Perspective on Porous Piezoelectric Ceramics to Control Internal Stress
Abstract
:1. Introduction
2. Preparation Method and Morphology of Porous Ferroelectrics
2.1. Replica Template
2.2. Burnt-Out Polymer Spheres (BURPS)
2.3. Direct Foaming Method
2.4. Freeze Casting
2.5. Gel Casting
2.6. Additive Manufacturing
3. Characterization of Porous Piezoelectric Ceramics
- (1)
- Electromechanical conversion characteristics: a high piezoelectric charge constant d33 is required (high charge per unit force, or high strain per unit electric field).
- (2)
- Mechanical properties: high mechanical strength and rigidity (stiffness), in particular for highly loaded applications.
- (3)
- Dielectric performance: a high resistivity, dielectric constant and dielectric strength to prevent breakdown when the driving electric field is applied.
- (4)
- Environmental adaptability: a good temperature and humidity stability, high Curie point, and wide operating temperature range is required.
- (5)
- Stability: The piezoelectric properties should not change significantly with time.
- (1)
- d33 and d31 are the longitudinal and transverse piezoelectric charge coefficients, respectively,
- (2)
- g33 and g31 are the piezoelectric voltage constants that represent the electric field produced per unit stress.
- (3)
- is the relative permittivity at constant stress and is the permittivity of the free space.
- (4)
- Hydrostatic charge coefficient dh is a property that defines the hydrostatic actuation capability of the material; dh = d33 + 2d31.
- (5)
- Hydrostatic voltage coefficient is a property that the defines sensitivity of the hydrophone (electric field per unit hydrostatic stress).
- (6)
- Hydrostatic figure of merit HFOM = dh.gh, defines the suitability for underwater sonar applications and is an indicator of signal-to-noise ratio.
- (7)
- For energy harvesting application, the figure of merit in 33-mode is FOM33 = d33.g33 = .
- (8)
- The loss tangent (tanδ) is a parameter to describe energy dissipation. For dielectrics with small loss, the phase angle is small and tanδ ≈ 0. For porous ceramics, the loss tangent value is positively correlated with the porosity. Under an applied electric field, the electric field lines are concentrated in the pores of low permittivity, resulting in the dissipation of electrical energy and is not stored in the ceramic phase [21,54].
Composition | Method | Connectivity Mode | Porosity (vol.%) | Tc (°C) | d33 (pC/N) | dh (pC/N) | gh (10−3Vm/N) | dhgh (pm2/N) | ε33 [C2/(N·M2)] | tanδ | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|
BCZT | BURPS | 3-0 | 10~25 | 106 | 285~424 | 34~93 | ~10.2 | ~0.95 | 1026~2158 | 0.03~0.05 | [55] |
PZT–PCN | 3-0 | 24~45.6 | - | 140~300 | - | 27~46 | 5.379 | 110~290 | - | [56] | |
PZT | 3-0 | 35~54.5 | - | 161~312 | 35~180 | 16.1~31.1 | 0.554~5.753 | 241~1608 | - | [57] | |
PZT | 3-0 | 5~45 | - | 208~350 | - | 5~40 | 0.35~5 | 300~1600 | - | [58] | |
LNKN | 3-0 | 15~50 | 75~153 | - | - | - | - | - | [59] | ||
PZT 95/5 | 3-0 | 4~16 | 220 | 66~71.2 | - | - | - | 220~310 | - | [21] | |
PZT | 3-0 | 3~43 | - | ~450 | - | - | - | 450~1600 | - | [60] | |
BCZT | 3-0 | 4~40 | - | - | - | - | - | - | - | [61] | |
PZT | 3-0 | 1.8~59.4 | - | 90~142 | - | - | 0.1~0.5 | ~1300 | - | [62] | |
PZT | 3-0 | 5~47 | - | - | - | - | - | 90~145 | ~0.015 | [63] | |
BS–0.64PT | 3-0 | 9.4~43.9 | - | ~415 | - | - | - | 400~1500 | ~0.04 | [64] | |
PZT | 3-0 | 10~50 | - | ~450 | - | - | - | - | - | [65] | |
BST | 3-0 | ~29 | - | - | - | - | - | - | <0.05 | [66] | |
PZT | 3-0 | 0.23~20.82 | - | 350~451 | - | - | - | - | - | [67] | |
PZT-PCN | 3-0 | 12.56~45.57 | - | 185~356 | 46~74 | 6.5~43.5 | 0.481~2.732 | 182~1137 | - | [68] | |
BZT | 3-0 | 5~21 | - | 38~154 | - | - | - | 1300~2100 | 0.03 | [69] | |
BNT-BT | Freeze casting | 3-1 | 36 | - | 115~182 | - | - | - | - | - | [70] |
PZT | 3-1 | 65.5~68 | - | 589~675 | - | - | - | - | - | [71] | |
PZT | 3-1 | 36~67 | - | 170~400 | - | - | - | 427~969 | 0.025~0.19 | [72] | |
PZT | 3-1 | 25~67 | - | 595~731 | - | - | - | - | - | [42] | |
PZT–PZN | 3-1 | ~90 | - | 302~450 | 216~406 | 241~396 | 52.056~160.77 | 100~120 | - | [40] | |
PZT–PZN | 3-1 | 50~82 | - | 380~475 | 259~298 | 34~118 | ~35.65 | 284~853 | - | [41] | |
