Age Estimation Through Osteon Histomorphometry: Analysis of Femoral Cross-Sections from Historical Autopsy Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Histological Methods
- a.
- Secondary osteon (the Haversian canal area must be smaller than ¼ of the osteon area).
- b.
- Not in the resorption phase.
- c.
- With a well-defined and complete cement line.
- d.
- Absence of Volkmann’s canals crossing the osteon.
- e.
- The ratio between the Haversian canal maximum and minimum diameter must be lower than 2:1.
2.2. Statistical Methods
- 0.0–0.19: “very weak”;
- 0.20–0.39: “weak”;
- 0.40–0.59: “moderate”;
- 0.60–0.79: “strong”;
- 0.80–1.0: “very strong”.
3. Results
4. Discussion
4.1. Objective 1a: Correlation Between Sex and Bone Maturation
4.2. Objective 1b: Correlation Between Age and Bone Maturation
4.3. Objective 2: The Age Prediction Model
4.4. Limitations of the Study
4.5. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | Age | Sex | Cause of Death |
---|---|---|---|
2 | 79 | F | Metabolic disease |
3 | 79 | F | Metabolic disease |
6a | 75 | F | |
6b | 75 | F | |
7 | 27 | F | |
8 | 73 | M | |
9a | 72 | F | |
12a | 71 | M | |
12b | 71 | M | |
13 | 74 | M | |
14 | 71 | M | |
15 | 71 | M | |
16 | 79 | F | |
18 | 81 | M | |
19 | 74 | M | |
20 | 80 | F | |
21 | 47 | M | |
22 | 60 | M | Metabolic disease |
23 | 52 | M | |
24 | 57 | M | |
25 | 86 | F | |
26a | 81 | F | |
26b | 81 | F | |
27 | 87 | F | |
30 | 86 | F | |
31 | 92 | F | |
32 | 80 | F | |
33 | 76 | F | Metabolic disease |
34 | 77 | F | |
36 | 77 | F | |
37 | 78 | M | |
38 | 81 | F | |
39 | 79 | M | |
41 | 90 | F | Metabolic disease |
42 | 78 | M | |
43 | 92 | F | |
44a | 71 | M | |
44b | 71 | M | |
45a | 71 | M | |
48 | 30 | F | Metabolic disease |
49 | 47 | M | |
50a | 69 | F | |
50b | 69 | F | |
51 | 56 | F | |
52 | 76 | F | |
53 | 64 | M | |
54 | 60 | M | |
55 | 42 | F | Metabolic disease |
56 | 44 | M | |
57 | 22 | F | |
58 | 22 | F | |
59a | 41 | M | |
61a | 41 | F | |
61b | 41 | F | |
62 | 41 | M | Metabolic disease |
63 | 41 | M | Metabolic disease |
64 | 41 | M | Metabolic disease |
65 | 19 | F | |
66 | 26 | F | |
67 | 42 | F | Metabolic disease |
68 | 66 | M | |
69 | 26 | F | |
70 | 52 | M | |
72 | 22 | F | |
73 | 48 | M | |
75 | 27 | F | |
77 | 68 | F | |
78 | 66 | M | Metabolic disease |
79 | 23 | F | Metabolic disease |
80 | 67 | F | |
81 | 69 | F | |
84 | 80 | M | |
85 | 27 | F | |
86a | 41 | M | |
86b | 41 | M | |
87 | 65 | M | |
88 | 65 | M | |
89 | 64 | M | |
90 | 32 | M | |
91 | 32 | M | |
93 | 57 | F | |
95 | 56 | F | |
96 | 81 | M | |
98 | 65 | F | |
99 | 80 | F | |
100a | 24 | F | |
101 | 41 | M | |
102 | 34 | F | Metabolic disease |
103b | 24 | F | |
104 | 18 | F | |
105 | 66 | M | |
107 | 69 | F | |
110 | 76 | F | |
111 | 65 | F | |
115 | 57 | F |
References
- Balthazard, L.; Lebrun, R. Les canaux de Havers de l’os humain aux différents ages. Ann. Hyg. Pub. Med. Lég. 1911, 15, 144–152. [Google Scholar]
- Amprino, R.; Bairati, A. Le variazioni nella struttura dell’osso in relazione all’età e la loro importanza medicoforense. Arch. Antrop. trim. 1938, 16, 61–74. [Google Scholar]
- Andronowski, J.M.; Crowder, C.; Soto-Martinez, M. Recent advancements in the analysis of bone microstructure: New dimensions in forensic anthropology. Forensic Sci. Res. 2018, 3, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Kerley, E.R. The microscopic determination of age in human bone. Am. J. Phys. Anthropol. 1965, 23, 149–164. [Google Scholar] [CrossRef]
- Thompson, D.D. Microscopic determination of age at death in an autopsy series. J. Forensic Sci. 1981, 26, 470–475. [Google Scholar] [CrossRef]
