A Review of Fluid Energy Converters Based on Triboelectric Nanogenerators: Performance Analysis from Energy Conversion
Abstract
:1. Introduction
2. Basic Working Mode of FEC-TENGs
2.1. Basic Theory of TENGs
2.2. Basic Working Modes of FEC-TENGs
2.3. Material Selection of FEC-TENGs
2.4. Summary of the Working Modes of the FEC-TENGs
3. Theoretical Analysis and Application Examples in the Energy Transfer Process of FEC-TENGs
4. Structural Design and Performance Evaluation of FEC-TENGs
4.1. FEC-TENGs Based on CS Mode for Collecting Single-Direction Water Energy
4.2. FEC-TENGs Based on CS Mode for Collecting Omnidirectional Water Energy
4.3. FEC-TENGs Based on FT Mode for Collecting Water Energy
4.4. Structure and Performance of FEC-TENGs for Collecting Wind Energy
Devices | Basic Output Performance | Energy Source | Stability | Encapsulation State | Networking | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Working Mode | QSC (μC) | ISC | VOC (V) | fmin | Effective Volume or Area | Matching Impedance | Peak Power Density | Average Power Density | |||||
Hybrid nanogenerator [59] | CS | 0.55 | 41.3 μA (1.25 Hz) | 567 | 0.25 Hz | 400 cm2 | 60 MΩ | 0.5625 W m−2 Hz−1 | No | Water | 100% (800 k) | Non-encapsulated | No |
NPU-TENG [95] | LS | 0.8 | 18 μA (1 Hz) | 384 | 1 Hz | 432 cm3 | 5 MΩ | 1.97 W m−3 Hz−1 | No | Water | 93.83% (45 k) | Non-encapsulated | Yes |
B-TENG [99] | CS | 1.45 | 75.35 μA (1.25 Hz) | 707 | 1 Hz | 1936 cm3 | 15 MΩ | No | 7.65 W m−3 Hz−1 | Water | No | Encapsulated | No |
HW-NG [58] | CS | No | 28 μA (2 Hz) | 580 | 0.5 Hz | 41.95 cm2 | 10 MΩ | 0.273 W m−2 Hz−1 | No | Water | 100% (130 k) | Encapsulated | Yes |
OB-TENG [100] | CS | 26 | 450 μA (1.15 Hz) | 650 | 0.2 Hz | 4000 cm3 | 13 MΩ | 9.675 W m−3 Hz−1 | 0.863 W m−3 Hz−1 | Water | No | Encapsulated | No |
BCHNG [101] | CS | 2.2 | 700 μA (2 Hz) | 900 | 1 m s−2 | 400 cm3 | 1 MΩ | 196 W m−3 | 5.7 W m−3 | Water | 80% (250 k) | Encapsulated | No |
MH-TENG [102] | CS | 2.9 | 200.3 µA (1 Hz) | 268 | 0.6 Hz | 690 cm3 | 1 MΩ | 23.2 W m−2 Hz−1 | No | Water | 97.1% (36 k) | Encapsulated | Yes |
WF-TENG [103] | CS | 1.2 | 85 μA (1.4 Hz) | 450 | 0.8 Hz | 519 cm3 | 10 MΩ | 8.86 W m−3 Hz−1 | 0.386 W m−3 Hz−1 | Water | No | Encapsulated | Yes |
AR-TENG [37] | CS | 0.7 | 122 μA (2 m s−2) | 66 | 1 m s−2 | 2722 cm3 | 5 MΩ | 4.59 W m−3 | No | Water | No | Encapsulated | No |
IPM-TENG [36] | CS | 0.6 | 15 μA (1 Hz) | 150 | 0.5 Hz | 268 cm3 | 5 MΩ | 75 W m−3 Hz−1 | 3.15 W m−3 Hz−1 | Water | No | Encapsulated | No |
BBW-TENG [104] | FT | 0.32 | 3.5 μA (1 Hz) | 410 | 0.1 Hz | 2144 cm3 | 200 MΩ | 0.32 W m−3 Hz−1 | No | Water | 100% (45 days) | Encapsulated | No |
A hexagonal TENG [105] | CS | No | 270 μA (1 Hz) | 354 | 0.5 Hz | 3660 cm3 | 1.2 MΩ | 3.33 W m−3 Hz−1 | No | Water | No | Encapsulated | Yes |
Spherical TENG [78] | CS | No | 200 μA (1 Hz) | 250 | 0.5 Hz | 1767.2 cm3 | 1 MΩ | 4.81 W m−3 Hz−1 | No | Water | No | Encapsulated | No |
Spherical TENG with CEMs [35] | CS | No | 15.1 mA (1.2 Hz) | 16 | 0.7 Hz | 4188.8 cm3 | 680 kΩ | 4.93 W m−3 Hz−1 | 0.05 W m−3 Hz−1 | Water | No | Encapsulated | No |
TD-TENG [40] | FT | 3.3 | 675 μA (0.58 Hz) | 335 | 0.25 Hz | 7500 cm3 | No | 7.89 W m−3 Hz−1 | 2.24 W m−3 Hz−1 | Water | No | Encapsulated | Yes |
EC-TENG [80] | CS & FT | 0.022 | 2 μA (1 Hz) | 63 | 0.25 Hz | 278.23 cm3 | 48 MΩ | 0.323 W m−3 Hz−1 | No | Water | No | Encapsulated | Yes |
EANG [43] | FT | 0.086 | 27.7 μA (33.3 Hz) | 270 | 1.67 Hz | 56.55 cm3 | 4 MΩ | 0.558 W m−3 Hz−1 | No | Water & wind | 100% (50 k) | Encapsulated | No |
WLM-TENG [110] | FT | 1.1 | 20 µA (1 Hz) | 3000 | 0.25 Hz | 35.5 cm2 | 200 MΩ | 14.1 W m−3 Hz−1 | 0.842 W m−3 Hz−1 | Water | No | Non-encapsulated | No |
T-TENG [111] | FT | 0.24 | 8.5 μA (1.6 Hz) | ~580 | 0.6 Hz | No | No | 6.625 W m−3 Hz−1 | No | Water | No | Encapsulated | Yes |
ES-TENG [44] | FT | 0.027 | 0.74 μA | 75.6 | 0.138 Hz | 603.19 cm3 | 100 MΩ | 0.046 W m−3 | No | Water & wind | 97.24% (2000 k) | Encapsulated | Yes |
GS-TENG [41] | FT | 0.15 | 3.2 μA (6 m s−2) | 730 | 2 m s−2 | 2140 cm3 | No | 0.28 W m−3 | No | Water | 92% (30 days) | Encapsulated | Yes |
CEMA-TENG [112] | FT | 0.796 | 47 μA (7 Hz) | 240 | 1 Hz | 127.55 cm2 | 30 MΩ | 21.28 W m−2 | No | Water | 94% (72 k) | Non-encapsulated | No |
FIV-TENG [38] | CS | 0.122 | 8.3 μA (7.8 m s−1) | ~292 | 2.9 m s−1 | 72 cm2 | 44 MΩ | 0.181 W m−2 (7.8 m s−1) | No | Wind | No | Non-encapsulated | Yes |
