Scoliosis: Causes and Treatments
Abstract
:1. Introduction
2. Causes
3. Kinesitherapy
4. Surgical Treatments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaman, O.; Dalbayrak, S. Idiopathic scoliosis. Turk. Neurosurg. 2014, 24, 646–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reamy, B.V.; Slakey, J.B. Adolescent idiopathic scoliosis: Review and current concepts. Am. Fam. Phys. 2001, 64, 111–116. [Google Scholar]
- Shakil, H.; Iqbal, Z.A.; Al-Ghadir, A.H. Scoliosis: Review of types of curves, etiological theories and conservative treatment. J. Back. Musculoskelet. Rehabil. 2014, 27, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Vialle, R.; Thévenin-Lemoine, C.; Mary, P. Neuromuscular scoliosis. Orthop. Traumatol. Surg. Res. 2013, 99 (Suppl. S1), S124–S139. [Google Scholar] [CrossRef] [Green Version]
- Janicki, J.A.; Alman, B. Scoliosis: Review of diagnosis and treatment. Paediatr. Child Health 2007, 12, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Ovadia, D. Classification of adolescent idiopathic scoliosis (AIS). J. Child. Orthop. 2013, 7, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Wiemann, J.M.; Shah, S.A.; Price, C.T. Nighttime bracing versus observation for early adolescent idiopathic scoliosis. J. Pediatr. Orthop. 2014, 34, 603–606. [Google Scholar] [CrossRef] [Green Version]
- Grivas, T.B.; Vasiliadis, E.; Mouzakis, V.; Mihas, C.; Koufopoulos, G. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis 2006, 1, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Schwieger, T.; Campo, S.; Weinstein, S.L.; Dolan, L.A.; Ashida, S.; Steuber, K.R. Body Image and Quality of Life and Brace Wear Adherence in Females With Adolescent Idiopathic Scoliosis. J. Pediatr. Orthop. 2017, 37, e519–e523. [Google Scholar] [CrossRef]
- Notarnicola, A.; Farì, G.; Maccagnano, G.; Riondino, A.; Covelli, I.; Bianchi, F.P.; Tafuri, S.; Piazzolla, A.; Moretti, B. Teenagers’ perceptions of their scoliotic curves. An observational study of comparison between sports people and non-sports people. Muscles Ligaments Tendons J. 2019, 9, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Q.; Li, J.; Wu, Z.; Zhang, J.; Sun, W.; Li, T.; Yan, Y.; Jiang, Y.; Zhao, R.C.; Qiu, G. Differential proteome analysis of bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients. PLoS ONE 2011, 6, e18834–e18847. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Wang, S.R.; Qiu, G.X.; Zhang, J.G.; Zhuang, Q.Y. Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis. Chin. Med. J. 2020, 133, 483–493. [Google Scholar] [CrossRef]
- Ogura, Y.; Kou, I.; Scoliosis, J.; Matsumoto, M.; Watanabe, K.; Ikegawa, S. Genome-wide association study for adolescent idiopathic scoliosis. Clin. Calcium 2016, 26, 553–560. (In Japanese) [Google Scholar] [PubMed]
- Mao, S.H.; Qian, B.P.; Shi, B.; Zhu, Z.Z.; Qiu, Y. Quantitative evaluation of the relationship between COMP promoter methylation and the susceptibility and curve progression of adolescent idiopathic scoliosis. Eur. Spine J. 2018, 27, 272–277. [Google Scholar] [CrossRef]
- Raggio, C.L.; Giampietro, P.F.; Dobrin, S.; Chengfeng, Z.; Dorshorst, D.; Ghebranious, N.; Weber, J.L.; Blank, R.D. A novel locus for adolescent idiopathic scoliosis on chromosome 12p. J. Orthop. Res. 2009, 27, 1366–1372. [Google Scholar] [CrossRef]
