Prolonged Load Carriage Impacts Magnitude and Velocity of Knee Adduction Biomechanics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Load Configurations
2.3. Prolonged Walk Task
2.4. Biomechanical Collection and Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cross, J.D.; Ficke, J.R.; Hsu, J.R.; Masini, B.D.; Wenke, J.C. Battlefield Orthopaedic Injuries Cause the Majority of Long-term Disabilities. Am. Acad. Orthop. Surg. 2011, 19, S1–S7. [Google Scholar] [CrossRef]
- Cameron, K.L.; Hsiao, M.S.; Owens, B.D.; Burks, R.; Svoboda, S.J. Incidence of physician-diagnosed osteoarthritis among active duty United States military service members. Arthritis Rheum. 2011, 63, 2974–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, J.C.; Wenke, J.C.; Buckwalter, J.A.; Ficke, J.R.; Johnson, A.E. Posttraumatic Osteoarthritis Caused by Battlefield Injuries. J. Am. Acad. Orthop. Surg. 2012, 20, S64–S69. [Google Scholar] [CrossRef] [Green Version]
- Showery, J.E.; Kusnezov, N.A.; Dunn, J.C.; Bader, J.O.; Belmont, P.J.; Waterman, B.R. The Rising Incidence of Degenerative and Posttraumatic Osteoarthritis of the Knee in the United States Military. J. Arthroplast. 2016, 31, 2108–2114. [Google Scholar] [CrossRef]
- Andersen, K.A.; Grimshaw, P.N.; Kelso, R.M.; Bentley, D.J. Musculoskeletal Lower Limb Injury Risk in Army Populations. Sports Med.-Open 2016, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Orr, R.M.; Johnston, V.; Coyle, J.; Pope, R. Reported load carriage injuries of the Australian army soldier. J. Occup. Rehabil. 2015, 25, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidstone, D.E.; Stewart, J.A.; Gurchiek, R.; Needle, A.R.; van Werkhoven, H.; McBride, J.M. Physiological and Biomechanical Responses to Prolonged Heavy Load Carriage During Level Treadmill Walking in Females. J. Appl. Biomech. 2017, 33, 248–255. [Google Scholar] [CrossRef]
- Seay, J.F.; Fellin, R.E.; Sauer, S.G.; Frykman, P.N.; Bensel, C.K. Lower extremity biomechanical changes associated with symmetrical torso loading during simulated marching. Mil. Med. 2014, 179, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silder, A.; Besier, T.; Delp, S.L. Running with a load increases leg stiffness. J. Biomech. 2015, 48, 1003–1008. [Google Scholar] [CrossRef]
- Majumdar, D.; Pal, M.S.; Majumdar, D. Effects of military load carriage on kinematics of gait. Ergonomics 2010, 53, 782–791. [Google Scholar] [CrossRef]
- Chu, M.L.; Yazdani-Ardakani, S.; Gradisar, I.A.; Askew, M.J. An in vitro simulation study of impulsive force transmission along the lower skeletal extremity. J. Biomech. 1986, 19, 979–987. [Google Scholar] [CrossRef]
- Brown, T.; O’Donovan, M.; Hasselquist, L.; Corner, B.; Schiffman, J. Body borne loads impact walk-to-run and running biomechanics. Gait Posture 2014, 40, 237–242. [Google Scholar] [CrossRef]
- Drew, M.D.; Krammer, S.M.; Brown, T.N. Effects of prolonged walking with body borne load on knee adduction biomechanics. Gait Posture 2021, 84, 192–197. [Google Scholar] [CrossRef]