PZT | 2-2 | 28.1~68.7 | - | 608~690 | 244~330 | 8~28.3 | ~9.648 | 1400~3500 | - | [73] | |
PZT | 2-2 | 20~60 | - | - | ~206 | ~83.5 | ~8.26 | ~2200 | - | [74] | |
PZT | 2-2 | 25~45 | 210~229 | - | - | - | - | - | - | [75] | |
PZT | 2-2 | 20~60 | - | ~460 | - | - | - | ~1400 | - | [11] | |
PZT-PCN | 2-2 | 34 | - | ~639 | - | - | - | - | - | [76] | |
NKNS | 2-2 | ~60.5 | 60~62.5 | ~130 | ~60 | ~58.7 | ~3.522 | ~1319 | - | [77] | |
BT | 2-2 | 37~56 | - | ~134.5 | - | - | - | 580~1504 | - | [78] | |
PZT | Gel casting | 3-3 | 23.9~57.6 | - | 454~588 | - | - | 5.964~22.299 | 502~2513 | - | [79] |
PZT | 3-0 | 38.58~68.7 | - | 350~490 | - | 20.2~60.5 | 3.427~12.633 | 390.4~951.6 | - | [80] | |
PZT | 3-3 | 36.4~56.2 | - | 415~504 | - | - | ~9.594 | 742~1566 | - | [81] | |
PZT | 3-3 | 31.3~58.6 | - | 424~635 | - | - | 0.081~10.117 | 446~3418 | - | [82] | |
PZT | 3-0/3-3 | 27.8~72.4 | - | 260~560 | 176~209 | 14.8~77.3 | ~15.236 | 400~3500 | - | [83] |
4. Mechanisms by Which Porosity Affects the Curie Temperature
5. Simulation of Porous Piezoelectric Ceramics
5.1. Simulation of Electric Field Distribution
5.2. Simulation of Dielectric and Piezoelectric Properties
5.3. Simulation of Mechanical Properties
6. Application of Porous Piezoelectric Ceramics
- (1)
- Energy Harvesting: Piezoelectric energy harvesting can capture the surrounding mechanical vibration energy and directly convert it into electrical energy through the piezoelectric effect. The energy obtained from environment mainly depends on the piezoelectric charge coefficient and relative permittivity. The introduction of porosity can sharply reduce the relative permittivity, while the piezoelectric charge coefficient decreases slowly with increased porosity. Previous studies have also shown that porous ferroelectric materials have a higher piezoelectric harvesting figure of merit factor than dense materials. Therefore, porous ferroelectric materials show great potential in piezoelectric energy harvesting applications. For example, by converting mechanical vibrations or temperature fluctuations and high energy density through piezoelectric and pyroelectric effects, the efficiency of piezoelectric materials can exceed electromagnetic generators with small size [114].
- (2)
- High-performance Sensors: Ferroelectric materials can also be used as sensors to detect force, pressures, and acceleration via the piezoelectric effect and heat via the pyroelectric effect. One advantage of piezoelectric sensors is that they do not require an external power supply and can act as “self-powered sensors”. Dense ceramic materials generally have a high relative permittivity, but as can be seen in Table 1, porous piezoelectric materials have the advantage of preparing high-sensitivity sensors due to their relatively low permittivity and high piezoelectric, pyroelectric and hydrostatic coefficients. The regulation of porosity tailor properties is therefore a feasible way to improve material properties and in recent years, porous ferroelectric composite materials have attracted widespread attention in sensing applications due to their high piezoelectric voltage coefficient and good mechanical flexibility. Porous piezoelectric materials have shown promising potential in wireless sensors [115], high-performance hydrophones [116], and strain measurement [117].
- (3)
- Since ferroelectric materials can directly convert mechanical energy into chemical energy or heat into chemical energy through piezoelectric potential induced by external mechanical force, porous nanostructured ferroelectric materials are being considered for use for catalysis due to the high specific surface area. The piezoelectric and thermoelectric catalysis of porous ceramics is used to treat organic dye wastewater due to their high efficiency and self-powered characteristics. In addition, porous ferroelectric composite materials composed of ferroelectric nanoparticles and polymers have shown great potential in catalytic applications due to the advantages of recyclability and reuse. The ability of porosity to tailor the Curie point is an advantage since piezocatalytic activity has been shown to improve near the Curie point [118,119].