- Chan, V.; Fong, G.C.; Luk, K.D.; Yip, B.; Lee, M.K.; Wong, M.S.; Lu, D.D.S.; Chan, T.W. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am. J. Hum. Genet. 2002, 71, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, C.A.; Barnes, R.; Gillum, J.; Herring, J.A.; Bowcock, A.M.; Lovett, M. Localization of susceptibility to familial idiopathic scoliosis. Spine 2000, 25, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Salehi, L.B.; Mangino, M.; De Serio, S.; De Cicco, D.; Capon, F.; Semprini, S.; Pizzuti, A.; Noveli, G.; Dallapiccola, B. Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum. Genet. 2002, 111, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Justice, C.M.; Miller, N.H.; Marosy, B.; Zhang, J.; Wilson, A.F. Familial idiopathic scoliosis: Evidence of an X-linked susceptibility locus. Spine 2003, 28, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Morcuende, J.A.; Minhas, R.; Dolan, L.; Stevens, J.; Bek, J.; Wang, K.; Weinstein, S.L.; Sheffield, V. Allelic variants of human melatonin 1A receptor in patients with familial adolescent idiopathic scoliosis. Spine 2003, 28, 2025–2029. [Google Scholar] [CrossRef]
- Bashiardes, S.; Veile, R.; Allen, M.; Wise, C.A.; Dobbs, M.; Morcuende, J.A.; Szappanos, L.; Herring, J.A.; Bowcock, A.M.; Lovett, M. SNTG1, the gene encoding gamma1-syntrophin: A candidate gene for idiopathic scoliosis. Hum. Genet. 2004, 115, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.H.; Justice, C.M.; Marosy, B.; Doheny, K.F.; Pugh, E.; Zhang, J.; Dietz, H.C., III; Wilson, A.F. Identification of candidate regions for familial idiopathic scoliosis. Spine 2005, 30, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Alden, K.J.; Marosy, B.; Nzegwu, N.; Justice, C.M.; Wilson, A.F.; Miller, N.H. Idiopathic scoliosis: Identification of candidate regions on chromosome 19p13. Spine 2006, 31, 1815–1819. [Google Scholar] [CrossRef]
- Gao, X.; Gordon, D.; Zhang, D.; Browne, R.; Helms, C.; Gillum, J.; Weber, S.; Devroy, S.; Swaney, S.; Dobbs, M.; et al. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am. J. Hum. Genet. 2007, 80, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Ocaka, L.; Zhao, C.; Reed, J.A.; Ebenezer, N.D.; Brice, G.; Morley, T.; Mehta, M.; O’Dowd, J.; Weber, J.L.; Hardcastle, A.J.; et al. Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J. Med. Genet. 2008, 45, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Gurnett, C.A.; Alaee, F.; Bowcock, A.; Kruse, L.; Lenke, L.G.; Bridwell, K.H.; Kuklo, T.; Luhmann, S.J.; Dobbs, M.B. Genetic linkage localizes an adolescent idiopathic scoliosis and pectus excavatum gene to chromosome 18 q. Spine 2009, 34, e94–e100. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Gao, X.; Londono, D.; Devroy, S.E.; Mauldin, K.N.; Frankel, J.T.; Brandon, J.M.; Zhang, D.; Li, Q.-Z.; Dobbs, M.B.; et al. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum. Mol. Genet. 2011, 20, 1456–1466. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kou, I.; Takahashi, A.; Johnson, T.A.; Kono, K.; Kawakami, N.; Uno, K.; Ito, M.; Minami, S.; Yanagida, H.; et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat. Genet. 2011, 43, 1237–1240. [Google Scholar] [CrossRef]
- Wajchenberg, M.; Astur, N.; Kanas, M.; Martins, D.E. Adolescent idiopathic scoliosis: Current concepts on neurological and muscular etiologies. Scoliosis Spinal Disord. 2016, 11, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Pinchuk, D.Y.; Bekshaev, S.S.; Bumakova, S.A.; Dudin, M.G.; Pinchuk, O.D. Bioelectric activity in the suprachiasmatic nucleus-pineal gland system in children with adolescent idiopathic scoliosis. ISRN Orthop. 2012, 2012, 987095–987101. [Google Scholar] [CrossRef] [Green Version]