- Ramirez Rozzi, F.; Petrone, S.; Plischuk, M.; Desántolo, B.; Garcia, M. Assessment of age at death in perinatal individuals from dental histology analysis: An exploratory study. J. Oral Biol. 2025, 9, 1. [Google Scholar] [CrossRef]
- Botha, D.; Lynnerup, N.; Steyn, M. Inter-population variation of histomorphometric variables used in the estimation of age-at-death. Int. J. Leg. Med. 2020, 134, 709–719. [Google Scholar] [CrossRef]
- Karydi, C.; García-Donas, J.G.; Tsiminikaki, K.; Bonicelli, A.; Moraitis, K.; Kranioti, E.F. Estimation of age-at-death using cortical bone histomorphometry of the rib and femur: A validation study on a British population. Biology 2022, 11, 1615. [Google Scholar] [CrossRef]
- Frost, H.M.A. Update of bone physiology and Wolff’s law for clinicians. Angle Orthod. 2004, 74, 3–15. [Google Scholar]
- Cummaudo, M.; Raffone, C.; Cappella, A.; Márquez-Grant, N.; Cattaneo, C. Histomorphometric analysis of the variability of the human skeleton: Forensic implications. Leg. Med. 2020, 45, 101711. [Google Scholar] [CrossRef]
- Pfeiffer, S.; Lazenby, R.; Chiang, J. Brief communication: Cortical remodeling data are affected by sampling location. Am. J. Phys. Anthropol. 1995, 96, 89–92. [Google Scholar] [CrossRef]
- Gocha, T.P. Mapping Spatial Patterns in Cortical Remodeling from the Femoral Midshaft Using Geographic Information Systems Software: Implications for Age Estimation from Adult Human Skeletal Remains. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2014. [Google Scholar]
- Maggio, A.; Franklin, D. Femoral histomorphometric age-at-death studies: The issue of sample size and standard error. Med. Sci. Law 2020, 60, 257–265. [Google Scholar] [CrossRef]
- Yerramshety, J.; Akkus, O. Changes in cortical bone mineral and microstructure with aging and osteoporosis. In Skeletal Aging and Osteoporosis: Biomechanics and Mechanobiology; Silva, M.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–131. [Google Scholar] [CrossRef]
- Barger-Lux, M.J.; Recker, R.R. Bone microstructure in osteoporosis: Transilial biopsy and histomorphometry. Top. Magn. Reson. Imaging 2002, 13, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Reisinger, A.G.; Pahr, D.H.; Thurner, P.J. Effects of osteoporosis on bone morphometry and material properties of individual human trabeculae in the femoral head. JBMR Plus 2021, 5, e10503. [Google Scholar] [CrossRef] [PubMed]
- Robling, A.G.; Stout, S.D. Histomorphometry of human cortical bone: Applications to age estimation. In Biological Anthropology of the Human Skeleton, 2nd ed.; Katzenberg, M.A., Saunders, S.R., Eds.; Wiley-Liss: Hoboken, NJ, USA, 2008; pp. 149–182. [Google Scholar] [CrossRef]
- Streeter, M.A. The determination of age in subadults from the rib cortical microstructure. In Forensic Microscopy for Skeletal Tissues. Methods in Molecular Biology; Bell, L., Ed.; Humana Press: Totowa, NJ, USA, 2012; Volume 915, pp. 121–135. [Google Scholar] [CrossRef]
- Ericksen, M.F. Histologic estimation of age at death using the anterior cortex of the femur. Am. J. Phys. Anthropol. 1991, 84, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Iwaniec, U.T.; Crenshaw, T.D.; Shoeninger, M.J.; Stout, S.D.; Ericksen, M.F. Methods for improving the efficiency of estimating total osteon density in the human anterior mid-diaphyseal femur. Am. J. Phys. Anthropol. 1998, 107, 13–24. [Google Scholar] [CrossRef]
- Streeter, M. A four-stage method of age at death estimation for use in the subadult rib cortex. J. Forensic Sci. 2010, 55, 1019–1024. [Google Scholar] [CrossRef]
