Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
3. Results
3.1. Thermal and Structural Characterization of CB and CB-Modified Membranes
3.2. Morphology Evaluation
3.3. Electrical Characterization of the Electrodes
3.4. TENG Evaluation Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Shao, Y.; Luo, C.; Li, Y.; Ma, H.; Zhang, Y.; Yin, B.; Shen, J.; Yang, M. Bacterial Cellulose Nanofiber Triboelectric Nanogenerator Based on Dielectric Particles Hybridized System. Compos. Part A Appl. Sci. Manuf. 2021, 151, 106646. [Google Scholar] [CrossRef]
- Park, S.; Vosguerichian, M.; Bao, Z. A Review of Fabrication and Applications of Carbon Nanotube Film-Based Flexible Electronics. Nanoscale 2013, 5, 1727–1752. [Google Scholar] [CrossRef] [PubMed]
- Jakmuangpak, S.; Prada, T.; Mongkolthanaruk, W.; Harnchana, V.; Pinitsoontorn, S. Engineering Bacterial Cellulose Films by Nanocomposite Approach and Surface Modification for Biocompatible Triboelectric Nanogenerator. ACS Appl. Electron. Mater. 2020, 2, 2498–2506. [Google Scholar] [CrossRef]
- Wang, X.; Tao, Y.; Pan, S.; Fang, X.; Lou, C.; Xu, Y.; Wu, J.; Sang, M.; Lu, L.; Gong, X.; et al. Biocompatible and Breathable Healthcare Electronics with Sensing Performances and Photothermal Antibacterial Effect for Motion-Detecting. NPJ Flex. Electron. 2022, 6, 95. [Google Scholar] [CrossRef]
- Choi, S.M.; Rao, K.M.; Zo, S.M.; Shin, E.J.; Han, S.S. Bacterial Cellulose and Its Applications. Polymers 2022, 14, 1080. [Google Scholar] [CrossRef] [PubMed]
- Candido, I.C.M.; Oliveira, G.d.S.; Ribeiro, S.J.L.; Cavicchioli, M.; Barud, H.S.; Silva, L.G.; de Oliveira, H.P. PVA-Silk Fibroin Bio-Based Triboelectric Nanogenerator. Nano Energy 2023, 105, 108035. [Google Scholar] [CrossRef]
- Candido, I.C.M.; Piovesan, L.F.; Freire, A.L.; Fotius, J.A.A.; de Lima, J.J.I.; Barud, H.S.; de Oliveira, H.P. Biodegradable Hyaluronic Acid-Based Triboelectric Nanogenerator as Self-Powered Temperature Sensor. Mater. Today Commun. 2023, 36, 106855. [Google Scholar] [CrossRef]
- Candido, I.C.M.; Oliveira, G.d.S.; Lima, R.M.A.P.; de Lima, J.J.I.; de Oliveira, H.P. All-Silicone Rubber Triboelectric Nanogenerators with Graphite-Impregnated Electrodes. ACS Appl. Eng. Mater. 2023, 1, 1069–1078. [Google Scholar] [CrossRef]
- Zhang, S.; Chi, M.; Mo, J.; Liu, T.; Liu, Y.; Fu, Q.; Wang, J.; Luo, B.; Qin, Y.; Wang, S.; et al. Bioinspired Asymmetric Amphiphilic Surface for Triboelectric Enhanced Efficient Water Harvesting. Nat. Commun. 2022, 13, 4168. [Google Scholar] [CrossRef]
- Qin, Y.; Mo, J.; Liu, Y.; Zhang, S.; Wang, J.; Fu, Q.; Wang, S.; Nie, S. Stretchable Triboelectric Self-Powered Sweat Sensor Fabricated from Self-Healing Nanocellulose Hydrogels. Adv. Funct. Mater. 2022, 32, 2201846. [Google Scholar] [CrossRef]
- Lu, D.; Liu, T.; Meng, X.; Luo, B.; Yuan, J.; Liu, Y.; Zhang, S.; Cai, C.; Gao, C.; Wang, J.; et al. Wearable Triboelectric Visual Sensors for Tactile Perception. Adv. Mater. 2023, 35, e2209117. [Google Scholar] [CrossRef] [PubMed]
- Athirah Raihana Nor Aziz Hashim, N.; Zakaria, J.; Mohamad, S.; Fathiyah Sy Mohamad, S.; Rahim, M.H.A. Effect of Different Treatment Methods on the Purification of Bacterial Cellulose Produced from OPF Juice by Acetobacter Xylinum. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 012058. [Google Scholar] [CrossRef]