- Yim, A.P.-y.; Yeung, H.-y.; Sun, G.; Lee, K.-m.; Ng, T.-b.; Lam, T.-p.; Ng, B.K.-w.; Qiu, Y.; Moreau, A.; Cheng, J.C.-y. Abnormal skeletal growth in adolescent idiopathic scoliosis is associated with abnormal quantitative expression of melatonin receptor, MT2. Int. J. Mol. Sci. 2013, 14, 6345–6358. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Minami, S.; Nakata, Y.; Kitahara, H.; Otsuka, Y.; Isobe, K.; Takaso, M.; Tokunaga, M.; Nishikawa, S.; Tetsuro, M.; et al. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine 2002, 27, 2357–2362. [Google Scholar] [CrossRef] [PubMed]
- Helenius, I.; Remes, V.; Yrjönen, T.; Ylikoski, M.; Schlenzka, D.; Helenius, M.; Poussa, M. Does gender affect outcome of surgery in adolescent idiopathic scoliosis? Spine 2005, 30, 462–467. [Google Scholar] [CrossRef]
- Kenanidis, E.; Potoupnis, M.E.; Papavasiliou, K.A.; Sayegh, F.E.; Kapetanos, G.A. Adolescent idiopathic scoliosis and exercising: Is there truly a liaison? Spine 2008, 33, 2160–2165. [Google Scholar] [CrossRef] [PubMed]
- Giampietro, P.F.; Blank, R.D.; Raggio, C.L.; Merchant, S.; Jacobsen, F.S.; Faciszewski, T.; Shukla, S.K.; Greenlee, A.R.; Reynolds, C.; Schowalter, D.B. Congenital and idiopathic scoliosis: Clinical and genetic aspects. Clin. Med. Res. 2003, 1, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xie, Y.; Chen, J.; Zhang, D.; Yang, C.; Li, M. High selenium may be a risk factor of adolescent idiopathic scoliosis. Med. Hypotheses 2010, 75, 126–127. [Google Scholar] [CrossRef]
- McMaster, M.E. Heated indoor swimming pools, infants, and the pathogenesis of adolescent idiopathic scoliosis: A neurogenic hypothesis. Environ. Health 2011, 10, 86–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayssoux, R.S.; Cho, R.H.; Herman, M.J. A history of bracing for idiopathic scoliosis in North America. Clin. Orthop. Relat. Res. 2010, 468, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Kuroki, H. Brace Treatment for Adolescent Idiopathic Scoliosis. J. Clin. Med. 2018, 7, 136. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.K.; Jo, H.R.; Park, S.H.; Sung, W.S.; Keum, D.H.; Kim, E.J. The effectiveness and safety of acupuncture for scoliosis: A protocol for systematic review and/or meta-analysis. Medicine 2020, 99, e23238-42. [Google Scholar] [CrossRef]
- Liu, C.T.; Chen, K.C.; Chiu, E.H. Adult degenerative scoliosis treated by acupuncture. J. Altern. Complement Med. 2009, 15, 935–937. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.R.; Bohr, S.; Jahnke, A.; Pleines, S. Acupucture in the treatment of scoliosis—A single blind controlled pilot study. Scoliosis 2008, 3, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Kaelin, A.J. Adolescent idiopathic scoliosis: Indications for bracing and conservative treatments. Ann. Transl. Med. 2020, 8, 28–38. [Google Scholar] [CrossRef]
- Misterska, E.; Głowacki, J.; Głowacki, M.; Okręt, A. Long-term effects of conservative treatment of Milwaukee brace on body image and mental health of patients with idiopathic scoliosis. PLoS ONE 2018, 13, e0193447-67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steen, H.; Pripp, A.H.; Lange, J.E.; Brox, J.I. Predictors for long-term curve progression after Boston brace treatment of idiopathic scoliosis. Eur. J. Phys. Rehabil. Med. 2021, 57, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.; Wright, J.G.; Hedden, D. A comparative study of TLSO, Charleston, and Milwaukee braces for idiopathic scoliosis. Spine 1998, 23, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Addai, D.; Zarkos, J.; Bowey, A.J. Current concepts in the diagnosis and management of adolescent idiopathic scoliosis. Childs Nerv. Syst. 2020, 36, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Ganjavian, M.S.; Behtash, H.; Ameri, E.; Khakinahad, M. Results of Milwaukee and Boston Braces with or without Metal Marker Around Pads in Patients with Idiopathic Scoliosis. Acta Med. Iran. 2011, 49, 598–605. [Google Scholar]
