Sex and Stature Estimation from Scapular Measurements: Development and Independent Validation in Northeastern Thai Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Ethical Considerations
2.2. Measurements and Data Collection
- Maximum scapular height (MSH): Maximum linear distance between the superior and inferior angles.
- Maximum scapular breadth (MSB): Transverse distance from the glenoid margin midpoint to the most projecting point of the medial border.
- Maximum length of the spine (MLS): The maximum linear distance from the lateral point of the acromion to the medial end of the spine at the medial border.
- Length of the axillary border (LAB): Distance from the inferior glenoid cavity to the inferior angle.
- Longitudinal scapular length (LSL): Linear distance from the acromion process lateral point to the inferior angle.
- Glenoid cavity breadth (GCB): Maximum transverse diameter of the glenoid cavity.
- Glenoid cavity height (GCH): Maximum vertical diameter between the glenoid cavity’s superior and inferior margins.
- Scapula weight (SW): Total mass of completely dried scapula measured in grams.
2.3. Statistical Analyses
3. Results
3.1. Measurement Reliability
3.2. Sexual Dimorphism
3.3. Logistic Regression Models for Sex Determination
3.4. Stature Estimation from Scapular Measurements
3.5. Independent Validation of Sex and Stature Estimation Equations
3.5.1. Validation Sample Characteristics
3.5.2. Validation of the Sex Determination Equation
3.5.3. Validation of the Stature Estimation Equation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franklin, D.; Swift, L.; Flavel, A. ‘Virtual anthropology’ and radiographic imaging in the Forensic Medical Sciences. Egypt J. Forensic Sci. 2016, 6, 31–43. [Google Scholar] [CrossRef]
- Franklin, D.; Flavel, A.; Obertova, Z.; Souter, C.; Paterson, A. Bioarchaeological analysis of human skeletal remains associated with the wrecking of the retourschip “Batavia”, 1629: Burials BIB 11–14. Aust. Archaeol. 2024, 90, 329–346. [Google Scholar] [CrossRef]
- Krishan, K.; Chatterjee, P.M.; Kanchan, T.; Kaur, S.; Baryah, N.; Singh, R.K. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci. Int. 2016, 261, 165.e1–165.e8. [Google Scholar] [CrossRef]
- Hlad, M.; Veselka, B.; Steadman, D.W.; Herregods, B.; Elskens, M.; Annaert, R.; Boudin, M.; Capuzzo, G.; Dalle, S.; De Mulder, G.; et al. Revisiting metric sex estimation of burnt human remains via supervised learning using a reference collection of modern identified cremated individuals (Knoxville, USA). Am. J. Phys. Anthropol. 2021, 175, 777–793. [Google Scholar] [CrossRef]
- Jerković, I.; Bašić, Ž.; Anđelinović, Š.; Kružić, I. Adjusting posterior probabilities to meet predefined accuracy criteria: A proposal for a novel approach to osteometric sex estimation. Forensic Sci. Int. 2020, 311, 110273. [Google Scholar] [CrossRef]
- Mažuranić, A.; Bubalo, P.; Baković, M. Osteometric sex estimation using the humerus, the radius and the ulna in the contemporary population of Croatia. J. Forensic Leg. Med. 2025, 111, 102852. [Google Scholar] [CrossRef]
- Dabbs, G.R.; Moore-Jansen, P.H. A Method for Estimating Sex Using Metric Analysis of the Scapula. J. Forensic Sci. 2010, 55, 149–152. [Google Scholar] [CrossRef]
- Vassallo, S.; Davies, C.; Biehler-Gomez, L. Sex estimation using scapular measurements: Discriminant function analysis in a modern Italian population. Aust. J. Forensic Sci. 2021, 54, 785–798. [Google Scholar] [CrossRef]