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Novak, I. Molecular isomorphism. Eur. J. Phys. 1995, 16, 151–153. [Google Scholar] [CrossRef]
- Selvarajan, S.; Alluri, N.R.; Chandrasekhar, A.; Kim, S.-J. BaTiO3 nanoparticles as biomaterial film for self-powered glucose sensor application. Sens. Actuators B Chem. 2016, 234, 395–403. [Google Scholar] [CrossRef]
- Proto, A.; Penhaker, M.; Bibbo, D.; Vala, D.; Conforto, S.; Schmid, M. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting. Sensors 2016, 16, 524. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.B. Transducer and Method of Making the Same. U.S. Patent 2,486,560, 20 September 1946. [Google Scholar]
- Sakayori, K.; Matsui, Y.; Abe, H.; Nakamura, E.; Kenmoku, M.; Hara, T.; Ishikawa, D.; Kokubu, A.; Hirota, K.; Ikeda, T.I.T. Curie Temperature of BaTiO3. Jpn. J. Appl. Phys. 1995, 34, 5443. [Google Scholar] [CrossRef]
- Blank, T.A.; Eksperiandova, L.P.; Belikov, K.N. Recent trends of ceramic humidity sensors development: A review. Sens. Actuators B Chem. 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Sanson, A.; Mercadelli, E.; Roncari, E.; Licheri, R.; Orrù, R.; Cao, G.; Merlone-Borla, E.; Marzorati, D.; Bonavita, A.; Micali, G.; et al. Influence of processing parameters on the electrical response of screen printed SrFe0.6Ti0.4O3-δ thick films. Ceram. Int. 2010, 36, 521–527. [Google Scholar] [CrossRef]
- Karmakar, S.; Kiran, R.; Singh Chauhan, V.; Vaish, R. Effect of Porosity on Energy Harvesting Performance of 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 Ceramics: A Numerical Study. Energy Technol. 2020, 8, 1901302. [Google Scholar] [CrossRef]
- Martínez-Ayuso, G.; Friswell, M.I.; Adhikari, S.; Khodaparast, H.H.; Berger, H. Homogenization of porous piezoelectric materials. Int. J. Solids Struct. 2017, 113–114, 218–229. [Google Scholar] [CrossRef]
- Roscow, J.I.; Pearce, H.; Khanbareh, H.; Kar-Narayan, S.; Bowen, C.R. Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems. Eur. Phys. J. Spec. Top. 2019, 228, 1537–1554. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, M.; Roscow, J.; Bao, Y.; Zhou, K.; Zhang, D.; Bowen, C.R. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. J. Mater. Chem. A Mater. 2017, 5, 6569–6580. [Google Scholar] [CrossRef] [Green Version]
- Roscow, J.; Zhang, Y.; Taylor, J.; Bowen, C.R. Porous ferroelectrics for energy harvesting applications. Eur. Phys. J. Spec. Top. 2015, 224, 2949–2966. [Google Scholar] [CrossRef]
- Yan, M.; Xiao, Z.; Ye, J.; Yuan, X.; Li, Z.; Bowen, C.; Zhang, Y.; Zhang, D. Porous ferroelectric materials for energy technologies: Current status and future perspectives. Energy Environ. Sci. 2021, 14, 6158–6190. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.; Jiang, X.; Kim, J.; Luo, J.; Geng, X. Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers—A Review. Prog. Mater. Sci. 2015, 68, 1–66. [Google Scholar] [CrossRef]
- Kargupta, R.; Venkatesh, T. Electromechanical response of porous piezoelectric materials. Acta Mater. 2006, 54, 4063–4078. [Google Scholar] [CrossRef]
- Settera, N.; Damjanovic, D. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006, 100, 051606. [Google Scholar] [CrossRef]
- Curie, J.; Curie, P. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bull. Soc. Minéral. 1880, 3, 90–93. [Google Scholar] [CrossRef]
- Curie, J.; Pierre, C. Contractions and expansions produced by voltages in hemihedral crystals with inclined faces. Comptes Rendus 1881, 93, 1137–1140. [Google Scholar]
- Woldemar, V. Beiträge zur molekularen Theorie der Piëzoelectricität. Ann. Phys. 1894, 51, 638–660. [Google Scholar]
- Colombo, P. Conventional and novel processing methods for cellular ceramics. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2006, 364, 109–124. [Google Scholar] [CrossRef]
- Zeng, T.; Dong, X.; Mao, C.; Zhou, Z.; Yang, H. Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics. J. Eur. Ceram. Soc. 2007, 27, 2025–2029. [Google Scholar] [CrossRef]