- Katz, D.E.; Richards, B.S.; Browne, R.H.; Herring, J.A. A comparison between the Boston brace and the Charleston bending brace in adolescent idiopathic scoliosis. Spine 1997, 22, 1302–1312. [Google Scholar] [CrossRef]
- Schiller, J.R.; Thakur, N.A.; Eberson, C.P. Brace management in adolescent idiopathic scoliosis. Clin. Orthop. Relat. Res. 2010, 468, 670–678. [Google Scholar] [CrossRef] [Green Version]
- Lonstein, J.E.; Winter, R.B. The Milwaukee brace for the treatment of adolescent idiopathic scoliosis. A review of one thousand and twenty patients. J. Bone Joint Surg. Am. 1994, 76, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Price, C.T.; Scott, D.S.; Reed, F.R., Jr.; Sproul, J.T.; Riddick, M.F. Nighttime bracing for adolescent idiopathic scoliosis with the Charleston Bending Brace: Long-term follow-up. J. Pediatr. Orthop. 1997, 17, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.E.; Durrani, A.A. Factors that influence outcome in bracing large curves in patients with adolescent idiopathic scoliosis. Spine 2001, 26, 2354–2361. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, C.R.; Griggs, S.; McCoy, B. Nighttime bracing with the Providence brace in adolescent girls with idiopathic scoliosis. Spine 2001, 26, 2006–2012. [Google Scholar] [CrossRef]
- Coillard, C.; Vachon, V.; Circo, A.B.; Beausejour, M.; Rivard, C.H. Effectiveness of the SpineCor brace based on the new standardized criteria proposed by the scoliosis research society for adolescent idiopathic scoliosis. J. Pediatr. Orthop. 2007, 27, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Kotwicki, T.; Chowanska, J.; Kinel, E.; Czaprowski, D.; Tomaszewski, M.; Janusz, P. Optimal management of idiopathic scoliosis in adolescence. Adolesc. Health Med. Ther. 2013, 4, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Parr, A.; Askin, G. Paediatric scoliosis: Update on assessment and treatment. Aust. J. Gen. Pract. 2020, 49, 832–837. [Google Scholar] [CrossRef]
- Maruyama, T.; Takeshita, K. Surgical treatment of scoliosis: A review of techniques currently applied. Scoliosis 2008, 3, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Suk, S.; Lee, S.; Chung, E.; Kim, J.; Kim, S. Selective Thoracic Fusion With Segmental Pedicle Screw Fixation in the Treatment of Thoracic Idiopathic Scoliosis. Spine 2005, 30, 1602–1609. [Google Scholar] [CrossRef]
- Ege, T.; Bilgic, S.; Ersen, O.; Yurttas, Y.; Oguz, E.; Sehirlioglu, A.; Kazanci, A. The importance and efficacy of posterior only instrumentation and fusion for severe idiopathic scoliosis. Turk. Neurosurg. 2012, 22, 641–644. [Google Scholar] [CrossRef] [Green Version]
- Potter, B.K.; Kuklo, T.R.; Lenke, L.G. Radiographic outcomes of anterior spinal fusion versus posterior spinal fusion with thoracic pedicle screws for treatment of Lenke Type I adolescent idiopathic scoliosis curves. Spine 2005, 30, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.N.; Upasani, V.V.; Bastrom, T.P.; Marks, M.C.; Pawelek, J.B.; Betz, R.R.; Lenke, L.; Newton, P. Spontaneous lumbar curve correction in selective thoracic fusions of idiopathic scoliosis: A comparison of anterior and posterior approaches. Spine 2008, 33, 1068–1073. [Google Scholar] [CrossRef]