- Mule, A.R.; Dudem, B.; Patnam, H.; Graham, S.A.; Yu, J.S. Wearable Single-Electrode-Mode Triboelectric Nanogenerator via Conductive Polymer-Coated Textiles for Self-Power Electronics. ACS Sustain. Chem. Eng. 2019, 7, 16450–16458. [Google Scholar] [CrossRef]
- Fooladi, S.; Nematollahi, M.H.; Rabiee, N.; Iravani, S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2023, 9, 2949–2969. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Deng, Y.; Wei, Q. Research Progress of the Biosynthetic Strains and Pathways of Bacterial Cellulose. J. Ind. Microbiol. Biotechnol. 2022, 49, kuab071. [Google Scholar] [CrossRef]
- Luo, C.; Shao, Y.; Yu, H.; Ma, H.; Zhang, Y.; Yin, B.; Yang, M. Improving the Output Performance of Bacterial Cellulose-Based Triboelectric Nanogenerators by Modulating the Surface Potential in a Simple Method. ACS Sustain. Chem. Eng. 2022, 10, 13050–13058. [Google Scholar] [CrossRef]
- Lin, S.-P.; Loira Calvar, I.; Catchmark, J.M.; Liu, J.-R.; Demirci, A.; Cheng, K.-C. Biosynthesis, Production and Applications of Bacterial Cellulose. Cellulose 2013, 20, 2191–2219. [Google Scholar] [CrossRef]
- Zhang, R.; Dahlström, C.; Zou, H.; Jonzon, J.; Hummelgård, M.; Örtegren, J.; Blomquist, N.; Yang, Y.; Andersson, H.; Olsen, M.; et al. Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m−2. Adv. Mater. 2020, 32, 2002824. [Google Scholar] [CrossRef]
- Shao, Y.; Feng, C.; Deng, B.; Yin, B.; Yang, M. Facile Method to Enhance Output Performance of Bacterial Cellulose Nanofiber Based Triboelectric Nanogenerator by Controlling Micro-Nano Structure and Dielectric Constant. Nano Energy 2019, 62, 620–627. [Google Scholar] [CrossRef]
- Boonchai, N.; Mongkolthanaruk, W.; Harnchana, V.; Faungnawakij, K.; Pinitsoontorn, S. Chemical Functionalization of Bacterial Cellulose Film for Enhancing Output Performance of Bio-Triboelectric Nanogenerator. Biointerface Res. Appl. Chem. 2021, 12, 1587–1600. [Google Scholar]
- Hwang, H.; Lee, K.Y.; Shin, D.; Shin, J.; Kim, S.; Choi, W. Metal-Free, Flexible Triboelectric Generator Based on MWCNT Mesh Film and PDMS Layers. Appl. Surf. Sci. 2018, 442, 693–699. [Google Scholar] [CrossRef]
- Burmistrov, I.; Gorshkov, N.; Ilinykh, I.; Muratov, D.; Kolesnikov, E.; Anshin, S.; Mazov, I.; Issi, J.-P.; Kusnezov, D. Improvement of Carbon Black Based Polymer Composite Electrical Conductivity with Additions of MWCNT. Compos. Sci. Technol. 2016, 129, 79–85. [Google Scholar] [CrossRef]
- Mallineni, S.S.K.; Behlow, H.; Podila, R.; Rao, A.M. A Low-Cost Approach for Measuring Electrical Load Currents in Triboelectric Nanogenerators. Nanotechnol. Rev. 2018, 7, 149–156. [Google Scholar] [CrossRef]
- Yang, M.; Ward, J.; Choy, K. Nature-Inspired Bacterial Cellulose/Methylglyoxal (BC/MGO) Nanocomposite for Broad-Spectrum Antimicrobial Wound Dressing. Macromol. Biosci. 2020, 20, 2000070. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.N.; Pahalagedara, L.; Joshi, A.; Suib, S.L.; Mhadeshwar, A.B. Experimental Study of Carbon Black and Diesel Engine Soot Oxidation Kinetics Using Thermogravimetric Analysis. Energy Fuels 2012, 26, 5613–5625. [Google Scholar] [CrossRef]
- Barud, H.S.; Souza, J.L.; Santos, D.B.; Crespi, M.S.; Ribeiro, C.A.; Messaddeq, Y.; Ribeiro, S.J.L. Bacterial Cellulose/Poly(3-Hydroxybutyrate) Composite Membranes. Carbohydr. Polym. 2011, 83, 1279–1284. [Google Scholar] [CrossRef]
- Lima, L.R.; Conte, G.V.; Brandão, L.R.; Sábio, R.M.; de Menezes, A.S.; Resende, F.A.; Caiut, J.M.A.; Ribeiro, S.J.L.; Otoni, C.G.; Alcântara, A.C.S.; et al. Fabrication of Noncytotoxic Functional Siloxane-Coated Bacterial Cellulose Nanocrystals. ACS Appl. Polym. Mater. 2022, 4, 2306–2313. [Google Scholar] [CrossRef]
