ZIF-67-Metal–Organic-Framework-Based Triboelectric Nanogenerator for Self-Powered Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ZIF-67 Powder
2.2. Preparation of ZIF-67 Films
2.3. Characterization of ZIF-67
2.4. Fabrication of TENG Device
3. Results and Discussion
4. Applications of the TENG (ZIF-67-PMMA)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burhan, M.; Rehman, R.A.; Khan, B.; Kim, B.S.; Elements, I. Layered Architectures and Security Issues: A Comprehensive Survey. Sensors 2018, 18, 2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Jie, Y.; Wang, N.; Wang, Z.L.; Cao, X.; Jie, Y.; Wang, N.; Wang, Z.L. Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science. Adv. Energy Mater. 2016, 6, 1600665. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, M.; Cui, X.; Shao, Y.; Li, L.; Zhang, Y. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, F.; Shi, Q.; Lee, C.; Yuce, M.R. Yuce, Sensors and Control Interface Methods Based on Triboelectric Nanogenerator in IoT Applications. IEEE Access 2019, 7, 92745–92757. [Google Scholar] [CrossRef]
- Ahmed, A.; Hassan, I.; El-Kady, M.F.; Radhi, A.; Jeong, C.K.; Selvaganapathy, P.R.; Zu, J.; Ren, S.; Wang, Q.; Kaner, R.B. Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Adv. Sci. 2019, 6, 1802230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Willatzen, M.; Wang, Z.L. Theory of contact electrification: Optical transitions in two-level systems. Nano Energy 2018, 52, 517–523. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, A.C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Xu, C.; Zi, Y.; Wang, A.C.; Zou, H.; Dai, Y.; He, X.; Wang, P.; Wang, Y.C.; Feng, P.; Li, D.; et al. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Adv. Mater. 2018, 30, e1706790. [Google Scholar] [CrossRef]
- Lowell, J.; Rose-Innes, A.C. Advances in Physics Contact electrification Contact electrification. Adv. Phys. 1980, 296, 947–1023. [Google Scholar] [CrossRef]
- Zhang, R.; Olin, H. Material choices for triboelectric nanogenerators: A critical review. EcoMat 2020, 2, e12062. [Google Scholar] [CrossRef]
- Zhang, R.; Dahlström, C.; Zou, H.; Jonzon, J.; Hummelgård, M.; Örtegren, J.; Blomquist, N.; Yang, Y.; Andersson, H.; Olsen, M.; et al. Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m−2. Adv. Mater. 2020, 32, 2002824. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fan, F.R.; Xi, Y.; Wu, W. Bio-Derived Natural Materials Based Triboelectric Devices for Self-Powered Ubiquitous Wearable and Implantable Intelligent Devices. Adv. Sustain. Syst. 2020, 4, 2000108. [Google Scholar] [CrossRef]
- Slabov, V.; Kopyl, S.; Santos, M.P.S.d.; Kholkin, A.L. Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting. Nano-Micro Lett. 2020, 12, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaukat, R.A.; Saqib, Q.M.; Khan, M.U.; Chougale, M.Y.; Bae, J. Bio-waste sunflower husks powder based recycled triboelectric nanogenerator for energy harvesting. Energy Rep. 2021, 7, 724–731. [Google Scholar] [CrossRef]
- Babu, A.; Rakesh, D.; Supraja, P.; Mishra, S.; Kumar, K.U.; Kumar, R.R.; Haranath, D.; Mamidala, E.; Nagapuri, R. Plant-based triboelectric nanogenerator for biomechanical energy harvesting. Results Surfaces Interfaces 2022, 8, 100075. [Google Scholar] [CrossRef]