- Knapik, J.J.; Reynolds, K.L.; Harman, E. Soldier load carriage: Historical, physiological, biomechanical, and medical aspects. Mil. Med. 2004, 169, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.R.; McWalter, E.J.; Johnston, J.D. The Measurement of Joint Mechanics and their Role in Osteoarthritis Genesis and Progression. Rheum. Dis. Clin. N. Am. 2008, 34, 605–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, A.H.; Chmiel, J.S.; Moisio, K.C.; Almagor, O.; Zhang, Y.; Cahue, S.; Sharma, L. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1668–1673. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudian, A.; van Dieen, J.H.; Bruijn, S.M.; Baert, I.A.; Faber, G.S.; Luyten, F.P.; Verschueren, S.M. Varus thrust in women with early medial knee osteoarthritis and its relation with the external knee adduction moment. Clin. Biomech. 2016, 39, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Hayes, K.; Dunlop, D.; Hurwitz, D.; Song, J.; Cahue, S.; Genge, R.; Sharma, L. Thrust during ambulation and the progression of knee osteoarthritis. Arthritis Rheum. 2004, 50, 3897–3903. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Wada, M.; Kawahara, H.; Sato, M.; Baba, H.; Shimada, S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 2002, 61, 617–622. [Google Scholar] [CrossRef]
- Stickley, C.D.; Presuto, M.M.; Radzak, K.N.; Bourbeau, C.M.; Hetzler, R.K. Dynamic Varus and the Development of Iliotibial Band Syndrome. J. Athl. Train. 2018, 53, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Frame, J.; Ozimek, E.; Leib, D.; Dugan, E.L. Influence of Fatigue and Load Carriage on Mechanical Loading during Walking. Mil. Med. 2012, 177, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, C.E.; Ferber, R.; Pollard, C.D.; Hamill, J.; Davis, I.S. Biomechanical Factors Associated with Tibial Stress Fracture in Female Runners. Med. Sci. Sports Exerc. 2006, 38, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Simpson, K.M.; Munro, B.J.; Steele, J.R. Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers. Ergonomics 2012, 55, 316–326. [Google Scholar] [CrossRef]
- Espinosa, S.E.; Costello, K.E.; Souza, R.B.; Kumar, D. Lower knee extensor and flexor strength is associated with varus thrust in people with knee osteoarthritis. J. Biomech. 2020, 107, 109865. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, G.M.; Van Tol, A.W.; Bergink, A.P.; Belo, J.N.; Bernsen, R.M.D.; Reijman, M.; Pols, H.A.P.; Bierma-Zeinstra, S.M.A. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 2007, 56, 1204–1211. [Google Scholar] [CrossRef]
- Kuroyanagi, Y.; Nagura, T.; Kiriyama, Y.; Matsumoto, H.; Otani, T.; Toyama, Y.; Suda, Y. A quantitative assessment of varus thrust in patients with medial knee osteoarthritis. Knee 2012, 19, 130–134. [Google Scholar] [CrossRef]
- Department of the Army. Field Manual No. 21-18: Foot Marches; Department of the Army: Washington, DC, USA, 1990. [Google Scholar]
- Van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Der Sanden, M.W.G.N.-V.; Van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [Green Version]