CAF-TENG [118] | CS | 4700 (1 s) | 36,000 μA (1.5 mL s−1) | 508 | 1.5 mL s−1 | 25.1 cm3 | 50 MΩ | No | 26,000 W m−3 | Wind | No | Non-encapsulated | Yes |
CPF-TENG [119] | CS | No | 4.4 A (3.5 m s−1) | 2560 | 2.8 m s−1 | No | 100 MΩ | No | 425 W m−2 | Wind | 100% (810 k) | Non-encapsulated | Yes |
Lawn-structured TENG [120] | CS | No | 12.5 μA (27 m s−1) | 100 | 6 m s−1 | No | 10 MΩ | 2.76 W m−2 (27 m s−1) | No | Wind | No | Non-encapsulated | Yes |
F-TENG [39] | CS | 0.09 | 10 µA (4.3 m s−1) | 199 | 1.8 m s−1 | No | 50 MΩ | 1.35 W m−2 (4.3 m s−1) | No | Wind | 96% (100 k) | Non-encapsulated | Yes |
Multifunctional TENG [7] | FT | 0.275 | 21 µA (200 rpm) | 490 | 10 rpm | 44.18 cm2 | 80 MΩ | No | 0.034 W m−2 (2 Hz) | Water & wind | No | Non-encapsulated | No |
SCR-TENG [91] | FT | 0.342 | 20 µA (6 m s−1) | No | 1 m s−1 | No | 300 MΩ | 2.3 W m−2 (6 m s−1) | No | Wind | No | Non-encapsulated | Yes |
FSS-TENG [42] | FT | 0.4 | 17.6 μA (7 m s−1) | 150 | 3 m s−1 | 23.3 cm2 | 120 MΩ | 7.16 W m−2 (7 m s−1) | No | Wind | 100% (100 k) | Non-encapsulated | No |
LS-TENG [126] | FT | 0.871 | 106 μA (9 m s−1) | 5400 | 1 m s−1 | No | 130 MΩ | 23.9 W m−2 (8 m s−1) | 4.4 W m−2 (8 m s−1) | Wind | 100% (234 k) | Non-encapsulated | No |
5. Summary and Applications of FEC-TENGs
6. Summary and Outlook
- (1)
- Average Power Density Stability, and Reliability of FEC-TENGs. As the energy supply source, the average power density and stability of FEC-TENGs are particularly important. However, most studies only calculate the peak power density and ignore the stability of the devices, which hinders the further improvement of performance. We recommend that researchers standardize the calculation of the average power density and use the average power density as the basic output performance index of FEC-TENGs. Moreover, the stability of various devices should also be included in the scope of the investigation. The author should clarify what measures have been taken to improve the stability and reliability of the device, and test and record the stability and reliability of the device in the natural environment. The device’s tolerance to humidity and temperature should also be systematically tested.
- (2)
- Energy Conversion Efficiency of FEC-TENGs. Although some studies have shown that detailed analysis of the energy conversion process and improving the energy conversion efficiency of FEC-TENGs can effectively improve output performance, most studies do not calculate the energy conversion efficiency. Therefore, we suggest that energy conversion efficiency should be included in the basic performance evaluation of FEC-TENGs, which is a necessary measure to further improve its output performance.
- (3)
- The Fabrication and Management Circuits of the FEC-TENGs. The device structure design should be simple and effective, with a certain theoretical support. A too-complex structure design not only reduces the energy conversion efficiency but also reduces the stability and reliability of FEC-TENGs to a certain extent. Moreover, the research on appropriate management circuits is still relatively lacking. FEC-TENGs have high-voltage and low-current output characteristics. When using FEC-TENGs to power a small electronic network, an appropriate energy management circuit is essential. Although some FEC-TENGs adopt energy management circuits that reduce voltage and increase current, there is still a lack of matching strategies between FEC-TENGs and related management circuits, which hinders the further application of FEC-TENGs. In addition, there is a lack of modular energy management circuits based on FEC-TENGs. In the face of a complex natural environment, non-periodic trigger conditions put forward higher requirements for management circuits.
- (4)
- Combination with Direct-Current TENGs (DC-TENGs). Thanks to the DC output, DC-TENGs are superior to AC-TENGs in terms of energy supply [98]. DC-TENGs can directly supply power to some electronic devices (without a rectifier), further simplifying the energy management circuit [130]. However, in the study based on FEC-TENGs, we rarely found the use of DC-TENGs to collect fluid energy. We believe that the steady DC output of DC-TENGs combined with the ubiquitous fluid energy will be an interesting story.