- Gomes, R.J.; Ida, E.I.; Spinosa, W.A. Nutritional Supplementation with Amino Acids on Bacterial Cellulose Production by Komagataeibacter Intermedius: Effect Analysis and Application of Response Surface Methodology. Appl. Biochem. Biotechnol. 2022, 194, 5017–5036. [Google Scholar] [CrossRef]
- Wang, S.-S.; Han, Y.-H.; Ye, Y.-X.; Shi, X.-X.; Xiang, P.; Chen, D.-L.; Li, M. Physicochemical Characterization of High-Quality Bacterial Cellulose Produced by Komagataeibacter Sp. Strain W1 and Identification of the Associated Genes in Bacterial Cellulose Production. RSC Adv. 2017, 7, 45145–45155. [Google Scholar] [CrossRef]
- Shim, E.; Silva, C.; Cavaco-Paulo, A.; Kim, H.R. Effects of the Modification of Bacterial Cellulose as a Template for the in Situ Enzyme-Catalyzed Polymerization of Catechol. Text. Res. J. 2023, 93, 3588–3599. [Google Scholar] [CrossRef]
- Gruber, T.; Zerda, T.W.; Gerspacher, M. Raman Studies of Heat-Treated Carbon Blacks. Carbon 1994, 32, 1377–1382. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Blackwell, J. Infrared and Raman Spectroscopy of Cellulose. In Cellulose Chemistry and Technology; American Chemical Society: Washington, DC, USA, 1977; pp. 206–218. [Google Scholar]
- Proniewicz, L.M.; Paluszkiewicz, C.; Wesełucha-Birczyńska, A.; Majcherczyk, H.; Barański, A.; Konieczna, A. FT-IR and FT-Raman Study of Hydrothermally Degradated Cellulose. J. Mol. Struct. 2001, 596, 163–169. [Google Scholar] [CrossRef]
- Satha, H.; Kouadri, I.; Benachour, D. Thermal, Structural and Morphological Studies of Cellulose and Cellulose Nanofibers Extracted from Bitter Watermelon of the Cucurbitaceae Family. J. Polym. Environ. 2020, 28, 1914–1920. [Google Scholar] [CrossRef]
- Stanisławska, A. Bacterial Nanocellulose as a Microbiological Derived Nanomaterial. Adv. Mater. Sci. 2016, 16, 45–57. [Google Scholar] [CrossRef]
- Yu, K.; Balasubramanian, S.; Pahlavani, H.; Mirzaali, M.J.; Zadpoor, A.A.; Aubin-Tam, M.-E. Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness. ACS Appl. Mater. Interfaces 2020, 12, 50748–50755. [Google Scholar] [CrossRef]
- Petersen, N.; Gatenholm, P. Bacterial Cellulose-Based Materials and Medical Devices: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2011, 91, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-J.; Kim, M.S.; Ahn, D.; Yeo, S.Y.; Lee, S. Electrical Percolation Threshold of Carbon Black in a Polymer Matrix and Its Application to Antistatic Fibre. Sci. Rep. 2019, 9, 6338. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Yim, E.-C.; Kim, J.-H.; Kim, S.-J.; Park, J.-Y.; Oh, I.-K. Bacterial Nano-Cellulose Triboelectric Nanogenerator. Nano Energy 2017, 33, 130–137. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, S.; Shi, Z.; Wang, Y.; Lei, Y.; Han, J.; Xiong, Y.; Sun, J.; Zheng, L.; Sun, Q.; et al. Eco-Friendly and Recyclable All Cellulose Triboelectric Nanogenerator and Self-Powered Interactive Interface. Nano Energy 2021, 89, 106354. [Google Scholar] [CrossRef]
- Huang, J.; Hao, Y.; Zhao, M.; Qiao, H.; Huang, F.; Li, D.; Wei, Q. Biomass-Based Wearable and Self-Powered Pressure Sensor for Human Motion Detection. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106412. [Google Scholar] [CrossRef]