- Ghasemi, B.; Ramezani, R.; Katourani, N.; Babahajian, A.; Yousefinejad, V. Anthropometric characteristics of scapula for sex determination using CT scans images in Iranian population. Forensic Imaging 2020, 23, 200408. [Google Scholar] [CrossRef]
- Oliveira Costa, A.C.; Feitosa de Albuquerque, P.P.; de Albuquerque, P.V.; Ribeiro de Oliveira, B.D.; Lima de Albuquerque, Y.M.; Caiaffo, V. Morphometric Analysis of the Scapula and Their Differences between Females and Males. Int. J. Morphol. 2016, 34, 1164–1168. [Google Scholar] [CrossRef]
- Papaioannou, V.A.; Kranioti, E.F.; Joveneaux, P.; Nathena, D.; Michalodimitrakis, M. Sexual dimorphism of the scapula and the clavicle in a contemporary Greek population: Applications in forensic identification. Forensic Sci. Int. 2012, 217, 231.e1–231.e7. [Google Scholar] [CrossRef]
- Hudson, A.; Peckmann, T.R.; Logar, C.J.; Meek, S. Sex determination in a contemporary Mexican population using the scapula. J. Forensic Leg. Med. 2016, 37, 91–96. [Google Scholar] [CrossRef]
- Curate, F.; Alves, I.; Rodrigues, T.; Garcia, S.J. Assigned sex estimation with the clavicle and scapula: A study in a Portuguese reference sample. Med. Sci. Law 2024, 64, 15–22. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Di Vella, G.; Introna, F., Jr. Using scapular measurements in regression formulae for the estimation of stature. Boll. Soc. Ital. Biol. Sper. 1998, 74, 75–82. [Google Scholar]
- Giurazza, F.; Del Vescovo, R.; Schena, E.; Cazzato, R.L.; D’Agostino, F.; Grasso, R.F.; Silvestri, S.; Beomonte Zobel, B. Stature estimation from scapular measurements by CT scan evaluation in an Italian population. Legal Med. 2013, 15, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Cui, J.H.; Luo, Y.Z.; Fan, F.; Yang, M.; Li, X.H.; Zhang, W.; Deng, Z.H. Estimation of stature and sex from scapular measurements by three-dimensional volume-rendering technique using in Chinese. Legal Med. 2016, 21, 58–63. [Google Scholar] [CrossRef]
- Monum, T.; Prasitwattanseree, S.; Das, S.; Siriphimolwat, P.; Mahakkanukrauh, P. Sex estimation by femur in modern Thai population. Clin. Ter. 2017, 168, e203–e207. [Google Scholar]
- Srinak, N.; Sukvitchai, P. Sex estimation from patella using discriminant analysis in Central Thai population. Can. Soc. Forensic Sci. J. 2023, 56, 231–247. [Google Scholar] [CrossRef]
- Jongmuenwai, W.; Boonpim, M.; Monum, T.; Sintubua, A.; Prasitwattanaseree, S.; Mahakkanukrauh, P. Sex estimation using radius in a Thai population. Anat. Cell Biol. 2021, 54, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Duangto, P.; Mahakkanukrauh, P. Sex estimation from upper limb bones in a Thai population. Anat. Cell Biol. 2020, 53, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Peckmann, T.R.; Scott, S.; Meek, S.; Mahakkanukrauh, P. Sex estimation from the scapula in a contemporary Thai population: Applications for forensic anthropology. Sci. Justice 2017, 57, 270–275. [Google Scholar] [CrossRef]
- National Statistical Office of Thailand. Number of Populations from Registration by Male, Female and Household, by Province, 2021–2024. 2022. Available online: https://www.nso.go.th/nsoweb/downloadFile/stat_impt/ie/file_xls_th (accessed on 1 April 2025). (In English).
- Kutanan, W.; Srithawong, S.; Kamlao, A.; Kampuansai, J. Mitochondrial DNA-HVR1 Variation Reveals Genetic Heterogeneity in Thai-Isan Peoples from the Lower Region of Northeastern Thailand. Adv. Anthropol. 2014, 4, 7–12. [Google Scholar] [CrossRef]