- Walsh, W.R.; Walton, M.; Bruce, W.; Yu, Y.; Gillies, R.M.; Svehla, M. Cell structure and biology of bone and cartilage. In Handbook of Histology Methods for Bone and Cartilage; An, Y.H., Martin, K.L., Eds.; Humana Press: Totowa, NJ, USA, 2003; pp. 1–20. [Google Scholar]
- Yoshino, M.; Imaizumi, K.; Miyasaka, S.; Seta, S. Histological estimation of age at death using microradiographs of humeral compact bone. Forensic Sci. Int. 1994, 64, 191–198. [Google Scholar] [CrossRef]
- Pfeiffer, S. Variability in osteon size in recent human populations. Am. J. Phys. Anthropol. 1998, 106, 219–227. [Google Scholar] [CrossRef]
- Jowsey, J. Studies of Haversian systems in man and some animals. J. Anat. 1966, 100, 857–864. [Google Scholar]
- Singh, I.J.; Gunberg, D.L. Estimation of age at death in human males from quantitative histology of bone fragments. Am. J. Phys. Anthropol. 1970, 33, 373–381. [Google Scholar] [CrossRef]
- Pankovich, A.M.; Simmons, D.J.; Kulkarni, V.V. Zonal osteons in cortical bone. Clin. Orthop. 1974, 100, 356–363. [Google Scholar] [CrossRef]
- Dominguez, V.M.; Agnew, A.M. Examination of factors potentially influencing osteon size in the human rib. Anat. Rec. 2016, 299, 313–324. [Google Scholar] [CrossRef]
- Dominguez, V.M.; Mavroudas, S. Bone histology for skeletal age-at-death estimation. In Age Estimation: A Multidisciplinary Approach; Adserias-Garriga, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 145–159. [Google Scholar] [CrossRef]
- Pichetpan, K.; Singsuwan, P.; Mahakkanukrauh, P. Age estimation using medial clavicle by histomorphometry method with artificial intelligence: A review. Med. Sci. Law 2024, 64, 329–342. [Google Scholar] [CrossRef]
- Garcia-Donas, J.G.; Bonicelli, A.; Scholl, A.R.; Lill, C.; Paine, R.R.; Kranioti, E.F. Rib histomorphometry: A reliability and validation study with a critical review of histological techniques for forensic age estimation. Leg. Med. 2020, 49, 101827. [Google Scholar] [CrossRef]
- Crowder, C.M. Evaluating the Use of Quantitative Bone Histology to Estimate Adult Age at Death. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2005. [Google Scholar]
- Goliath, J. Variation in Osteon Circularity and Its Impact on Estimating Age at Death. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2010. [Google Scholar]
- Schneider, C.; Rasband, W.; Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R, version 4.4.2; Posit, PBC: Boston, MA, USA, 2023. Available online: https://posit.co (accessed on 10 January 2025).
- Dodge, Y. Spearman Rank Correlation Coefficient. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Heaney, R.P.; Recker, R.R.; Saville, P.D. Menopausal changes in bone remodeling. J. Lab. Clin. Med. 1978, 92, 964–970. [Google Scholar]
- Heaney, R.P.; Recker, R.R.; Saville, P.D. Menopausal changes in calcium balance performance. J. Lab. Clin. Med. 1978, 92, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, A.M. Quantum concept of bone remodeling and turnover: Implications for the pathogenesis of osteoporosis. Calcif Tissue Int. 1979, 28, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Stout, S.D.; Paine, R.R. Histological age estimation using rib and clavicle. Am. J. Phys. Anthropol. 1992, 87, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Stout, S.D.; Dietze, W.H.; Iscan, M.Y.; Loth, S.R. Estimation of age at death using cortical histomorphometry of the sternal end of the fourth rib. J. Forensic. Sci. 1994, 39, 778–784. [Google Scholar] [CrossRef]