- Guo, R.; Wang, C.A.; Yang, A.K.; Fu, J.T. Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. J. Appl. Phys. 2010, 108, 124112. [Google Scholar] [CrossRef]
- Nan, B.; Olhero, S.; Pinho, R.; Vilarinho, P.M.; Button, T.W.; Ferreira, J.M. Direct ink writing of macroporous lead-free piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3. J. Am. Ceram. Soc. 2018, 102, 3191–3203. [Google Scholar] [CrossRef]
- Woyansky, J.S.; Scott, C.E.; Minnear, W.P. Processing of Porous Ceramics. Am. Ceram. Soc. Bull. 1992, 71, 1674–1682. [Google Scholar]
- Karl, S.; Somers, A.V. Method of Making Porous Ceramic Articles. U.S. Patent 3090094, 21 February 1963. [Google Scholar]
- Safari, A.; Halliyal, A.; Bowen, L.J.; Newnham, R.E. Flexible Composite Transducers. J. Am. Ceram. Soc. 2010, 65, 207–209. [Google Scholar] [CrossRef]
- Kara, H.; Ramesh, R.; Stevens, R.; Bowen, C.R. Porous PZT Ceramics for Receiving Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing Routes to Macroporous Ceramics: A Review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- Sanson, A.; Pinasco, P.; Roncari, E. Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs. J. Eur. Ceram. Soc. 2008, 28, 1221–1226. [Google Scholar] [CrossRef]
- Sun, Y.; Tan, S.H.; Jiang, D.L. Synthesis of porous silicon carbide and its catalysis. J. Inorg. Mater. 2003, 18, 830–836. [Google Scholar]
- Pokhrel, A.; Seo, D.N.; Lee, S.T.; Kim, I.J. Processing of Porous Ceramics by Direct Foaming: A Review. J. Korean Ceram. Soc. 2013, 50, 93–102. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Y.; Wang, Z.; Liu, L. Research Process of Foaming Technology For Preparing Porous Ceramics; China Ceramics: Jinan, China, 2010. [Google Scholar]
- Kim, Y.W.; Kim, S.H.; Kim, H.D.; Park, C.B. Processing of closed-cell silicon oxycarbide foams from a preceramic polymer. J. Mater. Sci. 2004, 39, 5647–5652. [Google Scholar] [CrossRef]
- Schuster; Chiari, B.V. Foamed Ceramic Element. U.S. Patent US4123285A, 1978. [Google Scholar]
- Deville, S.; Saiz, E.; Tomsia, A.P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 5480–5489. [Google Scholar] [CrossRef]
- Deville, S. Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Adv. Eng. Mater. 2010, 10, 155–169. [Google Scholar] [CrossRef]
- Fukasawa, T.; Ando, M.; Ohji, T.; Kanzaki, S. Synthesis of Porous Ceramics with Complex Pore Structure by Freeze—Dry Processing. J. Am. Ceram. Soc. 2010, 84, 230–232. [Google Scholar] [CrossRef]
- Yoon, B.H.; Koh, Y.H.; Park, C.S.; Kim, H.E. Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene—Based Freeze Casting. J. Am. Ceram. Soc. 2007, 90, 1744–1752. [Google Scholar] [CrossRef] [Green Version]
- Araki, K.; Halloran, J.W. Room-Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene—Camphor Eutectic System. J. Am. Ceram. Soc. 2010, 87, 2014–2019. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, S.H.; Kim, H.E.; Koh, Y.H. Piezoelectric Properties of PZT-Based Ceramic with Highly Aligned Pores. J. Am. Ceram. Soc. 2008, 91, 1912–1915. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, S.H.; Kim, H.E.; Koh, Y.H. Fabrication of Porous PZT–PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene—Based Freeze Casting. J. Am. Ceram. Soc. 2007, 90, 2807–2813. [Google Scholar] [CrossRef]
- Xu, T.; Wang, C.-A. Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Mater. Des. 2016, 91, 242–247. [Google Scholar] [CrossRef]
- Roscow, J.; Li, Y.; Hall, D. Residual stress and domain switching in freeze cast porous barium titanate. J. Eur. Ceram. Soc. 2022, 42, 1434–1444. [Google Scholar] [CrossRef]
- Jenny, M.A.; Omalete, O.O. Method for Molding Ceramic Powders Using a Water-Based Gel Casting Process. U.S. Patent US 5145908, 8 September 1992. [Google Scholar]
- Young, A.C.; Omatete, O.O.; Janney, M.A.; Menchhofer, P.A. Gelcasting of Alumina. J. Am. Ceram. Soc. 1991, 74. [Google Scholar] [CrossRef]
- Wu, J.M.; Lu, W.Z.; Liang, J. Microwave Dielectric Properties of 0.9Al2O3—0.1TiO2Ceramics Prepared by Aqueous Gelcasting. J. Inorg. Mater. 2010, 26, 102–106. [Google Scholar] [CrossRef]