- Gabris, M.A.; Ping, J. Carbon nanomaterial-based nanogenerators for harvesting energy from environment. Nano Energy 2021, 90, 106494. [Google Scholar] [CrossRef]
- Seol, M.; Kim, S.; Cho, Y.; Byun, K.E.; Kim, H.; Kim, J.; Kim, S.K.; Kim, S.W.; Shin, H.J.; Park, S. Triboelectric Series of 2D Layered Materials. Adv. Mater. 2018, 30, e1801210. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, J.; Park, S.; Park, C.; Park, C.; Choi, H.J. Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Adv. 2017, 7, 49368–49373. [Google Scholar] [CrossRef] [Green Version]
- Khandelwal, G.; Chandrasekhar, A.; Raj, N.P.M.J.; Kim, S.J. Metal–Organic Framework: A Novel Material for Triboelectric Nanogenerator–Based Self-Powered Sensors and Systems. Adv. Energy Mater. 2019, 9, 1970043. [Google Scholar] [CrossRef]
- Baumann, A.E.; Burns, D.A.; Liu, B.; Thoi, V.S. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2019, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Leus, K.; Muylaert, I.; van Speybroeck, V.; Marin, G.B.; van der Voort, P. A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity. Stud. Surf. Sci. Catal. 2010, 175, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Zhou, S.; Guo, L.; Xin, X.; Zeng, S.; Qu, K.; Wang, N.; Zhang, X. Zeolitic Imidazolate Framework 67-Derived Ce-Doped CoP@N-Doped Carbon Hollow Polyhedron as High-Performance Anodes for Lithium-Ion Batteries. Crystals 2022, 12, 533. [Google Scholar] [CrossRef]
- Gong, H.; Bie, S.; Zhang, J.; Ke, X.; Wang, X.; Liang, J.; Wu, N.; Zhang, Q.; Luo, C.; Jia, Y. In Situ Construction of ZIF-67-Derived Hybrid Tricobalt Tetraoxide@Carbon for Supercapacitor. Nanomaterials 2022, 12, 1571. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, X.; Zhang, H. Sensitive and Stable Electrochemical Sensor for Folic Acid Determination Using a ZIF-67/AgNWs Nanocomposite. Biosensors 2022, 12, 382. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.; Ji, M.; Li, Z.; Yang, Z.; Qiu, X.; Zhao, Y. Electrospinning of ZIF-67 Derived Co-C-N Composite Efficiently Activating Peroxymonosulfate to Degrade Dimethyl Phthalate. Water 2022, 14, 2248. [Google Scholar] [CrossRef]
- Vu, H.T.; Tran, L.T.; Le, G.H.; Nguyen, Q.K.; Vu, T.M.; Vu, T.A. Synthesis and application of novel Fe-MIL-53/GO nanocomposite for photocatalytic degradation of reactive dye from aqueous solution. Vietnam J. Chem. 2019, 57, 681–685. [Google Scholar] [CrossRef]
- Zou, F.; Hu, X.; Li, Z.; Qie, L.; Hu, C.; Zeng, R.; Jiang, Y.; Huang, Y. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622–6628. [Google Scholar] [CrossRef]
- Ma, T.Y.; Dai, S.; Jaroniec, M.; Qiao, S.Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Tan, C.; Sindoro, M.; Zhang, H. Hybrid micro-/nano-structures derived from metal–organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 2017, 46, 2660–2677. [Google Scholar] [CrossRef]
- Khandelwal, G.; Raj, N.P.M.J.; Kim, S.J. Zeolitic Imidazole Framework: Metal–Organic Framework Subfamily Members for Triboelectric Nanogenerators. Adv. Funct. Mater. 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Khandelwal, G.; Raj, N.P.M.J.; Vivekananthan, V.; Kim, S.J. Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator. iScience 2021, 24, 102064. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, G.; Raj, N.P.M.J.; Kim, S.J. ZIF-62: A mixed linker metal-organic framework for triboelectric nanogenerators. J. Mater. Chem. A 2020, 8, 17817–17825. [Google Scholar] [CrossRef]