- (5)
- The Use of Environmentally Friendly and Degradable Materials in FEC-TENGs. Considering that the application scenarios of FEC-TENGs are mostly rivers, lakes, and field environments, we strongly recommend that researchers use environmentally friendly and degradable triboelectric materials and packaging materials to manufacture FEC-TENGs. Environmentally friendly degradable materials can be plant leaves and animal fur. Some excellent triboelectric materials with animals and plants as degradable raw materials will not lead to the gradual degradation of device performance. Moreover, for other environmentally friendly materials, we recommend some degradable materials that can be controlled for degradation for FEC-TENGs. For example, degradation materials such as alginate and rice paper can achieve preliminary controllable degradation [74].
- (6)
- The Commercial Development of FEC-TENGs. Studies have shown that FEC-TENGs can improve the overall energy collection efficiency through a networked mode. However, to commercialize FEC-TENGs, it is far from enough to improve the output performance. Programmable manufacturing, intelligent network connection, unified energy management, and subsequent management of equipment are all urgent problems to be solved in the commercialization process of FEC-TENGs.
- (7)
- Challenges of the Future Applications of FEC-TENGs. Although the application of FEC-TENGs has spread across many fields, we should apply FEC-TENG technology to more fields, such as self-powered underwater detection equipment and high-altitude wind energy collectors. Furthermore, the application environment of FEC-TENGs is mostly the natural environment. For devices used in smart agriculture and self-powered systems, it is necessary to use appropriate back-end devices for energy storage and signal transmission. For harsh outdoor environments, FEC-TENGs must have stronger moisture resistance, heat resistance, sun protection, and corrosion resistance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, Q.; Zhu, Q. A review on flow energy harvesters based on flapping foils. J. Fluid. Struct. 2014, 46, 174–191. [Google Scholar] [CrossRef]
- Stevens, R.J.A.M.; Meneveau, C. Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 2017, 49, 311–339. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Gao, Q.; Bao, G.; Cheng, T.; Wang, Z.L. Triboelectric fluid sensors: Principles, development, and perspectives. Adv. Mater. Technol. 2023, 8, 2201029. [Google Scholar] [CrossRef]
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137. [Google Scholar] [CrossRef]
- Hu, J.; Pu, X.; Yang, H.; Zeng, Q.; Tang, Q.; Zhang, D.; Hu, C.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023. [Google Scholar] [CrossRef]
- Xi, Y.; Guo, H.; Zi, Y.; Li, X.; Wang, J.; Deng, J.; Li, S.; Hu, C.; Cao, X.; Wang, Z.L. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 2017, 7, 1602397. [Google Scholar] [CrossRef]
- Siria, A.; Bocquet, M.-L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 91. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, L.M.; Chen, X.; Han, C.B.; Tang, W.; Zhang, C.; Xu, L.; Wang, Z.L. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 2015, 9, 12562–12572. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Lee, Y.; Lin, Z.-H.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef]
- Kim, W.-G.; Kim, D.-W.; Tcho, I.-W.; Kim, J.-K.; Kim, M.-S.; Choi, Y.-K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, Z.L.; Fukuda, K.; Someya, T. Flexible self-charging power sources. Nat. Rev. Mater. 2022, 7, 870–886. [Google Scholar] [CrossRef]
- Mariello, M.; Guido, F.; Mastronardi, V.M.; Todaro, M.T.; Desmaele, D.; De Vittorio, M. Nanogenerators for harvesting mechanical energy conveyed by liquids. Nano Energy 2019, 57, 141–156. [Google Scholar] [CrossRef]
- Zi, Y.; Guo, H.; Wen, Z.; Yeh, M.-H.; Hu, C.; Wang, Z.L. Harvesting low-frequency (<5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Lee, K.Y.; Kumar, B.; Nguyen Thanh, T.; Lee, N.-E.; Kim, S.-W. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ. Sci. 2013, 6, 169–175. [Google Scholar] [CrossRef]
- Wang, Z.L. On the First principle theory of nanogenerators from maxwell’s equations. Nano Energy 2020, 68, 104272. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Z.L. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020, 2, e12059. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, Q.; Wang, Z.L. The current development and future outlook of triboelectric nanogenerators: A survey of literature. Adv. Mater. Technol. 2019, 4, 1800588. [Google Scholar] [CrossRef]
- Shan, C.; Liu, W.; Wang, Z.; Pu, X.; He, W.; Tang, Q.; Fu, S.; Li, G.; Long, L.; Guo, H.; et al. An inverting TENG to realize the AC mode based on the coupling of triboelectrification and air-breakdown. Energy Environ. Sci. 2021, 14, 5395–5405. [Google Scholar] [CrossRef]
- He, W.; Shan, C.; Wu, H.; Fu, S.; Li, Q.; Li, G.; Zhang, X.; Du, Y.; Wang, J.; Wang, X.; et al. Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv. Energy Mater. 2022, 12, 2201454. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, L.; Wang, Z.L.; Wang, J. Triboelectric nanogenerator: From alternating current to direct current. Iscience 2021, 24, 102018. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; He, W.; Wu, H.; Fu, S.; Tang, Q.; Wang, Z.; Du, Y.; Wang, J.; Guo, H.; Hu, C. A high-performance bidirectional direct current TENG by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 2022, 12, 2200963. [Google Scholar] [CrossRef]