- Wu, L.; Huang, Y.; Wang, Z.; Li, L. Controlled fabrication of porous Al2O3 ceramic by N,N′-dimethylformamide-based gel-casting. Scr. Mater. 2010, 62, 602–605. [Google Scholar] [CrossRef]
- Yu, J.; Wang, H.; Zhang, J. Neural network modeling and analysis of gel casting preparation of porous Si3N4 ceramics. Ceram. Int. 2009, 35, 2943–2950. [Google Scholar] [CrossRef]
- Ananthakumar, S.; Prabhakaran, K.; Hareesh, U.S.; Manohar, P.; Warrier, K.G.K. Gel casting process for Al2O3–SiC nanocomposites and its creep characteristics. Mater. Chem. Phys. 2004, 85, 151–157. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, Z.; Hou, X.; Liu, Z.; Zhu, Q.; Wang, S.; Ma, B.; Yu, J. Fibrous ZrO2-mullite porous ceramics fabricated by a hydratable alumina based aqueous gel-casting process. Ceram. Int. 2019, 45, 8824–8831. [Google Scholar] [CrossRef]
- Chen, R.; Wang, C.A.; Huang, Y.; Ma, L.; Lin, W. Ceramics with Special Porous Structures Fabricated by Freeze-Gelcasting: Using tert-Butyl Alcohol as a Template. J. Am. Ceram. Soc. 2010, 90, 3478–3484. [Google Scholar] [CrossRef]
- Dommati, H.; Ray, S.S.; Wang, J.C.; Chen, S.S. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Adv. 2019, 9, 16869–16883. [Google Scholar] [CrossRef]
- Morissette, S.L.; Lewis, J.A.; Clem, P.G.; Cesarano, J.; Dimos, D.B. Direct-Write Fabrication of Pb(Nb,Zr,Ti)O3 Devices: Influence of Paste Rheology on Print Morphology and Component Properties. J. Am. Ceram. Soc. 2010, 84, 2462–2468. [Google Scholar] [CrossRef]
- Penn, S.J.; Alford, N.M.; Templeton, A.; Wang, X.; Xu, M.; Reece, M.; Schrapel, K. Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina. J. Am. Ceram. Soc. 1997, 80, 1885–1888. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, M.; Roscow, J.; Bowen, C. Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca 0.3)TiO3 ceramics. Mater. Res. Bull. 2019, 112, 426–431. [Google Scholar] [CrossRef]
- Abdullah, F.F.; Nemati, A.; Bagheri, R. Dielectric and piezoelectric properties of porous PZT–PCN ceramics sintered at different temperatures. Mater. Lett. 2015, 151, 85–88. [Google Scholar] [CrossRef]
- Zeng, T.; Dong, X.L.; Chen, H.; Wang, Y.L. The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application. Mater. Sci. Eng. B 2006, 131, 181–185. [Google Scholar] [CrossRef]
- Zeng, T.; Dong, X.; Chen, S.; Yang, H. Processing and piezoelectric properties of porous PZT ceramics. Ceram. Int. 2007, 33, 395–399. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Q.; Zhu, J.; Huang, C.; Darvell, B.W.; Chen, Z. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute. Mater. Chem. Phys. 2008, 109, 488–491. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.-F.; Zhang, B. Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents. Acta Mater. 2007, 55, 171–181. [Google Scholar] [CrossRef]
- Zhang, Y.; Roscow, J.; Lewis, R.; Khanbareh, H.; Topolov, V.Y.; Xie, M.; Bowen, C.R. Understanding the effect of porosity on the polarisation-field response of ferroelectric materials. Acta Mater. 2018, 154, 100–112. [Google Scholar] [CrossRef]
- Roncari, E.; Galassi, C.; Craciun, F.; Capiani, C.; Piancastelli, A. A microstructural study of porous piezoelectric ceramics obtained by different methods. J. Eur. Ceram. Soc. 2001, 21, 409–417. [Google Scholar] [CrossRef]
- Praveenkumar, B.; Kumar, H.H.; Kharat, D.K. Study on microstructure, piezoelectric and dielectric properties of 3-3 porous PZT composites. J. Mater. Sci. Mater. Electron. 2006, 17, 515–518. [Google Scholar] [CrossRef]
- Tan, J.; Li, Z. Microstructures, dielectric and piezoelectric properties of unannealed and annealed porous 0.36BiScO3-0.64PbTiO3 ceramics. J. Mater. Sci. 2016, 51, 5092–5103. [Google Scholar] [CrossRef]
- Khansur, N.H.; Biggemann, J.; Stumpf, M.; Riess, K.; Fey, T.; Webber, K.G. Temperature-and Stress-Dependent Electromechanical Response of Porous Pb(Zr,Ti)O3. Adv. Eng. Mater. 2020, 22, 2000389. [Google Scholar] [CrossRef]
- Stanculescu, R.; Ciomaga, C.E.; Padurariu, L.; Galizia, P.; Horchidan, N.; Capiani, C.; Galassi, C.; Mitoseriu, L. Study of the role of porosity on the functional properties of (Ba,Sr)TiO 3 ceramics. J. Alloys Compd. 2015, 643, 79–87. [Google Scholar] [CrossRef]