- Shaukat, R.A.; Saqib, Q.M.; Kim, J.; Song, H.; Khan, M.U.; Chougale, M.Y.; Bae, J.; Choi, M.J. Ultra-robust tribo- and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability. Nano Energy 2022, 96, 107128. [Google Scholar] [CrossRef]
- Chen, J.; Shao, Z.; Zhao, Y.; Xue, X.; Song, H.; Wu, Z.; Cui, S.; Zhang, L.; Huang, C.; Mi, L.; et al. Metal-Ion Coupling in Metal–Organic Framework Materials Regulating the Output Performance of a Triboelectric Nanogenerator. Inorg. Chem. 2022, 61, 2490–2498. [Google Scholar] [CrossRef] [PubMed]
- Hajra, S.; Sahu, M.; Padhan, A.M.; Swain, J.; Panigrahi, B.K.; Kim, H.G.; Bang, S.W.; Park, S.; Sahu, R.; Kim, H.J. A new insight into the ZIF-67 based triboelectric nanogenerator for self-powered robot object recognition. J. Mater. Chem. C Mater. 2021, 9, 17319–17330. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, J.H.; Kim, J.K.; Jeong, U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 2020, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hajra, S.; Sahu, M.; Sahu, R.; Padhan, A.M.; Alagarsamy, P.; Kim, H.-G.; Lee, H.; Oh, S.; Yamauchi, Y.; Kim, H.J. Significant effect of synthesis methodologies of metal-organic frameworks upon the additively manufactured dual-mode triboelectric nanogenerator towards self-powered applications. Nano Energy 2022, 98, 107253. [Google Scholar] [CrossRef]
- Hajra, S.; Sahu, M.; Padhan, A.M.; Lee, I.S.; Yi, D.K.; Alagarsamy, P.; Nanda, S.S.; Kim, H.J. A Green Metal–Organic Framework-Cyclodextrin MOF: A Novel Multifunctional Material Based Triboelectric Nanogenerator for Highly Efficient Mechanical Energy Harvesting. Adv. Funct. Mater. 2021, 31, 2101829. [Google Scholar] [CrossRef]
- Qian, J.; Sun, F.; Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Liu, J.; Xiong, Z.; Chen, X. Selective and Competitive Adsorption of Azo Dyes on the Metal–Organic Framework ZIF-67. Water Air Soil Pollut. 2016, 227, 471. [Google Scholar] [CrossRef]
- Feng, X.; Carreon, M.A. Kinetics of transformation on ZIF-67 crystals. J. Cryst. Growth. 2015, 418, 158–162. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Zeolitic imidazolate frameworks (ZIF-8, ZIF-67, and ZIF-L) for hydrogen production. Appl. Organomet. Chem. 2021, 35, e6319. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Guo, C.; Gao, X.; Gong, C.; Wang, Y.; Liu, B.; Li, X.; Gurzadyan, G.G.; Sun, L. Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect. J. Mater. Chem. A Mater. 2018, 6, 4768–4775. [Google Scholar] [CrossRef]
- Tran, U.P.N.; Le, K.K.A.; Phan, N.T.S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework zif-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal. 2011, 1, 120–127. [Google Scholar] [CrossRef]
- Li, X.; Gao, X.; Ai, L.; Jiang, J. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 2015, 274, 238–246. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, A.; Chen, Y.; Wang, L.; Li, M.; Yang, H.; Hou, Y. Surface modification of core–shell structured ZIF-67@Cobalt coordination compound to improve the fire safety of biomass aerogel insulation materials. Chem. Eng. J. 2021, 430, 132809. [Google Scholar] [CrossRef]