- Shan, C.; Li, K.; Cheng, Y.; Hu, C. Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 2023, 15, 127. [Google Scholar] [CrossRef]
- Hinchet, R.; Yoon, H.-J.; Ryu, H.; Kim, M.-K.; Choi, E.-K.; Kim, D.-S.; Kim, S.-W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 2019, 365, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Jeon, S.; Kim, D.; Lee, D.-M.; Kim, D.; Kim, S.-W. High performance direct current-generating triboelectric nanogenerators based on tribovoltaic p-n junction with ChCl-passivated CsFAMA perovskite. Nano Energy 2023, 106, 108066. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Xia, X.; Zhou, Z.; Shang, Y.; Yang, Y.; Zi, Y. Metallic glass-based triboelectric nanogenerators. Nat. Commun. 2023, 14, 1023. [Google Scholar] [CrossRef]
- Li, Q.; Fu, S.; Li, X.; Chen, H.; He, W.; Yang, Q.; Zhang, X.; Yang, H.; Ren, D.; Xi, Y. Overall performance improvement of direct-current triboelectric nanogenerators by charge leakage and ternary dielectric evaluation. Energy Environ. Sci. 2023, 16, 3414–3525. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A.C.; Xu, C.; et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427. [Google Scholar] [CrossRef]
- Yang, H.; Lai, J.a.; Li, Q.; Zhang, X.; Li, X.; Yang, Q.; Hu, Y.; Xi, Y.; Wang, Z.L. High-sensitive and ultra-wide spectrum multifunctional triboelectric acoustic sensor for broad scenario applications. Nano Energy 2022, 104, 107932. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Yang, H.; He, W.; Long, L.; Wu, M.; Zhang, X.; Xi, Y.; Hu, C.; Wang, Z.L. Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 2021, 90, 106585. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Ren, D.; Yang, H.; Li, X.; Li, Q.; Liu, H.; Hu, C.; He, X.; Xi, Y. Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: An advanced hardware solution to long-distance target detection. Nano Energy 2023, 114, 108614. [Google Scholar] [CrossRef]
- Fu, S.; Wu, H.; He, W.; Li, Q.; Shan, C.; Wang, J.; Du, Y.; Du, S.; Huang, Z.; Hu, C. Conversion of dielectric surface effect into volume effect for high output energy. Adv. Mater. 2023, 35, 2302954. [Google Scholar] [CrossRef]
- Tian, J.; Chen, X.; Wang, Z.L. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 2020, 31, 242001. [Google Scholar] [CrossRef]
- Liang, X.; Liu, S.; Ren, Z.; Jiang, T.; Wang, Z.L. Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv. Funct. Mater. 2022, 32, 2205313. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Ji, P.; Wu, Z.; Li, Q.; Yang, H.; Li, X.; Zheng, G.; Xi, Y.; Wang, Z.L. Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 2022, 99, 107362. [Google Scholar] [CrossRef]
- Zhang, C.G.; He, L.X.; Zhou, L.L.; Yang, O.; Yuan, W.; Wei, X.L.; Liu, Y.B.; Lu, L.; Wang, J.; Wang, Z.L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, Y.; Tang, Q.; Liu, W.; Wu, J.; Zhang, Y.; Yin, G.; Yang, H.; Yuan, S.; Tan, D.; et al. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy 2020, 70, 104524. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Yang, Q.; Yang, H.; Yang, H.; Li, Q.; Li, X.; Hu, C.; Xi, Y.; Wang, Z.L. Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Adv. Funct. Mater. 2021, 31, 2106527. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, L.; He, C.; Zhu, L.; Yang, X.; Jiang, T.; Nie, J.; Zhong, W.; Wang, Z.L. High-performance triboelectric nanogenerators for self-powered, in situ and real-time water quality mapping. Nano Energy 2019, 66, 104117. [Google Scholar] [CrossRef]
- Gao, Q.; Xu, Y.; Yu, X.; Jing, Z.; Cheng, T.; Wang, Z.L. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano 2022, 16, 6781–6788. [Google Scholar] [CrossRef]
- Long, L.; Liu, W.; Wang, Z.; He, W.; Li, G.; Tang, Q.; Guo, H.; Pu, X.; Liu, Y.; Hu, C. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 2021, 12, 4689. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Zhao, H.; Guo, Y.; Rui, P.; Shi, S.; Zhang, W.; Liao, Y.; Wang, P.; Wang, Z.L. An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Adv. Mater. Technol. 2019, 4, 1900741. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, B.; Xie, Y.; Wu, Z.; Yang, J.; Wang, Z.L. Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv. Funct. Mater. 2021, 31, 2105237. [Google Scholar] [CrossRef]
- Yuan, S.; Zeng, Q.; Tan, D.; Luo, Y.; Zhang, X.; Guo, H.; Wang, X.; Wang, Z.L. Scavenging breeze wind energy (1–8.1 m s−1) by minimalist triboelectric nanogenerator based on the wake galloping phenomenon. Nano Energy 2022, 100, 107465. [Google Scholar] [CrossRef]
- Wu, C.S.; Wang, A.C.; Ding, W.B.; Guo, H.Y.; Wang, Z.L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Z.L. Toward a new era of sustainable energy: Advanced triboelectric nanogenerator for harvesting high entropy energy. Small 2022, 18, 2107034. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.L.; Liu, D.; Liu, L.; He, L.X.; Cao, X.; Wang, J.; Wang, Z.L. Recent advances in self-powered electrochemical systems. Research 2021, 2021, 4673028. [Google Scholar] [CrossRef]