- Kutanan, W.; Kampuansai, J.; Srikummool, M.; Kangwanpong, D.; Ghirotto, S.; Brunelli, A.; Tassi, F.; Worawongkae, S.; Boattini, A.; Damasco, E.; et al. Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai-Kadai languages. Hum. Genet. 2017, 136, 85–98. [Google Scholar] [CrossRef]
- Monum, T.; Opaburanakul, T.; Samai, W. Stature estimation using scapula measurements by postmortem computed tomography in the southern Thai population. Egypt J. Forensic Sci. 2024, 14, 39. [Google Scholar] [CrossRef]
- Ülkir, M.; Farımaz, M.; Ataç, G.K.; Kırıcı, Y.; Karaağaoğlu, E.; Aldur, M. Sex determination from scapula by volume rendering technique using in Turkish population. Int. J. Morphol. 2023, 41, 569–576. [Google Scholar]
- Ali, Z.; Cox, C.; Stock, M.K.; Zandee vanRilland, E.E.; Rubio, A.; Fowler, D.R. Estimating Sex Using Metric Analysis of the Scapula by Postmortem Computed Tomography. J. Forensic Sci. 2018, 63, 1346–1349. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.M.; Tallman, S.D. Cranial and Postcranial Metric Sex Estimation in Modern Thai and Ancient Native American Individuals. Forensic Anthropol. 2019, 2, 233–252. [Google Scholar] [CrossRef]
- Bidmos, M.A.; Mazengenya, P. Accuracies of discriminant function equations for sex estimation using long bones of upper extremities. Int. J. Legal Med. 2021, 135, 1095–1102. [Google Scholar] [CrossRef]
- Mittino, G.; Langstaff, H.; García-Donas, J.G. Sex and stature estimation on the tibia: A virtual pilot study on a contemporary Hispanic population. J. R. Anthropol. Inst. 2024, 30, 743–761. [Google Scholar] [CrossRef]
- Alswat, K. Gender Disparities in Osteoporosis. J. Clin. Med. Res. 2017, 9, 382–387. [Google Scholar] [CrossRef]
- Emmanuelle, N.E.; Marie-Cécile, V.; Florence, T.; Jean-François, A.; Françoise, L.; Coralie, F.; Alexia, V. Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications. Int. J. Mol. Sci. 2021, 22, 1568. [Google Scholar] [CrossRef]
- Setboonsarng, S. Gender division of labour in integrated agriculture/aquaculture of Northeast Thailand. In Rural Aquaculture; Edwards, P., Little, D.C., Demaine, H., Eds.; CABI Publishing: Oxfordshire, UK, 2002; pp. 253–274. [Google Scholar]
- Mroz, K.H.; Sterczala, A.J.; Sekel, N.M.; Lovalekar, M.; Fazeli, P.K.; Cauley, J.A.; O’Leary, T.J.; Greeves, J.P.; Nindl, B.C.; Koltun, K.J. Differences in Body Composition, Bone Density, and Tibial Microarchitecture in Division I Female Athletes Participating in Different Impact Loading Sports. Calcif. Tissue Int. 2025, 116, 35. [Google Scholar] [CrossRef]
- Stock, J.T.; Macintosh, A.A. Lower limb biomechanics and habitual mobility among mid-Holocene populations of the Cis-Baikal. Quat. Int. 2016, 405, 200–209. [Google Scholar] [CrossRef]
- Emmert, M.E.; Emmert, A.S.; Goh, Q.; Cornwall, R. Sexual dimorphisms in skeletal muscle: Current concepts and research horizons. J. Appl. Physiol. 2024, 137, 274–299. [Google Scholar] [CrossRef] [PubMed]
- Oikonomopoulou, E.K.; Valakos, E.; Nikita, E. Population-specificity of sexual dimorphism in cranial and pelvic traits: Evaluation of existing and proposal of new functions for sex assessment in a Greek assemblage. Int. J. Legal Med. 2017, 131, 1731–1738. [Google Scholar] [CrossRef]
- Rose, S.; McGuire, T.G. Limitations of P-Values and R-squared for Stepwise Regression Building: A Fairness Demonstration in Health Policy Risk Adjustment. Am. Stat. 2019, 73, 152–156. [Google Scholar] [CrossRef]
- Scholtz, Y.; Steyn, M.; Pretorius, E. A geometric morphometric study into the sexual dimorphism of the human scapula. HOMO 2010, 61, 253–270. [Google Scholar] [CrossRef]
