70.75 | 10.32 |
Number of running activities > 15 min weekly | 3.25 | 1.13 |
Months at current load | 25.38 | 26.04 |
Average running distance per week (km) | 16.25 | 8.19 |
Average running duration per week (min) | 153.75 | 89.14 |
Model | MSE | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|---|
kNN | 0.080 | 0.282 | 0.193 | 0.135 | 0.564 |
Gradient Boosting | 0.072 | 0.268 | 0.181 | 0.130 | 0.607 |
Random Forest | 0.072 | 0.268 | 0.181 | 0.130 | 0.608 |
AdaBoost | 0.072 | 0.268 | 0.188 | 0.132 | 0.608 |
Model | MSE | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|---|
kNN | 0.000 | 0.021 | 0.015 | 0.112 | 0.816 |
Gradient Boosting | 0.000 | 0.019 | 0.015 | 0.105 | 0.835 |
Random Forest | 0.000 | 0.020 | 0.015 | 0.108 | 0.828 |
AdaBoost | 0.000 | 0.020 | 0.015 | 0.109 | 0.824 |
Model | MSE | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|---|
kNN | 0.001 | 0.028 | 0.021 | 0.124 | 0.769 |
Gradient Boosting | 0.001 | 0.026 | 0.020 | 0.118 | 0.794 |
Random Forest | 0.001 | 0.027 | 0.021 | 0.119 | 0.790 |
AdaBoost | 0.001 | 0.027 | 0.021 | 0.121 | 0.784 |
Model | MSE | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|---|
kNN | 51.273 | 7.161 | 5.004 | 0.033 | 0.722 |
Gradient Boosting | 48.477 | 6.963 | 4.910 | 0.033 | 0.737 |
Random Forest | 49.045 | 7.003 | 4.926 | 0.033 | 0.734 |
AdaBoost | 53.427 | 7.309 | 5.181 | 0.034 | 0.711 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miners, T.; Witchalls, J.; Bousie, J.A.; Radcliffe, C.R.; Newman, P. The Influence of Running Technique Modifications on Vertical Tibial Load Estimates: A Combined Experimental and Machine Learning Approach in the Context of Medial Tibial Stress Syndrome. Biomechanics 2025, 5, 22. https://doi.org/10.3390/biomechanics5020022
Miners T, Witchalls J, Bousie JA, Radcliffe CR, Newman P. The Influence of Running Technique Modifications on Vertical Tibial Load Estimates: A Combined Experimental and Machine Learning Approach in the Context of Medial Tibial Stress Syndrome. Biomechanics. 2025; 5(2):22. https://doi.org/10.3390/biomechanics5020022
Chicago/Turabian StyleMiners, Taylor, Jeremy Witchalls, Jaquelin A. Bousie, Ceridwen R. Radcliffe, and Phillip Newman. 2025. "The Influence of Running Technique Modifications on Vertical Tibial Load Estimates: A Combined Experimental and Machine Learning Approach in the Context of Medial Tibial Stress Syndrome" Biomechanics 5, no. 2: 22. https://doi.org/10.3390/biomechanics5020022
APA StyleMiners, T., Witchalls, J., Bousie, J. A., Radcliffe, C. R., & Newman, P. (2025). The Influence of Running Technique Modifications on Vertical Tibial Load Estimates: A Combined Experimental and Machine Learning Approach in the Context of Medial Tibial Stress Syndrome. Biomechanics, 5(2), 22. https://doi.org/10.3390/biomechanics5020022