- Zhang, Q.; Xin, C.F.; Shen, F.; Gong, Y.; Zi, Y.L.; Guo, H.Y.; Li, Z.J.; Peng, Y.; Zhang, Q.; Wang, Z.L. Human body IoT systems based on the triboelectrification effect: Energy harvesting, sensing, interfacing and communication. Energy Environ. Sci. 2022, 15, 3688–3721. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Bowen, C.; Roscow, J.; Zhang, Y.; Dang, D.K.; Kim, E.J.; Misra, R.D.K.; Deng, L.B.; Chung, J.S.; Hur, S.H. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Phys. Rep. 2019, 792, 1–33. [Google Scholar] [CrossRef]
- Zou, H.Y.; Guo, L.T.; Xue, H.; Zhang, Y.; Shen, X.F.; Liu, X.T.; Wang, P.H.; He, X.; Dai, G.Z.; Jiang, P.; et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 2093. [Google Scholar] [CrossRef]
- Liu, W.L.; Wang, Z.; Hu, C.G. Advanced designs for output improvement of triboelectric nanogenerator system. Mater. Today 2021, 45, 93–119. [Google Scholar] [CrossRef]
- Chen, A.H.; Zhang, C.; Zhu, G.; Wang, Z.L. Polymer materials for high-performance triboelectric nanogenerators. Adv. Sci. 2020, 7, 2000186. [Google Scholar] [CrossRef]
- Cui, X.; Yu, C.; Wang, Z.; Wan, D.; Zhang, H. Triboelectric nanogenerators for harvesting diverse water kinetic energy. Micromachines 2022, 13, 1219. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Ping, J.; Ying, Y. Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces. Nano Energy 2021, 90, 106592. [Google Scholar] [CrossRef]
- Ren, Z.; Wu, L.; Pang, Y.; Zhang, W.; Yang, R. Strategies for effectively harvesting wind energy based on triboelectric nanogenerators. Nano Energy 2022, 100, 107522. [Google Scholar] [CrossRef]
- Mariello, M.; Fachechi, L.; Guido, F.; De Vittorio, M. Multifunctional sub-100 mu m thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-EcoflexTM. Nano Energy 2021, 83, 105811. [Google Scholar] [CrossRef]
- Ren, Z.; Liang, X.; Liu, D.; Li, X.; Ping, J.; Wang, Z.; Wang, Z.L. Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 2021, 11, 2101116. [Google Scholar] [CrossRef]
- Yang, H.; Deng, M.; Tang, Q.; He, W.; Hu, C.; Xi, Y.; Liu, R.; Wang, Z.L. A nonencapsulative pendulum-like paper-based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 2019, 9, 1901149. [Google Scholar] [CrossRef]
- Zeng, Q.; Luo, Y.; Zhang, X.; Tan, L.; Chen, A.; Tang, Q.; Yang, H.; Wang, X. A bistable triboelectric nanogenerator for low-grade thermal energy harvesting and solar thermal energy conversion. Small 2023, 19, 2301952. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Hsiao, Y.-C.; Wu, H.-M.; Wang, Z.L. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv. Sci. 2019, 6, 1801883. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, H.; Liu, Y.; Zhou, X.; Zhang, C.; Song, Y.; Deng, X.; Leung, M.; Yang, Z.; Xu, R.X.; et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.A.M.; Zhang, T.; Wu, H.; Yang, Y. Water droplet-based nanogenerators. Adv. Energy Mater. 2022, 12, 2201383. [Google Scholar] [CrossRef]
- Ye, C.; Liu, D.; Chen, P.; Cao, L.N.Y.; Li, X.; Jiang, T.; Wang, Z.L. An integrated solar panel with a triboelectric nanogenerator array for synergistic harvesting of raindrop and solar energy. Adv. Mater. 2023, 35, 2209713. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Zhang, Z.; Lin, S.; Cao, B.; Wang, L.; Wang, Z.L.; Yin, F. A droplet-based electricity generator for large-scale raindrop energy harvesting. Nano Energy 2022, 100, 107443. [Google Scholar] [CrossRef]
- Dong, J.; Zhu, L.; Guo, P.; Xu, C.; Zhao, X.; Yang, S.; He, X.; Zhou, G.; Ma, G.; Guo, H.; et al. A bio-inspired total current nanogenerator. Energy Environ. Sci. 2023, 16, 1071–1081. [Google Scholar] [CrossRef]
- Dong, J.; Fan, F.R.; Tian, Z.-Q. Droplet-based nanogenerators for energy harvesting and self-powered sensing. Nanoscale 2021, 13, 17290–17309. [Google Scholar] [CrossRef]
- Cheedarala, R.K.; Shahriar, M.; Ahn, J.H.; Hwang, J.Y.; Ahn, K.K. Harvesting liquid stream energy from unsteady peristaltic flow induced pulsatile Flow-TENG (PF-TENG) using slipping polymeric surface inside elastomeric tubing. Nano Energy 2019, 65, 104017. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, L.; Guo, H.; Chen, C.; Wu, C.; Zhang, S.; Wang, Z.L. Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing. Adv. Mater. 2019, 31, 1902793. [Google Scholar] [CrossRef]
- Chen, B.D.; Tang, W.; He, C.; Deng, C.R.; Yang, L.J.; Zhu, L.P.; Chen, J.; Shao, J.J.; Liu, L.; Wang, Z.L. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 2018, 21, 88–97. [Google Scholar] [CrossRef]
- Yoo, D.; Park, S.-C.; Lee, S.; Sim, J.-Y.; Song, I.; Choi, D.; Lim, H.; Kim, D.S. Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies. Nano Energy 2019, 57, 424–431. [Google Scholar] [CrossRef]
- Kwak, S.S.; Kim, S.M.; Ryu, H.; Kim, J.; Khan, U.; Yoon, H.-J.; Jeong, Y.H.; Kim, S.-W. Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy Environ. Sci. 2019, 12, 3156–3163. [Google Scholar] [CrossRef]
- Kim, J.; Kang, D.; Lee, H.-K.; Hwang, J.-H.; Lee, H.Y.; Jeon, S.; Kim, D.; Kim, S.; Kim, S.-W. Design Principles to Maximize Non-Bonding States for Highly Tribopositive Behavior. Adv. Funct. Mater. 2023, 33, 2209648. [Google Scholar] [CrossRef]
- Chao, S.; Ouyang, H.; Jiang, D.; Fan, Y.; Li, Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2021, 3, e12072. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, L.; Zheng, Y.; Wang, D.; Zhou, F.; Liu, W. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 2019, 55, 260–268. [Google Scholar] [CrossRef]