- Fatma, B.; Andrabi, S.M.; Gupta, S.; Verma, V.; Kumar, A.; Pitsalidis, C.; Garg, A. Biocompatible, Breathable and Degradable Microbial Cellulose Based Triboelectric Nanogenerator for Wearable Transient Electronics. Nano Energy 2023, 114, 108628. [Google Scholar] [CrossRef]
- Li, M.; Jie, Y.; Shao, L.H.; Guo, Y.; Cao, X.; Wang, N.; Wang, Z.L. All-in-One Cellulose Based Hybrid Tribo/Piezoelectric Nanogenerator. Nano Res. 2019, 12, 1831–1835. [Google Scholar] [CrossRef]
- Hu, S.; Han, J.; Shi, Z.; Chen, K.; Xu, N.; Wang, Y.; Zheng, R.; Tao, Y.; Sun, Q.; Wang, Z.L.; et al. Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator. Nano-Micro Lett. 2022, 14, 115. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
IR (cm−1) | Raman (cm−1) | Assignments |
---|---|---|
3340 | 3339 | νs (O–H) |
2900 | 2896 | νs (C–H) |
1640 | - | ν (C=C) |
- | 1481 | δ (C–O–H) |
1425 | 1460 | δ (CH) |
- | 1411 | δ (C–O–H) and (C–C–H) |
- | 1380 | δ (CH) |
1320 | 1339 | δ (CH2) and (C–O–H) |
- | 1293 | δ (CC) |
1160 | 1152 | νas (C–O–C) |
1110 | 1122 | δ (C–O–H) |
- | 1098 | νs (C–C) and δ (C–O–H), δ (C–C–H) |
1050 | 1061 | δ (C–C–H) |
1030 | 1036 | δ (C–O–H) |
BC-Based Active Layer | Electrode | Configuration | Voltage | Current | Power | Ref. |
---|---|---|---|---|---|---|
BC | Cu | Vertical contact–separation | 13 V | 3 μA | 4.8 mW/m2 | [40] |
Silver nanowires and BaTiO3 in BC | Cu | Vertical contact–separation | 87 V | 7.1 μA | 75 μW/cm 2 | [1] |
Dip-coated hydroxyethyl cellulose | Cu | Vertical contact–separation | 76.6 V | 8.68 μA | 290.7 μW | [16] |
BC | BC/CNT/PPy | Single electrode | 29 V | 0.6 μA | 3 μW | [41] |
BC/ZnO | ITO | Single electrode | 57.6 V | 5.78 μA | 42 mW/m2 | [3] |
BaTiO3-doped BC | Cu | Vertical contact–separation | 181 V | 21 μA | 4.8 W/m2 | [19] |
Bacterial cellulose/chitosan | Cu | Vertical contact–separation | 23 V | 500 nA | 3.3 mW/m2 | [42] |
Polydopamine-coated bacterial cellulose | MWCNT/BC | Single electrode | 1010 V | - | 8.7 W/m2 | [43] |
Nitrocellulose/BaTiO3/MWCNT | Cu | Vertical contact–separation | 37 V | 1.23 μA | 10.6 μW/cm2 | [44] |
Nylon | BC/CNT/PPy | Single electrode | 170 V | 7.5 μA | 352 μW | [45] |
Polylactic acid | BC/carbon black | Single electrode | 102.3 V | 2 μA | 48.9 mW/m2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freire, A.L.; Lima, L.R.; Candido, I.C.M.; Silva, L.G.; Ribeiro, S.J.L.; Carrilho, E.; Oliveira, T.L.; de Oliveira, L.F.C.; Barud, H.S.; de Oliveira, H.P. Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black. Nanoenergy Adv. 2024, 4, 110-121. https://doi.org/10.3390/nanoenergyadv4010006
Freire AL, Lima LR, Candido ICM, Silva LG, Ribeiro SJL, Carrilho E, Oliveira TL, de Oliveira LFC, Barud HS, de Oliveira HP. Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black. Nanoenergy Advances. 2024; 4(1):110-121. https://doi.org/10.3390/nanoenergyadv4010006
Chicago/Turabian StyleFreire, Andre L., Lais R. Lima, Iuri C. M. Candido, Luygui G. Silva, Sidney J. L. Ribeiro, Emanuel Carrilho, Thais L. Oliveira, Luiz Fernando C. de Oliveira, Hernane S. Barud, and Helinando P. de Oliveira. 2024. "Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black" Nanoenergy Advances 4, no. 1: 110-121. https://doi.org/10.3390/nanoenergyadv4010006
APA StyleFreire, A. L., Lima, L. R., Candido, I. C. M., Silva, L. G., Ribeiro, S. J. L., Carrilho, E., Oliveira, T. L., de Oliveira, L. F. C., Barud, H. S., & de Oliveira, H. P. (2024). Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black. Nanoenergy Advances, 4(1), 110-121. https://doi.org/10.3390/nanoenergyadv4010006