- Garzón-Alfaro, A.; Botella, M.; Rus Carlborg, G.; Prados Olleta, N.; González-Ramírez, A.R. Anthropometric study of the scapula in a contemporary population from granada. Sex estimation and glenohumeral osteoarthritis prevalence. PLoS ONE 2024, 19, e0305410. [Google Scholar] [CrossRef]
- Giurazza, F.; Schena, E.; Del Vescovo, R.; Cazzato, R.L.; Mortato, L.; Saccomandi, P.; Paternostro, F.; Onofri, L.; Zobel, B.B. Sex determination from scapular length measurements by CT scans images in a Caucasian population. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 1632–1635. [Google Scholar]
- Torimitsu, S.; Makino, Y.; Saitoh, H.; Sakuma, A.; Ishii, N.; Yajima, D.; Inokuchi, G.; Motomura, A.; Chiba, F.; Yamaguchi, R.; et al. Sex estimation based on scapula analysis in a Japanese population using multidetector computed tomography. Forensic Sci. Int. 2016, 262, 285.e1–285.e5. [Google Scholar] [CrossRef] [PubMed]
- Paulis, M.G.; Abu Samra, M.F. Estimation of sex from scapular measurements using chest CT in Egyptian population sample. J. Forensic Radiol. Imaging 2015, 3, 153–157. [Google Scholar] [CrossRef]
- Omar, N.; Mohd Ali, S.H.; Shafie, M.S.; Nik Ismail, N.A.; Hadi, H.; Ismail, R.; Mohd Nor, F. Sex estimation from reconstructed scapula models using discriminant function analysis in the Malaysian population. Aust. J. Forensic Sci. 2019, 53, 199–210. [Google Scholar] [CrossRef]
- Maranho, R.; Ferreira, M.T.; Curate, F. Sexual Dimorphism of the Human Scapula: A Geometric Morphometrics Study in Two Portuguese Reference Skeletal Samples. Forensic Sci. 2022, 2, 780–794. [Google Scholar] [CrossRef]
- Torimitsu, S.; Makino, Y.; Saitoh, H.; Sakuma, A.; Ishii, N.; Yajima, D.; Inokuchi, G.; Motomura, A.; Chiba, F.; Yamaguchi, R.; et al. Stature estimation in Japanese cadavers based on scapular measurements using multidetector computed tomography. Int. J. Legal Med. 2015, 129, 211–218. [Google Scholar] [CrossRef]
- Chiba, F.; Makino, Y.; Torimitsu, S.; Motomura, A.; Inokuchi, G.; Ishii, N.; Hoshioka, Y.; Abe, H.; Yamaguchi, R.; Sakuma, A.; et al. Stature estimation based on femoral measurements in the modern Japanese population: A cadaveric study using multidetector computed tomography. Int. J. Legal Med. 2018, 132, 1485–1491. [Google Scholar] [CrossRef]
- Menéndez Garmendia, A.; Sánchez-Mejorada, G.; Gómez-Valdés, J.A. Stature estimation formulae for Mexican contemporary population: A sample based study of long bones. J. Forensic Leg. Med. 2018, 54, 87–90. [Google Scholar] [CrossRef]
- Dowthwaite, J.N.; Kliethermes, S.A.; Scerpella, T.A. Biological Benchmarks for Adult Bone Mass Proportions in Young Females: A Prospective Longitudinal Analysis. Am. J. Hum. Biol. 2025, 37, e70118. [Google Scholar] [CrossRef]
- Zajitschek, S.R.; Zajitschek, F.; Bonduriansky, R.; Brooks, R.C.; Cornwell, W.; Falster, D.S.; Lagisz, M.; Mason, J.; Senior, A.M.; Noble, D.W.; et al. Sexual dimorphism in trait variability and its eco-evolutionary and statistical implications. eLife 2020, 9, e63170. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Hirschberg, A.L.; Bermon, S. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr. Rev. 2018, 39, 803–829. [Google Scholar] [CrossRef]