- Lobb, N.J.; Fain, A.L.C.; Seymore, K.D.; Brown, T.N. Sex and stride length impact leg stiffness and ground reaction forces when running with body borne load. J. Biomech. 2019, 86, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the Knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Dempster, W.T. Space Requirements of the Seated Operator, Geometrical, Kinematic, and Mechanical Aspects of the Body with Special Reference to the Limbs; Michigan State University East Lansing: East Lansing, MI, USA, 1955. [Google Scholar]
- Mizner, R.L.; Chmielewski, T.L.; Toepke, J.J.; Tofte, K.B. Comparison of 2-Dimensional Measurement Techniques for Predicting Knee Angle and Moment During a Drop Vertical Jump. Clin. J. Sport Med. 2012, 22, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Inc.: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Keren, G.; Lewis, C. Partial Omega Squared for Anova Designs. Educ. Psychol. Meas. 1979, 39, 119–128. [Google Scholar] [CrossRef]
- Chang, A.; Hochberg, M.; Song, J.; Dunlop, D.; Chmiel, J.S.; Nevitt, M.; Hayes, K.; Eaton, C.; Bathon, J.; Jackson, R.; et al. Frequency of varus and valgus thrust and factors associated with thrust presence in persons with or at higher risk of developing knee osteoarthritis. Arthritis Rheum. 2010, 62, 1403–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schipplein, O.D.; Andriacchi, T.P. Interaction between active and passive knee stabilizers during level walking. J. Orthop. Res. 1991, 9, 113–119. [Google Scholar] [CrossRef]
- Earp, J.E.; Newton, R.U.; Cormie, P.; Blazevich, A.J. Faster movement speed results in greater tendon strain during the loaded squat exercise. Front. Physiol. 2016, 7, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noyes, F.R.; Delucas, J.L.; Torvik, P.J. Biomechanics of Anterior Cruciate Ligament Failure. J. Bone Jt. Surg. 1974, 56, 236–253. [Google Scholar] [CrossRef]
- Hamill, J.; Miller, R.; Noehren, B.; Davis, I. A prospective study of iliotibial band strain in runners. Clin. Biomech. 2008, 23, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.N.; Kaplan, J.T.; Cameron, S.E.; Seymore, K.D.; Ramsay, J.W. Individuals with varus thrust do not increase knee adduction when running with body borne load. J. Biomech. 2018, 69, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Loverro, K.L.; Hasselquist, L.; Lewis, C.L. Females and males use different hip and knee mechanics in response to symmetric military-relevant loads. J. Biomech. 2019, 95, 109280. [Google Scholar] [CrossRef]
- Foroughi, N.; Smith, R.; Vanwanseele, B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: A systematic review. Knee 2009, 16, 303–309. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Ullah, S. Relationship Between Running Loads and Soft-Tissue Injury in Elite Team Sport Athletes. J. Strength Cond. Res. 2012, 26, 953–960. [Google Scholar] [CrossRef]
- Mullins, A.K.; Annett, L.E.; Drain, J.R.; Kemp, J.G.; Clark, R.A.; Whyte, D.G. Lower limb kinematics and physiological responses to prolonged load carriage in untrained individuals. Ergonomics. 2015, 58, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Blacker, S.D.; Fallowfield, J.L.; Bilzon, J.L.J.; Willems, M.E.T. Neuromuscular function following prolonged load carriage on level and downhill gradients. Aviat. Space Environ. Med. 2010, 81, 745–753. [Google Scholar] [CrossRef]
