Intelligence and the Value of Forensic Science
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Recent Literature on Forensic Intelligence
3.2. The Economic Problem and the Crime Laboratory
3.3. Applications of Front-End Forensics
3.3.1. Arkansas
3.3.2. Houston Forensic Science Center
3.3.3. Miami-Dade
3.3.4. Phoenix
3.4. Measuring the Value of Forensic Science
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Julian, R.D.; Kelty, S.F.; Roux, C.; Woodman, P.; Robertson, J.; Davey, A.; Hayes, R.; Margot, P.; Ross, A.; Sibly, H.; et al. What is the Value of Forensic Science? An Overview of the Effectiveness of Forensic Science in the Australian Criminal Justice System Project. Aust. J. Forensic Sci. 2011, 43, 217–229. [Google Scholar] [CrossRef]
- McCollister, K.E.; French, M.T.; King, H. The Cost of Crime to Society: New Crime-Specific Estimates for Policy and Program Evaluation. Drug Alcohol Depend. 2010, 108, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Meijer, A.; Wessels, M. Predictive Policing: Review of Benefits and Drawbacks. Int. J. Public Adm. 2019, 42, 1031–1039. [Google Scholar] [CrossRef]
- Houck, M.M.; Riley, R.A.; Speaker, P.J.; Witt, T.S. FORESIGHT: A Business Approach to Improving Forensic Science Services. Foren. Forensic Sci. Policy Manag. 2009, 1, 85–95. [Google Scholar] [CrossRef]
- Speaker, P.J. Project FORESIGHT Benchmark Data 2012–2013; WVU Research Repository: Morgantown, WV, USA, 2014; Available online: https://researchrepository.wvu.edu/faculty_publications/1141/ (accessed on 15 November 2023).
- Speaker, P.J. Project FORESIGHT Benchmark Data 2013–2014; WVU Research Repository: Morgantown, WV, USA, 2015; Available online: https://researchrepository.wvu.edu/faculty_publications/1142/ (accessed on 15 November 2023).
- Speaker, P.J. FORESIGHT Benchmark Data 2014–2015; WVU Research Repository: Morgantown, WV, USA, 2016; Available online: https://researchrepository.wvu.edu/faculty_publications/1143/ (accessed on 15 November 2023).
- Speaker, P.J. FORESIGHT Benchmark Data 2015–2016; WVU Research Repository: Morgantown, WV, USA, 2017; Available online: https://researchrepository.wvu.edu/faculty_publications/1144/ (accessed on 15 November 2023).
- Speaker, P.J. Project FORESIGHT Annual Report, 2016–2017; WVU Research Repository: Morgantown, WV, USA, 2018; Available online: https://researchrepository.wvu.edu/faculty_publications/1140/ (accessed on 15 November 2023).
- Speaker, P.J. Project FORESIGHT Annual Report, 2017–2018; WVU Research Repository: Morgantown, WV, USA, 2019; Available online: https://researchrepository.wvu.edu/faculty_publications/1139/ (accessed on 15 November 2023).
- Speaker, P.J. Project FORESIGHT Annual Report, 2018–2019; WVU Research Repository: Morgantown, WV, USA, 2020; Available online: https://researchrepository.wvu.edu/faculty_publications/2910/ (accessed on 15 November 2023).
- Speaker, P.J. Project FORESIGHT Annual Report, 2019–2020; WVU Research Repository: Morgantown, WV, USA, 2021; Available online: https://researchrepository.wvu.edu/faculty_publications/3008/ (accessed on 15 November 2023).
- Speaker, P.J. Project FORESIGHT Annual Report, 2020–2021; WVU Research Repository: Morgantown, WV, USA, 2022; Available online: https://researchrepository.wvu.edu/faculty_publications/3093/ (accessed on 15 November 2023).
- Speaker, P.J. Project FORESIGHT Annual Report, 2021–2022; WVU Research Repository: Morgantown, WV, USA, 2023; Available online: https://researchrepository.wvu.edu/faculty_publications/3284/ (accessed on 15 November 2023).