- Nohara, A.; Kawakami, N.; Saito, T.; Tsuji, T.; Ohara, T.; Suzuki, Y.; Ryoji, T.; Kazuki, K. Comparison of Surgical Outcomes Between Anterior Fusion and Posterior Fusion in Patients With AIS Lenke Type 1 or 2 that Underwent Selective Thoracic Fusion-Long-term Follow-up Study Longer Than 10 Postoperative Years. Spine 2015, 40, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Sucato, D.J.; Agrawal, S.; O’Brien, M.F.; Lowe, T.G.; Richards, S.B.; Lenke, L. Restoration of thoracic kyphosis after operative treatment of adolescent idiopathic scoliosis: A multicenter comparison of three surgical approaches. Spine 2008, 33, 2630–2636. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Wang, Z.; Li, M.; Pan, F.; Shi, Z.; Zhang, Y.; Wu, Y.; Xie, Y. A comparison of anterior and posterior instrumentation for restoring and retaining sagittal balance in patients with idiopathic adolescent scoliosis. J. Spinal Disord. Tech. 2012, 25, 303–308. [Google Scholar] [CrossRef]
- Abel, M.F.; Singla, A.; Feger, M.A.; Sauer, L.D.; Novicoff, W. Surgical treatment of Lenke 5 adolescent idiopathic scoliosis: Comparison of anterior vs. posterior approach. World J. Orthop. 2016, 7, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ni, J.; Fang, X.; Liu, H.; Zhu, X.; He, S.; Gu, S.; Wang, X. Comparison of selective anterior versus posterior screw instrumentation in Lenke5C adolescent idiopathic scoliosis. Spine 2009, 34, 1162–1166. [Google Scholar] [CrossRef]
- Miyanji, F.; Nasto, L.A.; Bastrom, T.; Samdani, A.F.; Yaszay, B.; Clements, D.; Shah, S.; Lonner, B.; Betz, R.; Shufflebarger, H.L.; et al. A Detailed Comparative Analysis of Anterior Versus Posterior Approach to Lenke 5C Curves. Spine 2018, 43, e285–e291. [Google Scholar] [CrossRef]
- Rushton, P.R.; Grevitt, M.P.; Sell, P.J. Anterior or posterior surgery for right thoracic adolescent idiopathic scoliosis (AIS)? A prospective cohorts’ comparison using radiologic and functional outcomes. J. Spinal Disord. Tech. 2015, 28, 80–88. [Google Scholar] [CrossRef]
- Sudo, H.; Ito, M.; Kaneda, K.; Shono, Y.; Takahata, M.; Abumi, K. Long-term outcomes of anterior spinal fusion for treating thoracic adolescent idiopathic scoliosis curves: Average 15-year follow-up analysis. Spine 2013, 38, 819–826. [Google Scholar] [CrossRef]
- Ghandhari, H.; Ameri, E.; Nikouei, F.; Haji Agha Bozorgi, M.; Majdi, S.; Salehpour, M. Long-term outcome of posterior spinal fusion for the correction of adolescent idiopathic scoliosis. Scoliosis Spinal Disord. 2018, 13, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, W.; Shen, M.; Xia, L. Anterior versus posterior approach in Lenke 5C adolescent idiopathic scoliosis: A meta-analysis of fusion segments and radiological outcomes. J. Orthop. Surg. Res. 2016, 11, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Rong, L. Comparison of combined anterior-posterior approach versus posterior-only approach in treating adolescent idiopathic scoliosis: A meta-analysis. Eur. Spine J. 2016, 25, 363–371. [Google Scholar] [CrossRef]
- Pourfeizi, H.H.; Sales, J.G.; Tabrizi, A.; Borran, G.; Alavi, S. Comparison of the Combined Anterior-Posterior Approach versus Posterior-Only Approach in Scoliosis Treatment. Asian Spine J. 2014, 8, 8–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobbs, M.B.; Lenke, L.G.; Kim, Y.J.; Luhmann, S.J.; Bridwell, K.H. Anterior/posterior spinal instrumentation versus posterior instrumentation alone for the treatment of adolescent idiopathic scoliotic curves more than 90 degrees. Spine 2006, 31, 2386–2391. [Google Scholar] [CrossRef]
- ShizShi, Z.; Chen, J.; Wang, C.; Li, M.; Li, Q.; Zhang, Y.; Li, C.; Qiao, Y.; Guo, K.; Xiangyang, C.; et al. Comparison of Thoracoscopic Anterior Release Combined With Posterior Spinal Fusion Versus Posterior-only Approach With an All-pedicle Screw Construct in the Treatment of Rigid Thoracic Adolescent Idiopathic Scoliosis. J. Spinal Disord. Tech. 2015, 28, e454–e459. [Google Scholar] [CrossRef]