- Ingvoldstad, M.E.; Walter, B.S. The impact of antimeric lower limb length asymmetry on adult stature estimation. J. Forensic Sci. 2022, 67, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Murrah, W.M. Compound Bias due to Measurement Error When Comparing Regression Coefficients. Educ. Psychol. Meas. 2020, 80, 548–577. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Jantz, L.M. Developing Korean-specific equations of stature estimation. Forensic Sci. Int. 2016, 260, 105.e1–105.e11. [Google Scholar] [CrossRef]
- Raj, K.; Gokul, K.V.; Yadav, G.; Gupta, S.K.; Tyagi, S.; Srinivasamurthy, A. Stature estimation from the scapula measurements using 3D-volume rendering technique by regression equations in the Northern Indian population. Med. Sci. Law. 2023, 64, 182–189. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Ubelaker, D.H.; Wu, Y. Fragment analysis in forensic anthropology. Forensic Sci Res. 2020, 5, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Chomean, S.; Chatthai, N.; Sangchay, N.; Kaset, C. Enhancing forensic sex identification through AI-based analysis of the foramen magnum. Forensic Sci. Int. Rep. 2025, 11, 100411. [Google Scholar] [CrossRef]




| Step | Parameter | B | Wald | p Value | Exp (B) | 95% CI for Exp (B) | Nagelkerke R2 |
|---|---|---|---|---|---|---|---|
| 1 | MSH | 0.325 | 78.463 | <0.01 | 1.383 | 1.288–1.486 | 0.784 |
| Constant | −45.146 | 78.247 | <0.01 | ||||
| 2 | MSH | 0.223 | 29.173 | <0.01 | 1.250 | 1.153–1.355 | 0.868 |
| SW | 0.205 | 29.682 | <0.01 | 1.228 | 1.141–1.322 | ||
| Constant | −40.113 | 45.188 | <0.01 | ||||
| 3 | MSH | 0.158 | 11.465 | <0.01 | 1.171 | 1.069–1.282 | 0.886 |
| MLS | 0.162 | 9.760 | <0.01 | 1.176 | 1.062–1.302 | ||
| SW | 0.184 | 21.232 | <0.01 | 1.202 | 1.111–1.299 | ||
| Constant | −50.817 | 43.400 | <0.01 |
| Step | Sex Estimation Equation | Classification Accuracy Rate (%) | ||
|---|---|---|---|---|
| Female | Male | Overall | ||
| 1 | Sex = 0.325 (MSH) − 45.146 | 93.3 | 89.3 | 91.3 |
| 2 | Sex = 0.223 (MSH) + 0.205 (SW) − 40.113 | 92.0 | 94.0 | 93.0 |
| 3 | Sex = 0.158 (MSH) + 0.162 (MLS) + 0.184 (SW) − 50.817 | 95.3 | 97.3 | 96.3 |
| Sample | Model | Regression Equation | SEE | R | p-Value |
|---|---|---|---|---|---|
| Overall | 1 | Stature = 140.886 + 0.429 (SW) | 5.81 | 0.737 | <0.01 |
| 2 | Stature = 105.651 + 0.258 (SW) + 0.270 (LSL) | 5.38 | 0.763 | <0.01 | |
| 3 | Stature = 98.296 + 0.233 (SW) + 0.163 (LSL) + 0.246 (MSB) | 5.32 | 0.769 | <0.01 | |
| Male | 1 | Stature = 133.984 + 0.296 (MSB) | 5.14 | 0.329 | <0.01 |
| Female | 1 | Stature = 101.548 + 0.349 (LSL) | 5.13 | 0.457 | <0.01 |
| 2 | Stature = 106.611 + 0.266 (LSL) + 0.221 (SW) | 4.93 | 0.534 | <0.01 | |
| 3 | Stature = 96.662 + 0.240 (LSL) + 0.207 (SW) + 0.439 (GCH) | 4.85 | 0.558 | <0.01 | |
| 4 | Stature = 102.323 + 0.276 (LSL) + 0.222 (SW) + 0.640 (GCH) − 0.756 (GCB) | 4.77 | 0.582 | <0.01 |
| Parameter | Overall (n = 100) | Male (n = 50) | Female (n = 50) | p Value |
|---|---|---|---|---|
| Age (year) | 64.91 ± 11.91 | 65.58 ± 11.86 | 64.24 ± 12.04 | 0.58 |
| Stature (cm) | 160.43 ± 8.23 | 166.78 ± 5.03 | 154.08 ± 5.41 | <0.01 |
| MSH (mm) | 139.25 ± 12.12 | 148.96 ± 7.63 | 129.54 ± 6.80 | <0.01 |
| MSB (mm) | 103.60 ± 7.56 | 109.46 ± 4.95 | 97.73 ± 4.58 | <0.01 |
| MLS (mm) | 128.34 ± 10.35 | 135.79 ± 7.64 | 120.89 ± 6.70 | <0.01 |
| LAB (mm) | 124.07 ± 9.12 | 129.88 ± 7.42 | 118.26 ± 6.63 | <0.01 |
| LSL (mm) | 159.74 ± 11.83 | 168.58 ± 7.84 | 150.90 ± 7.86 | <0.01 |
| GCB (mm) | 25.94 ± 2.99 | 28.21 ± 2.32 | 23.68 ± 1.50 | <0.01 |
| GCH (mm) | 34.75 ± 3.44 | 36.90 ± 3.01 | 32.60 ± 2.33 | <0.01 |
| SW (g) | 44.68 ± 14.01 | 55.91 ± 9.80 | 33.45 ± 6.58 | <0.01 |