- Stout, S.D.; Porro, M.A.; Perotti, B. Brief communication: A test and correction of the clavicle method of Stout and Paine for histological age estimation of skeletal remains. Am. J. Phys. Anthropol. 1996, 100, 139–142. [Google Scholar] [CrossRef]
- Ericksen, M.F.; Stix, A.I. Histologic examination of age of the First African Baptist Church adults. Am. J. Phys. Anthropol. 1991, 85, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Crowder, C.M.; Dominguez, V.D. A new method for histological age estimation of the femur. In Proceedings of the 2012 Meeting of the American Academy of Forensic Sciences, Atlanta, GA, USA, 21–27 February 2012. [Google Scholar]
- Crowder, C.M. Estimation of Age at Death Using Cortical Bone Histomorphometry; National Institute of Justice Final Technical Report–Award #2010-DN-BX-KO35; U.S. Department of Justice: Washington, DC, USA, 2013. [Google Scholar]
- Gocha, T.P.; Robling, A.G.; Stout, S.D. Histomorphometry of human cortical bone. In Biological Anthropology of the Human Skeleton, 3rd ed.; Katzenberg, M.A., Grauer, A.L., Eds.; Wiley-Liss: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Currey, J.D. Some effects of ageing in human haversian systems. J. Anat. 1964, 98, 69–75. [Google Scholar] [PubMed]
- Goliath, J.R.; Stewart, M.C.; Stout, S.D. Variation in osteon histomorphometrics and their impact on age-at-death estimation in older individuals. Forensic Sci. Int. 2016, 262, 282.e1–282.e6. [Google Scholar] [CrossRef]
- Britz, H.M.; Thomas, C.D.L.; Clement, J.G.; Cooper, D.M.L. The relation of femoral osteon geometry to age, sex, height and weight. Bone 2009, 45, 77–83. [Google Scholar] [CrossRef]
- Richman, E.A.; Ortner, D.J.; Schulter-Ellis, F.P. Differences in intracortical bone remodeling in three aboriginal American populations: Possible dietary factors. Calcif. Tissue Int. 1979, 28, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Skedros, J.G.; Su, S.C.; Bloebaum, R.D. Biomechanical implications of mineral content and microstructural variations in cortical bone of horse, elk, and sheep calcanei. Anat. Rec. 1997, 249, 297–316. [Google Scholar] [CrossRef]
- Stout, S.D.; Lueck, R. Bone remodeling rates and skeletal maturation in three archaeological skeletal populations. Am. J. Phys. Anthropol. 1995, 98, 161–171. [Google Scholar] [CrossRef]
- Bantavanou, P.; Siegmund, F.; Moraitis, K.; Pavlidis, P.; Bertsatos, A.; Valakos, E.; Karakasi, M.-V.; Manthou, M.-E.; Papageorgopoulou, C. Histomorphometric method for age-at-death estimation using the anterior side of the femoral midshaft. J. Archaeol. Sci. Rep. 2025, 62, 105012. [Google Scholar] [CrossRef]
- Narasaki, S. Estimation of age at death by femoral osteon remodeling: Application of Thompson’s core technique to modern Japanese. J. Anthropol. Soc. Nippon. 1990, 98, 29–38. [Google Scholar] [CrossRef]
- Seeman, E. Bone quality: The material and structural basis of bone strength. J. Bone Miner. Metab. 2008, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Drusini, A. Refinements of two methods for the histomorphometric determination of age in human bone. Z. Morphol. Anthropol. 1987, 77, 167–176. [Google Scholar] [CrossRef]
- Drusini, A. Sampling location in cortical bone histology. Am. J. Phys. Anthropol. 1996, 100, 609–610. [Google Scholar] [CrossRef]