Region(s) | No. of Families/Individuals | Model | Results/Comments | Ref. |
---|---|---|---|---|
19p13.3 | 7/52 | Autosomal dominant | Recruited Asians who developed scoliosis during adolescence | [16] |
6q distal 10q 18q | 1/14 | Autosomal dominant | Genome-wide search in one family of French Acadian and English descent (7 affected members), with validation of “hot spots” in a second large family | [17] |
17p.11 | 1/17 | Autosomal dominant | Three generations of an Italian family | [18] |
Xq23 Xq26.1 | 202/1198 | X-linked dominant | Max. LOD score of 1.69 was identified at marker GATA172D05 and found a LOD score of 2.23 in one family with 6 affected individuals | [19] |
4q35 | 47/176 | N/A | No linkage to MTNR1A (Melatonin receptor 1A) and no mutations in MTNR1A | [20] |
8p23.2-8q11.21 | 7 individuals | Autosomal dominant | Pericentric inversion in chromosome 8 disrupts SNTG1 (syntrophin); 5 of 7 in a family had SNTG1 deletion | [21] |
6, 9, 16 and 17 | 202/1198 | Autosomal dominant | Model independent linkage analysis | [22] |
19p11.3 | 202/1198 | Autosomal dominant | Threshold of curvature at 30 degrees. Fibrillin 3 and thromboxane A2 receptor: possible candidate | [23] |
Chromosome 3 Chromosome 7 | 1500 individuals | Autosomal dominant | Familial relationships confirmed via database | [18] |
8q | 52 | N/A | CHD7 Gene polymorphisms are associated with susceptibility to AIS | [24] |
9q31.2-q34.2; 17q25.3-qter | 25/208 | Autosomal dominant | Confirmation of 9q | [25] |
12p13.3 | 7/48 | Autosomal dominant; autosomal recessive | All families contribute to recessive model 5 of 7 families to dominant model | [15] |
18q | 1/22 | Autosomal dominant | LOD score at 3.86 Scoliosis and pectus excavatum | [26] |
3p26.3 (P < 8 × 10−8) | 419 | N/A | GWAS study CHL1, DSCAM, CNTNAP2 genes related to axon guidance | [27] |
LBX1 (P = 1.24 × 10−19) | 1050 | N/A | GWAS study LBX1 determines dorsal spinal neurons and alters somatosensory function | [28] |
Inherited Disorders of Connective Tissues | Neurologic Disorders | Musculoskeletal Disorders |
---|---|---|
Ehlers-Danlos syndrome | Tethered cord syndrome | Leg length discrepancy |
Homocystinuria | Syringomyelia | Developmental dysplasia of the hip |
Spinal tumor | Osteogenesis imperfecta | |
Neurofibromatosis | Klippel–Feil syndrome | |
Muscular dystrophy | ||
Cerebral palsy | ||
Poliomyelitis | ||
Friedreich’s ataxia | ||
Familial dysautonomia (Riley–Day syndrome) | ||
Werdnig–Hoffmann disease |
Type of Brace | Number of Patients | Risser | Average Initial Curvature | Definition of Brace Effectiveness | Results | Ref. |
---|---|---|---|---|---|---|
Milwaukee | 1020 | 0–>2 | 30–35° | Success: <5° progression Failure: ≥5° progression or surgery | Immediate bracing on Risser 0 and curves greater than 25° prevents curve progression | [51] |
Charleston | 139 | 0–2 | 25–49° | Success: 5° progression at end of treatment Failure: good: >5° but ≤10°; fair: >10° but no surgery or Δ brace; poor: surgery or Δ brace | 66% improved or progressed less than 5° | [52] |
Boston | 51 | 0–2 | 36–45° | Success: ≤5° progression Failure: ≥6° progression or surgery | 61% did not progress greater than 5° until bracing discontinued | [53] |
Providence | 102 | 0–2 | 27° | Success: ≤5° progression Failure: ≥6° progression at follow-up, addition of TLSO brace or surgery | 61–79% success rate; effective when curves are less than 35° | [54] |
Spine-Cor | 249 | 0–3 | 24–40° | Success: correction of >5 degrees or stabilization ± 5 degrees Failure: not defined | 60% success rate; prevented progression of the curve | [55] |