- Li, J.-F.; Takagi, K.; Ono, M.; Pan, W.; Watanabe, R.; Almajid, A.; Taya, M. Fabrication and Evaluation of Porous Piezoelectric Ceramics and Porosity-Graded Piezoelectric Actuators. J. Am. Ceram. Soc. 2003, 86, 1094–1098. [Google Scholar] [CrossRef]
- Naeem, H.T. The influence of different pore forming agents on piezoelectric and dielectric properties of porous PZT-PCN ceramics. Mater. Today Proc. 2020, 20, 531–534. [Google Scholar] [CrossRef]
- Curecheriu, L.; Lukacs, V.A.; Padurariu, L.; Stoian, G.; Ciomaga, C.E. Effect of Porosity on Functional Properties of Lead-Free Piezoelectric BaZr0.15Ti0.85O3 Porous Ceramics. Materials 2020, 13, 3324. [Google Scholar] [CrossRef]
- Zhu, S.; Cao, L.; Xiong, Z.; Lu, C.; Gao, Z. Enhanced piezoelectric properties of 3-1 type porous 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ferroelectric ceramics. J. Eur. Ceram. Soc. 2018, 38, 2251–2255. [Google Scholar] [CrossRef]
- Guo, R.; Wang, C.-A.; Yang, A. Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics. J. Eur. Ceram. Soc. 2011, 31, 605–609. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, H.; Liu, X.; Sui, H.; Xiao, S. Structural design of PZT porous ceramics obtained via free-casting by ice-templating and performance exploration. Mater. Res. Bull. 2020, 127, 110862. [Google Scholar] [CrossRef]
- Guo, R.; Wang, C.-A.; Yang, A. Piezoelectric Properties of the 1-3 Type Porous Lead Zirconate Titanate Ceramics. J. Am. Ceram. Soc. 2011, 94, 1794–1799. [Google Scholar] [CrossRef]
- Zhang, Y.; Roscow, J.; Xie, M.; Bowen, C.R. High piezoelectric sensitivity and hydrostatic figures of merit in unidirectional porous ferroelectric ceramics fabricated by freeze casting. J. Eur. Ceram. Soc. 2018, 38, 4203–4211. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, Y.; Dou, Z.; Bowen, C.R. Porous PZT Ceramics with Aligned Pore Channels for Energy Harvesting Applications. J. Am. Ceram. Soc. 2015, 98, 2980–2983. [Google Scholar] [CrossRef]
- Schultheiß, J.; Roscow, J.I.; Koruza, J. Orienting anisometric pores in ferroelectrics: Piezoelectric property engineering through local electric field distributions. Phys. Rev. Mater. 2019, 3, 084408. [Google Scholar] [CrossRef]
- Dixit, P.; Seth, S.; Rawal, B.; Kumar, B.P.; Panda, H.S. Freeze casting of lamellar-structured porous lead-free (Na0.52K0.48)(Nb0.95Sb0.05)O3 piezoceramic with remarkable enhancement in piezoelectric voltage constant and hydrostatic figure of merit. J. Mater. Sci. Mater. Electron. 2021, 32, 5393–5403. [Google Scholar] [CrossRef]
- Roscow, J.I.; Zhang, Y.; Kraśny, M.J.; Lewis, R.W.C.; Taylor, J.; Bowen, C.R. Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting. J. Phys. D Appl. Phys. 2018, 51, 225301. [Google Scholar] [CrossRef]
- Yang, A.K.; Wang, C.A.; Guo, R.; Huang, Y.; Nan, C.W. Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics. Ceram. Int. 2010, 36, 549–554. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Lv, R.; Wang, Y.; Xu, H.; Yang, J. Effects of sintering behavior on piezoelectric properties of porous PZT ceramics. Ceram. Int. 2014, 40, 2005–2010. [Google Scholar] [CrossRef]
- Yang, A.K.; Wang, C.A.; Guo, R.; Huang, Y. Effects of porosity on dielectric and piezoelectric properties of porous lead zirconate titanate ceramics. Appl. Phys. Lett. 2011, 98, 152904. [Google Scholar] [CrossRef]
- Yang, A.; Wang, C.A.; Guo, R.; Huang, Y.; Nan, C.W. Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA-Based Gel-Casting Process. J. Am. Ceram. Soc. 2010, 93, 1427–1431. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Wang, Y.; Xu, H.; Xi, X.; Yang, J. Processing and Properties of Porous PZT Ceramics from Particle-Stabilized Foams via Gel Casting. J. Am. Ceram. Soc. 2013, 96, 1827–1831. [Google Scholar] [CrossRef]
- Yan, M.; Liu, S.; Xiao, Z.; Yuan, X.; Zhai, D.; Zhou, K.; Zhang, D.; Zhang, G.; Bowen, C.; Zhang, Y. Evaluation of the pore morphologies for piezoelectric energy harvesting application. Ceram. Int. 2022, 48, 5017–5025. [Google Scholar] [CrossRef]