- Sharma, L.; Song, J.; Dunlop, D.; Felson, D.; Lewis, C.E.; Segal, N.; Torner, J.; Cooke, T.D.V.; Hietpas, J.; Lynch, J.; et al. Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann. Rheum. Dis. 2010, 69, 1940–1945. [Google Scholar] [CrossRef]
- Vanwanseele, B.; Parker, D.; Coolican, M. Frontal Knee Alignment: Three-dimensional Marker Positions and Clinical Assessment. Clin. Orthop. Relat. Res. 2009, 467, 504–509. [Google Scholar] [CrossRef] [Green Version]
N | Age | Height (m) | Weight (kg) | |
---|---|---|---|---|
VT | 8 | 23 ± 1.9 | 1.79 ± 0.1 | 73.1 ± 14.5 |
CON | 9 | 23 ± 4.1 | 1.73 ± 0.1 | 69.3 ± 9.6 |
Marker Placement | |
---|---|
Trunk | xiphoid process, clavicular notch, c7 vertebrae, bottom of the scapula, right and left acromion process |
Pelvis | anterior-superior iliac spines, posterior-superior iliac spines, iliac crests |
Thigh | greater trochanter, lateral epicondyles, medial epicondyles, distal thigh |
Shank | tibial tuberosity, lateral fibula, distal tibia, lateral malleoli, medial malleoli |
Foot | first metatarsal head, fifth metatarsal head, heel, midpoint of first and fifth metatarsals |
Varus Thrust | 0 Kg | 15 Kg | 30 Kg | ||||
---|---|---|---|---|---|---|---|
VT | CON | VT | CON | VT | CON | ||
Magnitude (deg) a,c,d | Min. 0 | 3.63 ± 0.28 | 1.29 ± 0.29 | 3.20 ± 0.43 | 1.77 ± 0.46 | 2.62 ± 0.46 | 2.28 ± 0.49 |
Min. 30 | 3.93 ± 0.27 | 1.59 ± 0.29 | 3.61 ± 0.48 | 1.74 ± 0.51 | 2.93 ± 0.51 | 2.74 ± 0.55 | |
Min. 60 | 3.83 v 0.31 | 1.64 ± 0.33 | 3.94 ± 0.48 | 1.69 ± 0.51 | 2.42 ± 0.45 | 2.93 ± 0.48 | |
Average Velocity (deg/s) a,c,d | Min. 0 | 25.76 ± 1.99 | 9.98 ± 2.11 | 23.55 ± 2.99 | 12.81 ± 3.18 | 19.37 ± 3.06 | 15.74 ± 3.25 |
Min. 30 | 28.43 ± 1.77 | 11.37 ± 1.87 | 25.21 ± 3.23 | 12.08 ± 3.43 | 21.09 ± 3.42 | 18.34 ± 3.62 | |
Min. 60 | 28.07 ± 2.21 | 11.31 ± 2.34 | 28.01 ± 3.11 | 11.61 ± 3.30 | 18.91 ± 3.17 | 21.13 ± 3.37 | |
Maximum Velocity (deg/s) b,c,d | Min. 0 | 63.31 ± 4.02 | 32.57 ± 4.27 | 61.54 ± 7.11 | 37.30 ± 7.54 | 55.65 ± 7.87 | 44.79 ± 8.34 |
Min. 30 | 65.93 ± 5.69 | 37.45 ± 6.03 | 64.82 ± 8.35 | 39.04 ± 8.85 | 65.89 ± 10.48 | 53.68 ± 11.11 | |
Min. 60 | 67.24 ± 7.22 | 40.26 ±7.66 | 69.06 ± 7.78 | 40.99 ± 8.25 | 53.06 ± 8.51 | 64.42 ± 9.02 |
Knee Adduction Angle | 0 Kg | 15 Kg | 30 Kg | ||||
---|---|---|---|---|---|---|---|
VT | CON | VT | CON | VT | CON | ||
Magnitude (deg) b | Min. 0 | 4.78 ± 0.36 | 2.36 ± 0.38 | 4.95 ± 0.41 | 3.34 ± 0.43 | 4.84 ± 0.59 | 3.72 ± 0.63 |
Min. 30 | 5.15 ± 0.33 | 2.59 ± 0.35 | 5.35 ± 0.48 | 3.07 ± 0.50 | 5.08 ± 0.62 | 4.26 ± 0.66 | |
Min. 60 | 5.09 ± 0.34 | 2.90 ± 0.37 | 5.28 ± 0.44 | 3.17 ± 0.47 | 3.83 ± 0.49 | 4.42 ± 0.52 | |
Average Velocity (deg/s) c | Min. 0 | 26.39 ± 3.43 | 10.17 ± 3.64 | 22.94 ± 3.79 | 10.81 ± 4.02 | 18.69 ± 2.69 | 10.83 ± 2.86 |
Min. 30 | 28.51 ± 2.50 | 12.35 ± 2.66 | 22.93 ± 4.35 | 10.96 ± 4.61 | 20.79 ± 3.45 | 13.431 ± 3.66 | |