- Choi, D.; Kim, D.W.; Yoo, D.; Cha, K.J.; La, M.; Kim, D.S. Spontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy 2017, 36, 250–259. [Google Scholar] [CrossRef]
- Deng, Z.C.; Xu, L.; Qin, H.F.; Li, X.Y.; Duan, J.Z.; Hou, B.R.; Wang, Z.L. Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing. Adv. Mater. 2022, 34, 2205064. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Liu, G.; Feng, Y.; Zhang, C.; Wang, Z.L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285. [Google Scholar] [CrossRef]
- He, W.; Liu, W.; Chen, J.; Wang, Z.; Liu, Y.; Pu, X.; Yang, H.; Tang, Q.; Yang, H.; Guo, H.; et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 2020, 11, 4277. [Google Scholar] [CrossRef]
- Tan, D.; Zeng, Q.; Wang, X.; Yuan, S.; Luo, Y.; Zhang, X.; Tan, L.; Hu, C.; Liu, G. Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 2022, 14, 124. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, W.; Lu, X.; Yang, Y.; Li, J.; Wen, J.; Cheng, T.; Wang, Z.L. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 2021, 15, 16368–16375. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Feng, Y.; An, J.; Chen, P.; Han, J.; Jiang, T.; Wang, Z.L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, B.; Guo, H.; Wu, Z.; Zou, H.; Yang, J.; Wang, Z.L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Wang, Z.; Yu, X.; Zhang, Y.; Zhu, J.; Wang, Z.L.; Cheng, T. Double-blade structured triboelectric-electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting. Appl. Energy 2022, 326, 119970. [Google Scholar] [CrossRef]
- Gao, X.; Xing, F.; Guo, F.; Yang, Y.; Hao, Y.; Chen, J.; Chen, B.; Wang, Z.L. A turbine disk-type triboelectric nanogenerator for wind energy harvesting and self-powered wildfire pre-warning. Mater. Today Energy 2021, 22, 100867. [Google Scholar] [CrossRef]
- Tang, Q.; Pu, X.; Zeng, Q.; Yang, H.; Li, J.; Wu, Y.; Guo, H.; Huang, Z.; Hu, C. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy 2019, 66, 104087. [Google Scholar] [CrossRef]
- Yang, H.; Yang, H.; Lai, M.; Xi, Y.; Guan, Y.; Liu, W.; Zeng, Q.; Lu, J.; Hu, C.; Wang, Z.L. Triboelectric and electromagnetic hybrid nanogenerator based on a crankshaft piston system as a multifunctional energy harvesting device. Adv. Mater. Technol. 2019, 4, 1800278. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, Q.; Wu, Y.; Wu, J.; Yuan, S.; Tan, D.; Hu, C.; Wang, X. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 2020, 12, 175. [Google Scholar] [CrossRef]
- Han, K.; Luo, J.; Feng, Y.; Lai, Q.; Bai, Y.; Tang, W.; Wang, Z.L. Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOx. ACS Nano 2020, 14, 2751–2759. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Zhang, B.; Yang, O.; Yuan, W.; He, L.; Wei, X.; Wang, J.; Wang, Z.L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499. [Google Scholar] [CrossRef]
- Han, J.; Feng, Y.; Chen, P.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z.L. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. Adv. Funct. Mater. 2022, 32, 2108580. [Google Scholar] [CrossRef]
- Su, E.; Li, H.; Zhang, J.; Xu, Z.; Chen, B.; Cao, L.N.Y.; Wang, Z.L. Rationally designed anti-glare panel arrays as highway wind energy harvester. Adv. Funct. Mater. 2023, 33, 2214934. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Q.; Long, L.; Yang, Q.; Fu, S.; Liu, W.; Zhang, X.; Yang, H.; Hu, C.; Xi, Y. Matching mechanism of charge excitation circuit for boosting performance of a rotary triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2022, 14, 48636–48646. [Google Scholar] [CrossRef]
- Fu, X.; Xu, S.; Gao, Y.; Zhang, X.; Liu, G.; Zhou, H.; Lv, Y.; Zhang, C.; Wang, Z.L. Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification. ACS Energy Lett. 2021, 6, 2343–2350. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Zeng, Q.; Yang, H.; He, W.; Li, Q.; Li, X.; Yang, H.; Hu, C.; Xi, Y. A non-encapsulated polymorphous U-shaped triboelectric nanogenerator for multiform hydropower harvesting. Adv. Mater. Technol. 2021, 6, 2001199. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Zhou, L.; Yin, X.; Wei, X.; Hu, Y.; Liu, Y.; Chen, S.; Wang, J.; Wang, Z.L. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. ACS Nano 2020, 14, 7092–7100. [Google Scholar] [CrossRef]
- Xu, S.; Liu, G.; Wang, J.; Wen, H.; Cao, S.; Yao, H.; Wan, L.; Wang, Z.L. Interaction between water wave and geometrical structures of floating triboelectric nanogenerators. Adv. Energy Mater. 2022, 12, 2103408. [Google Scholar] [CrossRef]
- Li, Q.; Hu, Y.; Yang, Q.; Li, X.; Zhang, X.; Yang, H.; Ji, P.; Xi, Y.; Wang, Z.L. A robust constant-voltage DC triboelectric nanogenerator using the ternary dielectric triboelectrification effect. Adv. Energy Mater. 2023, 13, 2202921. [Google Scholar] [CrossRef]
- Lei, R.; Zhai, H.; Nie, J.; Zhong, W.; Bai, Y.; Liang, X.; Xu, L.; Jiang, T.; Chen, X.; Wang, Z.L. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 2019, 4, 1800514. [Google Scholar] [CrossRef]
- Zhong, W.; Xu, L.; Yang, X.; Tang, W.; Shao, J.; Chen, B.; Wang, Z.L. Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting. Nanoscale 2019, 11, 7199–7208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, W.; Zhang, B.; Yang, O.; Liu, Y.; He, L.; Wang, J.; Wang, Z.L. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2111775. [Google Scholar] [CrossRef]