- Damodaran, A.R.; Breckenfeld, E.; Chen, Z.; Lee, S.; Martin, L.W. Enhancement of Ferroelectric Curie Temperature in BaTiO3 Films via Strain-Induced Defect Dipole Alignment. Adv. Mater. 2014, 26, 6341–6347. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Kurtz, S.K.; Jamieson, P.B. Atomic Displacement Relationship to Curie Temperature and Spontaneous Polarization in Displacive Ferroelectrics. Phys. Rev. 1968, 172, 551–553. [Google Scholar] [CrossRef]
- Huang, S.; Zeng, J.; Zheng, L.; Man, Z.; Ruan, X.; Shi, X.; Li, G. A novel piezoelectric ceramic with high Curie temperature and high piezoelectric coefficient. Ceram. Int. 2020, 46, 6212–6216. [Google Scholar] [CrossRef]
- Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the Crystal Structure on Particle Size in Barium Titanate. J. Am. Ceram. Soc. 1989, 72, 1555–1558. [Google Scholar] [CrossRef]
- Ishikawa, K.; Yoshikawa, K.; Okada, N. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B 1988, 37, 5852–5855. [Google Scholar] [CrossRef]
- Kamel, T.M.; de With, G. Grain size effect on the poling of soft Pb(Zr,Ti)O3 ferroelectric ceramics. J. Eur. Ceram. Soc. 2008, 28, 851–861. [Google Scholar] [CrossRef]
- Su, Y.; Weng, G. The shift of Curie temperature and evolution of ferroelectric domain in ferroelectric crystals. J. Mech. Phys. Solids 2005, 53, 2071–2099. [Google Scholar] [CrossRef]
- Hiroshima, T.; Tanaka, K.; Kimura, T. Effects of Microstructure and Composition on the Curie Temperature of Lead Barium Niobate Solid Solutions. J. Am. Ceram. Soc. 1996, 79, 3235–3242. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, B.; Zhou, K.; Roscow, J.; Bowen, C. Hierarchically structured lead-free barium strontium titanate for low-grade thermal energy harvesting. Ceram. Int. 2021, 47, 18761–18772. [Google Scholar] [CrossRef]
- Pu, Y.; Zhu, J.; Zhu, X.; Luo, Y.; Li, X.; Wang, M.; Jing, L.; Li, X.; Zhu, J.; Xiao, D. Enhanced Ferroelectric Properties of Intragranular-Porous Pb(Zr0.95Ti0.05)O3Ceramic Fabricated with Carbon Nanotubes. J. Am. Ceram. Soc. 2010, 93, 642–645. [Google Scholar]
- Okazaki, K.; Nagata, K. Effects of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics. J. Am. Ceram. Soc. 1973, 56, 82–86. [Google Scholar] [CrossRef]
- Keizer, K.; Burggraaf, A.J. Grain Size Effects on the Ferroelectric-Paraelectric Transition, the Dielectric Constant, and the Lattice Parameters in Lanthana-Substituted Lead Titanate. Phys. Stat. Solidi 1974, 26, 561–569. [Google Scholar] [CrossRef]
- Zhu, J.L.; Lin, S.; Feng, S.M.; Li, F.Y.; Wang, L.J.; Jin, C.Q.; Wang, X.H.; Li, L.T. The effects of high pressure on the ferroelectric properties of nano-BaTiO3 ceramics. J. Phys. Conf. Ser. 2008, 121, 162005. [Google Scholar] [CrossRef]
- Samara, G.A. Pressure Dependence Of The Ferroelectric Properties of Rochelle Salt. J. Phys. Chem. Solids 1964, 26, 121–131. [Google Scholar] [CrossRef]
- Schader, F.H.; Aulbach, E.; Webber, K.G.; Rossetti, G.A., Jr. Influence of uniaxial stress on the ferroelectric-to-paraelectric phase change in barium titanate. J. Appl. Phys. 2013, 113, 174103. [Google Scholar] [CrossRef]
- Jaffe, H.; Berlincourt, D.; McKee, J.M. Effect of Pressure on the Curie Temperature of Polycrystalline Ceramic Barium Titanate. Phys. Rev. 1957, 105, 57–58. [Google Scholar] [CrossRef]
- Hwang, H.J.; Nagai, T.; Ohji, T.; Sando, M.; Toriyama, M.; Niihara, K. Curie Temperature Anomaly in Lead Zirconate Titanate/Silver Composites. J. Am. Ceram. Soc. 1998, 81, 709–712. [Google Scholar] [CrossRef]
- Yan, H.; Li, C.; Zhou, J.; Zhu, W.; He, L.; Song, Y.; Yu, Y. Effects of A-Site (NaCe) Substitution with Na-Deficiency on Structures and Properties of CaBi4Ti4O15-Based High-Curie-Temperature Ceramics. Jpn. J. Appl. Phys. 2001, 40, 6501–6505. [Google Scholar] [CrossRef]
- Sato, Y.; Kanai, H.; Yamashita, Y. Effects of Silver and Palladium Doping on the Dielectric Properties of 0.9Pb(Mg1/3Nb2/3)O3–0.1 PbTiO3 Ceramic. J. Am. Ceram. Soc. 2010, 79, 261–265. [Google Scholar] [CrossRef]