Type of Brace | Definition of Maturity | Average Follow-Up after Maturity | Limitation/Bias | Ref. |
---|---|---|---|---|
Milwaukee | No change in height on consecutive visits; Risser 4 or 5; 18 months after menarche for females | 6 years | 229 (22%) had operative intervention (curve >30° at the time of bracing and Risser sign of 0 or 1) and the 791 remaining were managed with the brace only A large number of participants were included in the study even if their curve progression of scoliosis were not minor and needed operative intervention | [51] |
Charleston | Not defined | 1.1 years | Average follow-up period is very short No specific definition of maturity is given 90 females and only 8 males; uneven gender distribution Lost during follow-up; from 139 to 98 patients (30% loss to follow up) Could not verify the true compliance rate of patients | [52] |
Boston | Skeletal maturity | 2.7 years | Limited sample size (only 51 patients) to evaluate its efficacy 47 females and only 4 males; uneven gender distribution 31 success treated patients had a mean value Cobb angle 3 of 9.9°and 20 failed patients had 39.2°; p-value = 0.35 Inability to identify threshold value for success rate with single curves | [53] |
Providence | No growth at 2 consecutive visits 6 months apart; Risser 4; 18 months after menarche for females | 2.6 years | Only consist of female participants Result also included those who were noncompliant with brace treatment; this could have impacted the interpretation of the data Has a greater percentage of participants with less progressive lumbar curves and Risser 3, 4 Compliance data is subjective and limited; worse responses from patients recorded | [54] |
Spine-Cor | Skeletal maturity | 2 years | Although the study was performed for a long period of time (from 1993 to 2006), many were lost during the follow-up; initially began with 493 to 249 fitted into inclusion criteria but ultimately 170 were followed up among which only 79 were being actively treated In addition, the inclusion criteria of the study are vague and not specific | [55] |
Approach | No. of Patients | Follow-Up Period | Level of Evidence | Results | Comments | Ref. |
---|---|---|---|---|---|---|
Anterior Posterior | 132 44 | Min. 2 years | III | No statistical difference between anterior (48%) and posterior (49%) approaches of SLCC. | Both approaches can lead to equal SLCC. | [62] |
Anterior Posterior | 30 30 | Min. 10 years | III | In PSF, AO occurred in 47%, progression of scoliosis in 7%, and degenerative disc in 43%. In ASF, AO occurred in 53%, progression of scoliosis in 37%, and degenerative disc in 53%. | Better scoliosis correction with ASF post-op; however, greater loss of correction upon 10 years follow-up post-op. | [63] |
Anterior Posterior | 135 218 | Post-op, 1 and 2 years | III | After surgery, T5-12 kyphosis was significantly greater with ASF and remained greater at 1 and 2 years post-op. | ASF was superior when restoring thoracic kyphosis to PSF. | [64] |
Anterior Posterior | 21 26 | Post-op, 1 and 2 years | III | Avg. of 0.61 fewer segments fused in ASF compared with 0.81 in PSF. SRS-22 was significantly higher in the ASF group. | ASF results in shorter fusion segments, better sagittal alignment, and QOL in Lenke Type 5 AIS. | [65] |
Anterior Posterior | 40 40 | 2 years | III | PSF had a significantly more fused level. ASF had a greater percent of lumbar Cobb correction with dLOF standardized to L3. | When dLOF was controlled, ASH led to superior thoracolumbar correction. | [66] |