- Liu, S.; Liang, X.; Chen, P.; Long, H.; Jiang, T.; Wang, Z.L. Multilayered helical spherical triboelectric nanogenerator with charge shuttling for water wave energy harvesting. Small Methods 2023, 7, 2201392. [Google Scholar] [CrossRef]
- An, J.; Wang, Z.M.; Jiang, T.; Liang, X.; Wang, Z.L. Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1904867. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Q.; Zhu, M.; Wang, J.; Zhu, J.; Zhao, H.; Wang, Z.L.; Cheng, T. Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Appl. Energy 2022, 323, 119648. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Liu, G.; Xiao, T.; Xu, L.; Li, W.; Xi, F.; Zhang, C.; Wang, Z.L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1807241. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Feng, Y.; Lu, P.; An, J.; Wang, Z.L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123. [Google Scholar] [CrossRef]
- Li, W.; Wan, L.; Lin, Y.; Liu, G.; Qu, H.; Wen, H.; Ding, J.; Ning, H.; Yao, H. Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting. Nano Energy 2022, 95, 106994. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Fu, S.; Shan, C.; Wu, H.; An, S.; Du, Y.; He, W.; Wang, Z.; Liu, W.; et al. A nanogenerator enabled by a perfect combination and synergetic utilization of triboelectrification, charge excitation and electromagnetic induction to reach efficient energy conversion. Adv. Funct. Mater. 2023, 33, 2213893. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Zhao, Z.; Gao, Y.; Yang, P.; Qiao, W.; Zhou, L.; Wang, J.; Wang, Z.L. Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Appl. Energy 2023, 336, 120792. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Feng, Y.; Jiang, T.; Wang, Z.L. Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 2023, 13, 2203219. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, T.; Wang, C.; Zhang, S.L.; Li, Z.; Pan, X.; Wang, Z.L. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 2019, 13, 1932–1939. [Google Scholar] [CrossRef]
- Fu, S.; He, W.; Tang, Q.; Wang, Z.; Liu, W.; Li, Q.; Shan, C.; Long, L.; Hu, C.; Liu, H. An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv. Mater. 2022, 34, 2105882. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; He, W.; Shan, C.; Fu, S.; Li, G.; Zhao, Q.; Liu, W.; Hu, C. Ultrahigh output charge density achieved by charge trapping failure of dielectric polymers. Energy Environ. Sci. 2023, 16, 2274–2283. [Google Scholar] [CrossRef]
- Li, X.; Xu, L.; Lin, P.; Yang, X.; Wang, H.; Qin, H.; Wang, Z.L. Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial’s structure. Energy Environ. Sci. 2023, 16, 3040–3052. [Google Scholar] [CrossRef]
- Fu, S.; Wu, H.; Shan, C.; Li, K.; He, W.; Li, Q.; Yu, X.; Du, S.; Li, G.; Hu, C. Ultra-durable and high-output triboelectric nanogenerator based on coupling of soft-soft contact and volume effect. Nano Energy 2023, 116, 108850. [Google Scholar] [CrossRef]
- Zhong, W.; Xu, L.; Wang, H.; Li, D.; Wang, Z.L. Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy 2019, 66, 104108. [Google Scholar] [CrossRef]
- Wang, Y.; Matin Nazar, A.; Wang, J.; Xia, K.; Wang, D.; Ji, X.; Jiao, P. Rolling spherical triboelectric nanogenerators (RS-TENG) under low-frequency ocean wave action. J. Mar. Sci. Eng. 2022, 10, 5. [Google Scholar] [CrossRef]
- Heo, D.; Son, J.-h.; Kim, D.; Song, M.; Ryu, H.; Kim, S.; Choi, K.; Lin, Z.-H.; Kim, D.; Hong, J.; et al. Charge-accumulating-flutter-based triboelectric nanogenerator via discharge gateway. Adv. Energy Mater. 2023, 13, 2204239. [Google Scholar] [CrossRef]
- Son, J.-h.; Chung, S.-H.; Cha, K.; Kim, S.; Lin, Z.-H.; Hong, J.; Chung, J.; Lee, S. Ultrahigh performance, serially stackable, breeze driven triboelectric generator via ambient air ionizing channel. Adv. Mater. 2023, 35, 2300283. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Chen, J.; Jin, L.; Deng, W.; Tang, J.; Zhang, H.; Pan, H.; Zhu, M.; Yang, W.; et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, P.; Cao, L.N.Y.; Xu, Z.; Wu, Y.; He, G.; Jiang, T.; Wang, Z.L. Durability improvement of breeze-driven triboelectric-electromagnetic hybrid nanogenerator by a travel-controlled approach. Adv. Funct. Mater. 2022, 32, 2205710. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, T.; Gao, Q.; Li, J.; Wen, J.; Wang, Z.L.; Cheng, T. High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Res. 2022, 15, 3239–3245. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.; Li, W.; Gao, Q.; Zhao, D.; Wang, Z.L.; Cheng, T. Self-powered sensing for smart agriculture by electromagnetic-triboelectric hybrid generator. ACS Nano 2021, 15, 20278–20286. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, C.; Gao, Y.; Zhao, Z.; Hu, Y.; Yang, O.; Liu, L.; Zhou, L.; Wang, J.; Wang, Z.L. A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ. Sci. 2022, 15, 1334–1345. [Google Scholar] [CrossRef]
- Chen, P.; An, J.; Cheng, R.; Shu, S.; Berbille, A.; Jiang, T.; Wang, Z.L. Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy Environ. Sci. 2021, 14, 4523–4532. [Google Scholar] [CrossRef]
- He, W.; Shan, C.; Fu, S.; Wu, H.; Wang, J.; Mu, Q.; Li, G.; Hu, C. Large harvested energy by self-excited liquid suspension triboelectric nanogenerator with optimized charge transportation behavior. Adv. Mater. 2023, 35, 2209657. [Google Scholar] [CrossRef]
- Liu, D.; Gao, Y.; Zhou, L.; Wang, J.; Wang, Z.L. Recent advances in high-performance triboelectric nanogenerators. Nano Res. 2023, 16, 11698–11717. [Google Scholar] [CrossRef]