- Ma, Z.; Li, J.; Ma, R.; He, J.; Song, X.; Yu, Y.; Quan, Y.; Wang, G. The methodologically obtained derivative of ZIF-67 metal–organic frameworks present impressive supercapacitor performance. New J. Chem. 2022, 46, 7230–7241. [Google Scholar] [CrossRef]
- Guo, X.; Xing, T.; Lou, Y.; Chen, J. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J. Solid State Chem. 2016, 235, 107–112. [Google Scholar] [CrossRef]
- Vivekananthan, V.; Chandrasekhar, A.; Alluri, N.R.; Purusothaman, Y.; Kim, S.J. A highly reliable, impervious and sustainable triboelectric nanogenerator as a zero-power consuming active pressure sensor. Nanoscale Adv. 2020, 2, 746–754. [Google Scholar] [CrossRef]
- Supraja, P.; Kumar, R.R.; Mishra, S.; Haranath, D.; Sankar, P.R.; Prakash, K.; Jayarambabu, N.; Rao, T.V.; Kumar, K.U. A simple and low-cost triboelectric nanogenerator based on two dimensional ZnO nanosheets and its application in portable electronics. Sens. Actuators A Phys. 2022, 335, 113368. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, T.; Wu, J.; Xu, T.; Wang, X.; Han, X.; Cui, H.; Xu, X.; Pan, C.; Li, X. Energy Conversion Analysis of Multilayered Triboelectric Nanogenerators for Synergistic Rain and Solar Energy Harvesting. Adv. Mater. 2022, 34, 2202238. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Y.; Wang, Z.L. Triboelectric nanogenerators as flexible power sources. Npj Flex. Electron. 2017, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.T.; Vo, C.P.; Nguyen, T.H.; Ahn, K.K. A Direct-Current Triboelectric Nanogenerator Energy Harvesting System Based on Water Electrification for Self-Powered Electronics. Appl. Sci. 2022, 12, 2724. [Google Scholar] [CrossRef]
- Park, H.W.; Huynh, N.D.; Kim, W.; Hwang, H.J.; Hong, H.; Choi, K.H.; Song, A.; Chung, K.B.; Choi, D. Effects of embedded TiO2-x nanoparticles on triboelectric nanogenerator performance. Micromachines 2018, 9, 407. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Shi, Q.; Li, K.; Yang, Z.; Liu, H.; Sun, L.; Dziuban, J.A.; Lee, C. Investigation of position sensing and energy harvesting of a flexible triboelectric touch pad. Nanomaterials 2018, 8, 613. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Lyu, Z.; Kim, D.H.; Kang, D.J. Enhancing the output power density of polydimethylsiloxane-based flexible triboelectric nanogenerators with ultrathin nickel telluride nanobelts as a co-triboelectric layer. Nano Energy 2021, 90, 106536. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.; Zhang, J.; Wu, W.; Song, G. Theoretical System of Contact-Mode Triboelectric Nanogenerators for High Energy Conversion Efficiency. Nanoscale Res. Lett. 2018, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Wang, Z.L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef] [Green Version]
- Kamilya, T.; Sarkar, P.K.; Acharya, S. Unveiling Peritoneum Membrane for a Robust Triboelectric Nanogenerator. ACS Omega. 2019, 4, 17684–17690. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, M.; Li, W.; Li, Z.; Chen, Y.; Zhai, Y. Size effect on the output of a miniaturized triboelectric nanogenerator based on superimposed electrode layers. Nano Energy 2017, 41, 128–138. [Google Scholar] [CrossRef]
- Shen, X.; Han, W.; Jiang, Y.; Ding, Q.; Li, X.; Zhao, X.; Li, Z. Punching pores on cellulose fiber paper as the spacer of triboelectric nanogenerator for monitoring human motion. Energy Rep. 2020, 6, 2851–2860. [Google Scholar] [CrossRef]