| Parameters | Training Sample (n = 300) | Validation Sample (n = 100) | p Value |
|---|---|---|---|
| Overall accuracy (%) | 96.3 | 95.0 | 0.56 a |
| Male accuracy (Sensitivity) (%) | 97.3 | 96.0 | 0.64 a |
| Female accuracy (Specificity) (%) | 95.3 | 94.0 | 0.71 a |
| Positive Predictive Value (PPV) (%) | 95.4 | 94.1 | 0.64 a |
| Negative Predictive Value (NPV) (%) | 97.3 | 95.9 | 0.73 a |
| Positive Likelihood Ratio (LR+) | 20.7 | 16.0 | |
| Negative Likelihood Ratio (LR−) | 0.03 | 0.04 | |
| Kappa coefficient | 0.927 | 0.900 | - |
| AUC (SE), (95% CI) | 0.985 (0.007) | 0.970 (0.018) | - |
| (0.972–0.998) | (0.934–1.000) |
| Parameters | Training Sample (n = 300) | Validation Sample (n = 100) | p-Value |
|---|---|---|---|
| MAE ± SD | 4.14 ± 2.98 | 3.65 ± 2.97 | 0.07 a |
| MAPE ± SD | 2.59 ± 1.85 | 2.28 ± 1.86 | 0.08 a |
| R2 | 0.623 | 0.626 | - |
| ICC (95% CI) | 0.74 (00.69–0.79) | 0.74 (0.64–0.82) | - |
| Author | Population | Method | Accuracy Rate (%) |
|---|---|---|---|
| Scholtz et al., (2010) [39] | South African | Dry bone | 91.1–95.6 |
| Dabbs & Moore-Jansen, (2010) [7] | American | Dry bone | 92.5–95.8 |
| Papaioannou et al., (2012) [11] | Greek | Dry bone | 77.8–97.0 |
| Giurazza et al., (2013) [41] | Italian | CT scan | 84.0–89.0 |
| Paulis & Abu Samra, (2015) [43] | Egyptian | CT scan | 87.0–95.0 |
| Zhang, (2016) [16] | Chinese | CT scan | 79.0–88.4 |
| Torimitsu et al., (2016) [42] | Japanese | CT scan | 75.7–94.5 |
| Oliveira Costa, (2016) [10] | Brazilian | Dry bone | NA |
| Hudson et al., (2016) [12] | Mexican | Dry bone | 82.9–91.1 |
| Peckmann, et al., (2017) [21] | Northern Thai | Dry bone | 78.0–88.0 |
| Ali et al., (2018) [27] | Maryland (USA) | CT scan | 94.5 a |
| Omar et al., (2019) [44] | Malaysian | CT scan | 82.5–95.0 |
| Vassallo et al., (2021) [8] | Italian | Dry bone | 65.0–96.0 |
| Maranho et al., (2022) [45] | Portuguese | Dry bone | 80.1 a |
| Ghasemi et al., (2022) [9] | Iranian | CT scan | 76.0–93.0 |
| Garzón-Alfaro et al., (2024) [40] | Spanish | Dry bone | 92.1–98.3 |
| Curate et al., (2024) [13] | Portuguese | Dry bone | 85.3–91.2 |
| Duangchit et al. (This study) | Northeastern Thai | Dry bone | 95.3–97.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duangchit, S.; Imkrajang, N.; Boonthai, W.; Tangsrisakda, N.; Innoi, S.; Iamsaard, S.; Poodendaen, C. Sex and Stature Estimation from Scapular Measurements: Development and Independent Validation in Northeastern Thai Population. Forensic Sci. 2025, 5, 66. https://doi.org/10.3390/forensicsci5040066
Duangchit S, Imkrajang N, Boonthai W, Tangsrisakda N, Innoi S, Iamsaard S, Poodendaen C. Sex and Stature Estimation from Scapular Measurements: Development and Independent Validation in Northeastern Thai Population. Forensic Sciences. 2025; 5(4):66. https://doi.org/10.3390/forensicsci5040066
Chicago/Turabian StyleDuangchit, Suthat, Naphatchaya Imkrajang, Worrawit Boonthai, Nareelak Tangsrisakda, Sararat Innoi, Sitthichai Iamsaard, and Chanasorn Poodendaen. 2025. "Sex and Stature Estimation from Scapular Measurements: Development and Independent Validation in Northeastern Thai Population" Forensic Sciences 5, no. 4: 66. https://doi.org/10.3390/forensicsci5040066
APA StyleDuangchit, S., Imkrajang, N., Boonthai, W., Tangsrisakda, N., Innoi, S., Iamsaard, S., & Poodendaen, C. (2025). Sex and Stature Estimation from Scapular Measurements: Development and Independent Validation in Northeastern Thai Population. Forensic Sciences, 5(4), 66. https://doi.org/10.3390/forensicsci5040066