Anterior Posterior | 22 24 | Min. 2 years | III | Lumbar curve % correction and un-fused thoracic curve spontaneous correction was similar in PSF and ASF. | No statistically significant difference in lumbar or thoracic correction. However, fusion levels are shorter in the ASF group. | [67] |
Anterior Posterior | 69 92 | Min. 2 years | II | No significant difference in % correction of the main curve, C7 decompensation, length of hospital stay, and SRS scores at 2-year follow-up. | ASF resulted in less fusion level. PSF resulted in less disc angulation below the lowest instrumented vertebrae; greater lumbar lordosis and % correction of lumbar prominence. | [68] |
Anterior Posterior | 18 24 | 2 years | II | No significant differences in the degree of improvement were seen in both. PSF corrected rib hump by 53% and thoracic Cobb angle by 62%, while ASF corrected by 61% and 64%. | The complications were varied and largely intrathoracic with ASF, and wound-related with PSF. | [69] |
Anterior | 25 | Avg. 15.2 years | III | Overall radiographical findings and patient outcome measures were satisfactory. | Average preoperative instrumented level was significantly improved at a follow-up. However, avg. percent predicted FVC and FEV1 were significantly reduced. | [70] |
Posterior | 42 | Avg. 5.6 years | IV | Post-op vertebral tilt below the site of fusion increased from 6.21 (±5.73) to 11.12 (±7.92) degrees. | PSF might result in irreversible complications (i.e., DDD) despite its safety and efficacy. New DDD was observed in 16%. | [71] |
Anterior Posterior | 308 | N/A | III | No significant differences in correction rate of thoracolumbar/lumbar curve. | ASF had significantly shorter fusion segments. PSF had a larger increasing Cobb angle of lumbar lordosis. | [72] |
Combined and Posterior | 872 | N/A | III | No significant difference in Cobb angle and percent predicted FEV1. | PSF group had a better percent predicted FVC, significantly fewer complications, blood loss, operative time, and length of hospital stay. | [73] |
Combined Posterior | 25 25 | N/A | III | Hospital stays in the posterior-only group was 11.84 ± 5.18 and the combined group was 26.5 ± 5.2 days. | PSF is advisable and advantageous in patients with severe scoliosis over 70 degrees. | [74] |
Combined Posterior | 20 34 | Min. 2 years | III | No statistical significance between the number of levels fused, preoperative coronal/sagittal Cobb angle, and coronal curve flexibility. | PSF provides superior correction without needing to enter the thorax and has a less negative effect on pulmonary function. | [75] |
Combined Posterior | 25 38 | 3, 6, 12, 24, and 36 months | II | No significant difference in operation time, blood loss, length of hospital stay, SRS-22 score, coronal curve flexibility, and post-op coronal Cobb correction. | 12 screws misplaced in PSF group. Implant density was significantly lower in the combined group. However, a combined approach is recommended in high-risk implant complication patients. | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.B.; Priefer, D.T.; Priefer, R. Scoliosis: Causes and Treatments. Adolescents 2022, 2, 220-234. https://doi.org/10.3390/adolescents2020018
Lee GB, Priefer DT, Priefer R. Scoliosis: Causes and Treatments. Adolescents. 2022; 2(2):220-234. https://doi.org/10.3390/adolescents2020018
Chicago/Turabian StyleLee, Gyu Bin, David T. Priefer, and Ronny Priefer. 2022. "Scoliosis: Causes and Treatments" Adolescents 2, no. 2: 220-234. https://doi.org/10.3390/adolescents2020018
APA StyleLee, G. B., Priefer, D. T., & Priefer, R. (2022). Scoliosis: Causes and Treatments. Adolescents, 2(2), 220-234. https://doi.org/10.3390/adolescents2020018