- Zou, H.; Guo, L.; Xue, H.; Zhang, Y.; Shen, X.; Liu, X.; Wang, P.; He, X.; Dai, G.; Jiang, P.; et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A.C.; Xu, C.; et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Seung, W.; Gupta, M.K.; Lee, K.Y.; Shin, K.S.; Lee, J.H.; Kim, T.Y.; Kim, S.; Lin, J.; Kim, J.H.; Kim, S.W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano. 2015, 9, 3501–3509. [Google Scholar] [CrossRef]
- Chung, C.K.; Ke, K.H. High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices. Appl. Surf. Sci. 2020, 508, 145310. [Google Scholar] [CrossRef]
- Tcho, I.W.; Kim, W.G.; Jeon, S.B.; Park, S.J.; Lee, B.J.; Bae, H.K.; Kim, D.; Choi, Y.K. Surface structural analysis of a friction layer for a triboelectric nanogenerator. Nano Energy 2017, 42, 34–42. [Google Scholar] [CrossRef]
S. No. | Positively Charged Material | Negatively Charged Material | Output Performance | Reference | ||
---|---|---|---|---|---|---|
Voltage | Current | Power Density | ||||
1 | ZIF-67 | Teflon | 118 V (peak to peak) | 1.7 µA | 150 mW/m2 | [36] |
2 | MIL-88A | FEP | 80 V | 2.2 µA | 16.2 mW/m2 | [32] |
3 | ZIF-8 | Kapton | 164 V | 7 µA | 392 mW/m2 | [20] |
4 | ZIF-62 | Teflon | 62 V | 1.4 µA | 9.68 mW/m2 | [33] |
5 | ZIF-8 (HG) | Kapton | 150 V | 3.6 µA | 6 μW (power) | [38] |
6 | ZIF-11 | Kapton | 27 V | 0.3 µA | ~1.3 mW/m2 | [31] |
7 | ZIF-12 | Kapton | 42 V | 1 µA | ~2.3 mW/m2 | [31] |
8 | ZIF-9 | Kapton | 29 V | 0.5 µA | ~0.9 mW/m2 | [31] |
9 | ZIF-7 | Kapton | 60 V | 2 µA | ~5.6 mW/m2 | [31] |
10 | Alpha cyclodextrin | Teflon | 152 V (peak to peak) | 1.2 µA | 8 µW/cm2 | [39] |
11 | Beta cyclodextrin | Teflon | 90 V (peak to peak) | 0.52 µA | - | [39] |
12 | Gamma cyclodextrin | Teflon | 116 V (peak to peak) | 1.7 µA | - | [39] |
13 | ZIF-67 | PMMA | 300 V | 47.5 µA | 593 mW/m2 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barsiwal, S.; Babu, A.; Khanapuram, U.K.; Potu, S.; Madathil, N.; Rajaboina, R.K.; Mishra, S.; Divi, H.; Kodali, P.; Nagapuri, R.; et al. ZIF-67-Metal–Organic-Framework-Based Triboelectric Nanogenerator for Self-Powered Devices. Nanoenergy Adv. 2022, 2, 291-302. https://doi.org/10.3390/nanoenergyadv2040015
Barsiwal S, Babu A, Khanapuram UK, Potu S, Madathil N, Rajaboina RK, Mishra S, Divi H, Kodali P, Nagapuri R, et al. ZIF-67-Metal–Organic-Framework-Based Triboelectric Nanogenerator for Self-Powered Devices. Nanoenergy Advances. 2022; 2(4):291-302. https://doi.org/10.3390/nanoenergyadv2040015
Chicago/Turabian StyleBarsiwal, Sachin, Anjaly Babu, Uday Kumar Khanapuram, Supraja Potu, Navneeth Madathil, Rakesh Kumar Rajaboina, Siju Mishra, Haranath Divi, Prakash Kodali, Raju Nagapuri, and et al. 2022. "ZIF-67-Metal–Organic-Framework-Based Triboelectric Nanogenerator for Self-Powered Devices" Nanoenergy Advances 2, no. 4: 291-302. https://doi.org/10.3390/nanoenergyadv2040015
APA StyleBarsiwal, S., Babu, A., Khanapuram, U. K., Potu, S., Madathil, N., Rajaboina, R. K., Mishra, S., Divi, H., Kodali, P., Nagapuri, R., & Chinthakuntla, T. (2022). ZIF-67-Metal–Organic-Framework-Based Triboelectric Nanogenerator for Self-Powered Devices. Nanoenergy Advances, 2(4), 291-302. https://doi.org/10.3390/nanoenergyadv2040015