- Ott, S.M.; Oleksik, A.; Lu, Y.L.; Harper, K.; Lips, P. Bone histomorphometric and biochemical marker results of a 2-year placebo-controlled trial of raloxifene in postmenopausal women. J. Bone Miner Res. 2002, 17, 341–348. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Huang, J.; Deng, K.; Zhang, J.; Qin, Z.; Wang, Z.; Zhang, X.; Tuo, Y.; Chen, L.; et al. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm. Forensic Sci. Int. 2019, 302, 109922. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Guo, W.; Ma, K.; Qin, Z.; Zhang, J.; Chen, L.; Xiong, L.; Huang, J.; Wan, C.; et al. A diagnostic strategy for pulmonary fat embolism based on routine H&E staining using computational pathology. Int. J. Leg. Med. 2024, 138, 849–858. [Google Scholar]
- Pigaiani, N.; Oliva, A.; Cirielli, V.; Grassi, S.; Arena, V.; Solari, L.M.; Tatriele, N.; Raniero, D.; Brunelli, M.; Gobbo, S.; et al. iForensic: Multicentric validation of digital whole-slide images (WSI) in forensic histopathology setting according to the College of American Pathologists guidelines. Int. J. Leg. Med. 2025, 139, 1161–1168. [Google Scholar] [CrossRef]
Group | N | Mean Age ± SD | Min | Max |
---|---|---|---|---|
Total | 95 | 59.3 ± 20.7 | 18 | 92 |
Male | 41 | 59.0 ± 19.6 | 27 | 92 |
Female | 54 | 59.6 ± 21.3 | 18 | 92 |
N | Minimum | Maximum | Mean | Std.Dev. | |
---|---|---|---|---|---|
Age (years) | 95 | 18 | 92 | 59.263 | 20.675 |
On. | 95 | 3 | 36 | 17.189 | 6.317 |
Fg.On. | 95 | 6 | 33 | 17.432 | 5.727 |
On.Pr. | 95 | 0 | 8 | 1.305 | 1.936 |
OPD (osteons/mm2) | 95 | 6.170 × 10−15 | 5.800 × 10−14 | 1.786 × 10−14 | 6.218 × 10−15 |
OPD(I) (osteons/mm2) | 95 | 1.470 × 10−15 | 2.520 × 10−14 | 8.846 × 10−15 | 3.598 × 10−15 |
OPD(F) (osteons/mm2) | 95 | 3.080 × 10−15 | 3.290 × 10−14 | 9.012 × 10−15 | 3.772 × 10−15 |
On.Pr(D) (osteons/mm2) | 95 | 0.000 | 3.920 × 10−15 | 6.587 × 10−16 | 9.787 × 10−16 |
On.Ar (mm2) | 95 | 0 | 0.099 | 0.035 | 0.013 |
On.Cr. | 95 | 0.788 | 0.937 | 0.874 | 0.035 |
Correlation’s Coefficient | p-Value | |
---|---|---|
Number of Intact Secondary Osteons (On.) | 0.335 | p < 0.001 |
Number of Fragmentary Secondary Osteons (Fg.On.) | 0.047 | p = 0.653 |
Number of Primary Osteons (On.Pr.) | −0.055 | p = 0.597 |
Osteon Population Density (OPD) | 0.294 | p = 0.003 |
Intact Osteon Population Density (OPD_I) | 0.306 | p = 0.002 |
Fragmentary Osteon Population Density (OPD_F) | 0.051 | p = 0.626 |
Primary Osteon Population Density (On.Pr.D) | −0.051 | p = 0.623 |
Mean osteonal Area (On.Ar.) | −0.295 | p = 0.003 |
Osteon Circularity (On.Cr.) | −0.216 | p = 0.035 |
r Value | Variable Chosen | |
---|---|---|
On. and OPD(I) | 0.845 | On. |
OPD(F) and OPD | 0.851 | OPD |
OPD(I) and OPD | 0.836 | OPD |
Fg.On. and OPD_F | 0.747 | Fg.On. |
On.Pr and On.Pr_D | 0.999 | On.Pr. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minella, R.; Steiger, G.S.; Di Fazio, A.; Introna, F.; Macorano, E. Age Estimation Through Osteon Histomorphometry: Analysis of Femoral Cross-Sections from Historical Autopsy Samples. Forensic Sci. 2025, 5, 50. https://doi.org/10.3390/forensicsci5040050
Minella R, Steiger GS, Di Fazio A, Introna F, Macorano E. Age Estimation Through Osteon Histomorphometry: Analysis of Femoral Cross-Sections from Historical Autopsy Samples. Forensic Sciences. 2025; 5(4):50. https://doi.org/10.3390/forensicsci5040050
Chicago/Turabian StyleMinella, Raffaella, Giada Sciâdi Steiger, Aldo Di Fazio, Francesco Introna, and Enrica Macorano. 2025. "Age Estimation Through Osteon Histomorphometry: Analysis of Femoral Cross-Sections from Historical Autopsy Samples" Forensic Sciences 5, no. 4: 50. https://doi.org/10.3390/forensicsci5040050
APA StyleMinella, R., Steiger, G. S., Di Fazio, A., Introna, F., & Macorano, E. (2025). Age Estimation Through Osteon Histomorphometry: Analysis of Femoral Cross-Sections from Historical Autopsy Samples. Forensic Sciences, 5(4), 50. https://doi.org/10.3390/forensicsci5040050