- Yang, H.; Fan, F.R.; Xi, Y.; Wu, W. Design and engineering of high-performance triboelectric nanogenerator for ubiquitous unattended devices. EcoMat 2021, 3, e12093. [Google Scholar] [CrossRef]
- Liu, L.; Guo, X.; Liu, W.; Lee, C. Recent progress in the energy harvesting technology-from self-powered sensors to self-sustained IoT, and new applications. Nanomaterials 2021, 11, 2975. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; He, W.; Wu, H.; Shan, C.; Du, Y.; Li, G.; Wang, P.; Guo, H.; Chen, J.; Hu, C. High output performance and ultra-durable DC output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 2022, 14, 155. [Google Scholar] [CrossRef]
- Ji, P.; Li, Q.; Zhang, X.; Hu, Y.; Han, X.; Zhang, D.; Hu, C.; Xi, Y. Achieving continuous self-powered energy conversion-storage-supply integrated system based on carbon felt. Adv. Sci. 2023, 10, 2207033. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Chen, P.; Zhao, X.; Tang, W.; Wang, Z.L. Sustainable long-term and wide-area environment monitoring network based on distributed self-powered wireless sensing nodes. Adv. Energy Mater. 2023, 13, 2202691. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Wu, Z.; Kang, S.; Wei, X.; Wang, H.; Luo, H.; Yang, L.; Liao, R.; Wang, Z.L. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines. Adv. Energy Mater. 2022, 12, 2103654. [Google Scholar] [CrossRef]
- Gui, Y.; Wang, Y.; He, S.; Yang, J. Self-powered smart agriculture real-time sensing device based on hybrid wind energy harvesting triboelectric-electromagnetic nanogenerator. Energy Convers. Manag. 2022, 269, 116098. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Han, K.; Shi, X.; Ren, Z.; Xi, Y.; Ying, Y.; Ping, J.; Wang, Z.L. Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 2022, 3, 133–142. [Google Scholar] [CrossRef]
- Liu, L.; Guo, X.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304. [Google Scholar] [CrossRef]
- Dai, S.; Li, X.; Jiang, C.; Ping, J.; Ying, Y. Triboelectric nanogenerators for smart agriculture. InfoMat 2023, 5, e12391. [Google Scholar] [CrossRef]
- Cao, X.; Jie, Y.; Wang, N.; Wang, Z.L. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 2016, 6, 1600665. [Google Scholar] [CrossRef]
- Zhai, N.; Wen, Z.; Chen, X.; Wei, A.; Sha, M.; Fu, J.; Liu, Y.; Zhong, J.; Sun, X. Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Energy Mater. 2020, 10, 2001041. [Google Scholar] [CrossRef]
- Han, K.; Luo, J.; Feng, Y.; Xu, L.; Tang, W.; Wang, Z.L. Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy Environ. Sci. 2020, 13, 2450–2458. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, C.; Yuan, W.; Yang, O.; Liu, Y.; He, L.; Hu, Y.; Zhou, L.; Wang, J.; Wang, Z.L. Highly stable and eco-friendly marine self-charging power systems composed of conductive polymer supercapacitors with seawater as an electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 9046–9056. [Google Scholar] [CrossRef]
- Yang, H.; Deng, M.; Zeng, Q.; Zhang, X.; Hu, J.; Tang, Q.; Yang, H.; Hu, C.; Xi, Y.; Wang, Z.L. Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators. ACS Nano 2020, 14, 3328–3336. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Guo, H.; Fan, X.; Wen, Z.; Yeh, M.-H.; Yu, C.; Cao, X.; Wang, Z.L. Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater. Adv. Mater. 2016, 28, 2983–2991. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, J.; Yang, J.; Su, Y.; Fan, X.; Wu, Y.; Yu, C.; Wang, Z.L. Beta-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 2015, 8, 887–896. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Y.; Su, J.; Wang, M.; Wei, X.; Jiang, T.; Wang, Z.L. Triboelectric nanogenerator powered electrochemical degradation of organic pollutant using Pt-free carbon materials. ACS Nano 2017, 11, 3965–3972. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.-H.; Lin, L.; Yang, P.-K.; Wang, Z.L. Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 2015, 9, 4757–4765. [Google Scholar] [CrossRef]
- Zou, Y.; Tan, P.; Shi, B.; Ouyang, H.; Jiang, D.; Liu, Z.; Li, H.; Yu, M.; Wang, C.; Qu, X.; et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 2019, 10, 2695. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, Y.; Yang, P.; Tao, X.; Li, S.; Lei, R.; Liu, Z.; Wang, Z.L.; Chen, X. Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring. Small 2022, 18, 2107232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Xi, Y. A Review of Fluid Energy Converters Based on Triboelectric Nanogenerators: Performance Analysis from Energy Conversion. Nanoenergy Adv. 2023, 3, 282-314. https://doi.org/10.3390/nanoenergyadv3040016
Li Q, Xi Y. A Review of Fluid Energy Converters Based on Triboelectric Nanogenerators: Performance Analysis from Energy Conversion. Nanoenergy Advances. 2023; 3(4):282-314. https://doi.org/10.3390/nanoenergyadv3040016
Chicago/Turabian StyleLi, Qianying, and Yi Xi. 2023. "A Review of Fluid Energy Converters Based on Triboelectric Nanogenerators: Performance Analysis from Energy Conversion" Nanoenergy Advances 3, no. 4: 282-314. https://doi.org/10.3390/nanoenergyadv3040016
APA StyleLi, Q., & Xi, Y. (2023). A Review of Fluid Energy Converters Based on Triboelectric Nanogenerators: Performance Analysis from Energy Conversion. Nanoenergy Advances, 3(4), 282-314. https://doi.org/10.3390/nanoenergyadv3040016