- Ikushima, H.; Hayakawa, S. Electrical Properties of Ag-Doped Barium Titanate Ceramics. Jpn. J. Appl. Phys. 1965, 4, 328–336. [Google Scholar] [CrossRef]
- Maher, G.H. Effect of Silver Doping on the Physical and Electrical Properties of PLZT Ceramics. J. Am. Ceram. Soc. 2010, 66, 408–413. [Google Scholar] [CrossRef]
- Baxter, P.; Hellicar, N.J.; Lewis, B. Effect of Additives of Limited Solid Solubility on Ferroelectric Properties of Barium Titanate Ceramics. J. Am. Ceram. Soc. 2010, 42, 465–470. [Google Scholar] [CrossRef]
- Saburi, O. Semiconducting Bodies in the Family of Barium Titanates. J. Am. Ceram. Soc. 1961, 44, 54–63. [Google Scholar] [CrossRef]
- Ihrig, H. The phase stability of BaTiO3 as a function of doped 3d elements: An experimental study. J. Phys. C Solid State Phys. 2001, 13, 159. [Google Scholar] [CrossRef]
- Fritz, I.J. Ultrasonic, dilatometric, and dielectric study of uniaxial-stress effects in a barium-calcium titanate ceramic. J. Appl. Phys. 1978, 49, 788–794. [Google Scholar] [CrossRef]
- Gheorghiu, F.; Padurariu, L.; Airimioaei, M.; Curecheriu, L.; Ciomaga, C.; Padurariu, C.; Mitoseriu, L. Porosity-dependent properties of Nb-doped Pb(Zr,Ti)O3ceramics. J. Am. Ceram. Soc. 2016, 100, 647–658. [Google Scholar] [CrossRef]
- Bosse, P.W.; Challagulla, K.S.; Venkatesh, T.A. Electromechanical response of piezoelectric foams: Effects of foam shape and porosity aspect ratio. Acta Mater. 2012, 60, 2111–2127. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, P.; Du, L.; Du, H. Effect of the nanopore on ferroelectric domain structures and switching properties. Comput. Mater. Sci. 2018, 148, 216–223. [Google Scholar] [CrossRef]
- Kim, H.; Yun, S.; Kim, K.; Kim, W.; Ryu, J.; Nam, H.G.; Han, S.M.; Jeon, S.; Hong, S. Breaking the elastic limit of piezoelectric ceramics using nanostructures: A case study using ZnO. Nano Energy 2020, 78, 105259. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; Leboulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, M.; Zhu, Q.; Wang, F.; Su, H.; Li, H.; Diao, C.; Zheng, H.; Wu, Y.; Wang, Z.L. Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system. Adv. Funct. Mater. 2019, 29, 1904259. [Google Scholar] [CrossRef]
- Marselli, S.; Pavia, V.; Galassi, C.; Roncari, E.; Craciun, F.; Guidarelli, G.J. Porous piezoelectric ceramic hydrophone. Acoust. Soc. Am. 1999, 106, 733–738. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, Y.; Krany, M.J.; Bowen, C.; Khanbareh, H.; Gathercole, N. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic-polymer composites. Energy Environ. Sci. 2018, 11, 2919–2927. [Google Scholar] [CrossRef] [PubMed]
- Phuong, P.T.T.; Zhang, Y.; Gathercole, N.; Khanbareh, H.; Bowen, C. Demonstration of Enhanced Piezo-Catalysis for Hydrogen Generation and Water Treatment at the Ferroelectric Curie Temperature. iScience 2020, 23, 101095. [Google Scholar] [CrossRef]
- Zhang, Y.; Phuong, P.T.T.; Roake, E.; Khanbareh, H.; Wang, Y.; Dunn, S.; Bowen, C. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule 2020, 4, 301–309. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhou, K.; Zhang, D.; Bowen, C.; Wang, Q.; Zhong, J.; Zhang, Y. Perspective on Porous Piezoelectric Ceramics to Control Internal Stress. Nanoenergy Adv. 2022, 2, 269-290. https://doi.org/10.3390/nanoenergyadv2040014
Zhou X, Zhou K, Zhang D, Bowen C, Wang Q, Zhong J, Zhang Y. Perspective on Porous Piezoelectric Ceramics to Control Internal Stress. Nanoenergy Advances. 2022; 2(4):269-290. https://doi.org/10.3390/nanoenergyadv2040014
Chicago/Turabian StyleZhou, Xiang, Kechao Zhou, Dou Zhang, Chris Bowen, Qingping Wang, Junwen Zhong, and Yan Zhang. 2022. "Perspective on Porous Piezoelectric Ceramics to Control Internal Stress" Nanoenergy Advances 2, no. 4: 269-290. https://doi.org/10.3390/nanoenergyadv2040014
APA StyleZhou, X., Zhou, K., Zhang, D., Bowen, C., Wang, Q., Zhong, J., & Zhang, Y. (2022). Perspective on Porous Piezoelectric Ceramics to Control Internal Stress. Nanoenergy Advances, 2(4), 269-290. https://doi.org/10.3390/nanoenergyadv2040014