Min. 60 | 29.29 ± 3.59 | 13.52 ± 3.81 | 24.67 ± 3.08 | 10.47 ± 3.27 | 15.25 ± 2.83 | 17.61 ± 3.00 | |
Maximum Velocity (deg/s) b,c | Min. 0 | 64.14 ± 4.10 | 35.66 ± 4.35 | 64.79 ± 6.78 | 40.67 ± 7.18 | 59.03 ± 8.58 | 49.18 ± 9.09 |
Min. 30 | 66.46 ± 5.64 | 38.23 ± 5.99 | 68.86 ± 7.62 | 43.04 ± 8.09 | 70.84 ± 11.50 | 54.47 ± 12.20 | |
Min. 60 | 68.15 ± 6.78 | 41.67 ± 7.75 | 70.03 ± 7.11 | 45.06 ± 7.54 | 59.52 ± 8.62 | 64.42 ± 9.14 | |
Time to peak (s) a,c | Min. 0 | 0.24 ± 0.05 | 0.29 ± 0.05 | 0.30 ± 0.06 | 0.42 ± 0.07 | 0.33 ± 0.07 | 0.42 ± 0.02 |
Min. 30 | 0.21 ± 0.04 | 0.29 ± 0.04 | 0.34 ± 0.07 | 0.39 ± 0.07 | 0.34 ± 0.07 | 0.39 ± 0.07 | |
Min. 60 | 0.20 ± 0.04 | 0.27 ± 0.04 | 0.30 ± 0.06 | 0.43 ± 0.07 | 0.43 ± 0.07 | 0.30 ± 0.07 |
Knee Adduction Moment | 0 kg | 15 kg | 30 kg | ||||
---|---|---|---|---|---|---|---|
VT | CON | VT | CON | VT | CON | ||
Magnitude (Nm/kgm) a | Min. 0 | −0.37 ± 0.03 | −0.37 ± 0.03 | −0.43 ± 0.03 | −0.43 ± 0.03 | −0.47 ± 0.06 | −0.48 ± 0.07 |
Min. 30 | −0.39 ± 0.03 | −0.37 ± 0.03 | −0.45 ± 0.03 | −0.42 ± 0.03 | −0.53 ± 0.05 | −0.47 ± 0.06 | |
Min. 60 | −0.38 ± 0.03 | −0.37 ± 0.03 | −0.43 ± 0.04 | −0.43 ± 0.04 | −0.46 ± 0.07 | −0.47 ± 0.07 | |
Average Velocity (Nm/kgm/s) | Min. 0 | −2.03 ± 0.38 | −2.15 ± 0.40 | −2.45 ± 0.39 | −2.15 ± 0.41 | −2.52 ± 0.56 | −2.41 ± 0.59 |
Min. 30 | −2.08 ± 0.39 | −1.90 ± 0.42 | −2.44 ± 0.43 | −1.91 ± 0.46 | −3.20 ± 0.51 | −2.29 ± 0.54 | |
Min. 60 | −2.13 ± 0.37 | −2.17 ± 0.39 | −2.15 ± 0.38 | −2.15 ± 0.41 | −2.44 ± 0.48 | −2.35 ± 0.51 | |
Maximum Velocity (Nm/kgm/s) a | Min. 0 | −5.89 ± 0.44 | −6.00 ± 0.47 | −6.79 ± 0.61 | −6.24 ± 0.65 | −6.89 ± 0.89 | −6.97 ± 0.95 |
Min. 30 | −5.87 ± 0.52 | −5.83 ± 0.55 | −6.91 ± 0.58 | −6.40 ± 0.62 | −8.68 ± 0.87 | −7.19 ± 0.92 | |
Min. 60 | −6.05 ± 0.51 | −5.75 ± 0.54 | −6.56 ± 0.52 | −6.65 ± 0.54 | −6.81 ± 0.90 | −7.78 ± 0.96 | |
Time to peak (s) | Min. 0 | 0.27 ± 0.06 | 0.23 ± 0.06 | 0.23 ± 0.06 | 0.28 ± 0.06 | 0.29 ± 0.06 | 0.29 ± 0.07 |
Min. 30 | 0.27 ± 0.06 | 0.27 ± 0.06 | 0.26 ± 0.06 | 0.31 ± 0.07 | 0.23 ± 0.05 | 0.28 ± 0.06 | |
Min. 60 | 0.26 ± 0.05 | 0.20 ± 0.06 | 0.28 ± 0.05 | 0.28 ± 0.06 | 0.22 ± 0.05 | 0.26 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salverda, G.J.; Drew, M.D.; Krammer, S.M.; Brown, T.N. Prolonged Load Carriage Impacts Magnitude and Velocity of Knee Adduction Biomechanics. Biomechanics 2021, 1, 346-357. https://doi.org/10.3390/biomechanics1030029
Salverda GJ, Drew MD, Krammer SM, Brown TN. Prolonged Load Carriage Impacts Magnitude and Velocity of Knee Adduction Biomechanics. Biomechanics. 2021; 1(3):346-357. https://doi.org/10.3390/biomechanics1030029
Chicago/Turabian StyleSalverda, Gaervyn J., Micah D. Drew, Samantha M. Krammer, and Tyler N. Brown. 2021. "Prolonged Load Carriage Impacts Magnitude and Velocity of Knee Adduction Biomechanics" Biomechanics 1, no. 3: 346-357. https://doi.org/10.3390/biomechanics1030029
APA StyleSalverda, G. J., Drew, M. D., Krammer, S. M., & Brown, T. N. (2021). Prolonged Load Carriage Impacts Magnitude and Velocity of Knee Adduction Biomechanics. Biomechanics, 1(3), 346-357. https://doi.org/10.3390/biomechanics1030029