- Wang, C.; Wein, L.M. Analyzing Approaches to the Backlog of Untested Sexual Assault Kits in the USA. J. Forensic Sci. 2018, 63, 1110–1121. [Google Scholar] [CrossRef]
- Speaker, P.J. The Jurisdictional Return on Investment from Processing the Backlog of Untested Sexual Assault Kits. Forensic Sci. Int. Synerg. 2019, 1, 18–23. [Google Scholar] [CrossRef]
- Speaker, P.J.; Wells, R. The Return on Investment from Rapid DNA Testing of Sexual Assault Kits: The Kentucky State Police Forensic Laboratory Experience. Med. Res. Arch. 2021, 9, 11. [Google Scholar] [CrossRef]
- Baechler, S.; Morelato, M.; Gittelson, S.; Walsh, S.; Margot, P.; Roux, C.; Ribaux, O. Breaking the Barriers between Intelligence, Investigation and Evaluation: A Continuous Approach to Define the Contribution and Scope of Forensic Science. Forensic Sci. Int. 2020, 309, 110213. [Google Scholar] [CrossRef]
- Delgado, Y.; Price, B.S.; Speaker, P.J.; Stoiloff, S.L. Forensic Intelligence: Data Analytics as the Bridge between Forensic Science and Investigation. Forensic Sci. Int. Synerg. 2021, 3, 100162. [Google Scholar] [CrossRef]
- Fitzpatrick, D.J.; Gorr, W.L.; Neill, D.B. Keeping Score: Predictive Analytics in Policing. Annu. Rev. Criminol. 2019, 2, 473–491. [Google Scholar] [CrossRef]
- Houck, M.M. Front-end Forensics: An Integrated Forensic Intelligence Model. In Science Informed Policing; Fox, B., Reid, J.A., Masys, A., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 161–180. [Google Scholar]
- Nichols, J.; Wire, S.; Wu, X.; Sloan, M.; Scherer, A. Translational Criminology and Its Importance in Policing: A Review. Police Pract. Res. 2019, 20, 537–551. [Google Scholar] [CrossRef]
- Ridgeway, G. Policing in the Era of Big Data. Annu. Rev. Criminol. 2018, 1, 401–419. [Google Scholar] [CrossRef]
- U. S. Department of Justice, Bureau of Justice Assistance. Promising Practices in Forensic Lab Intelligence: Sharing Lab Intelligence to Enhance Investigations and Intelligence Operations; U.S. Department of Justice: Washington, DC, USA, 2019. Available online: https://bja.ojp.gov/sites/g/files/xyckuh186/files/media/document/promising_practices_in_forensic_lab_intelligence-final_002.pdf (accessed on 12 September 2023).
- Alpert, G.P.; Rojek, J.; Hansen, J.A. Building Bridges between Police Researchers and Practitioners: Agents of Change in a Complex World; U.S. Department of Justice, National Institute of Justice: Washington, DC, USA, 2013. Available online: https://www.ojp.gov/pdffiles1/nij/grants/244345.pdf (accessed on 4 April 2023).
- Chan, J.; Moses, L.B. Is big data challenging criminology? Theor. Criminol. 2016, 20, 21–39. [Google Scholar] [CrossRef]
- Executive Office of the President: President’s Council of Advisors on Science and Technology. Report to the President: Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods; President’s Council of Advisors on Science and Technology (PCAST): Washington, DC, USA, 2016. Available online: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensic_science_report_final.pdf (accessed on 4 April 2023).
- Legrand, T.; Vogel, L. Forensic Intelligence; Briefing Paper; Australian Research Council Centre of Excellence in Policing and Security: Canberra, Australia, 2012. [Google Scholar]
- Palmieri, L.M. Information vs. Intelligence: What Police Executives Need to Know. Police Chief 2005, 72, 32. [Google Scholar]
- Peterson, J.L.; Mihajlovic, S.; Gilliland, M. Forensic Evidence and the Police: The Effects of Scientific Evidence on Criminal Investigations; U.S. Department of Justice National Institute of Justice: Washington, DC, USA, 1984. Available online: https://www.ojp.gov/pdffiles1/95704.pdf (accessed on 18 April 2023).
- Peterson, J.; Sommers, I.; Baskin, D.; Johnson, D. The Role and Impact of Forensic Evidence in the Criminal Justice Process; U.S. Department of Justice National Institute of Justice: Washington, DC, USA, 2010. Available online: https://www.ojp.gov/pdffiles1/nij/grants/231977.pdf (accessed on 18 April 2023).
- Ribaux, O.; Walsh, S.J.; Margot, P. The Contribution of Forensic Science to Crime Analysis and Investigation: Forensic Intelligence. Forensic Sci. Int. 2006, 156, 171–181. [Google Scholar] [CrossRef]
- Wang, T.; Rudin, C.; Wagner, D.; Sevieri, R. Finding Patterns with a Rotten Core: Data Mining for Crime Series with Cores. Big Data 2015, 3, 3–21. [Google Scholar] [CrossRef]
- Anker, A.S.; Doleac, J.L.; Landersø, R. The Effects of DNA Databases on the Deterrence and Detection of Offenders. Am. Econ. J. Appl. Econ. 2021, 13, 194–225. [Google Scholar] [CrossRef]
- Briody, M. The Effects of DNA Evidence on Homicide Cases in Court. Aust. N. Z. J. Criminol. 2004, 37, 231–252. [Google Scholar] [CrossRef]
- Briody, M. The Effects of DNA Evidence on Property Offences in Court. Curr. Issues Crim. Justice 2006, 17, 380–396. [Google Scholar] [CrossRef]
- Briody, M. The Effects of DNA Evidence on Sexual Offence Cases in Court. Curr. Issues Crim. Justice 2000, 14, 159–181. [Google Scholar] [CrossRef]
- Roman, J.K.; Reid, S.; Reid, J.; Chalfin, A.; Adams, W.; Knight, C. The DNA Field Experiment: Cost-Effectiveness Analysis of the Use of DNA in the Investigation of High-Volume Crimes; The Urban Institute Justice Policy Center: Washington, DC, USA, 2008. Available online: https://www.ojp.gov/pdffiles1/nij/grants/222318.pdf (accessed on 19 July 2023).
- Lee, D.; Stout, P. Toxicological and Demographic Profiles of Phencyclidine-Impaired Driving Cases in Houston. J. Anal. Toxicol. 2020, 44, 499–503. [Google Scholar] [CrossRef]
- Ropero Miller, J.D.; Mullen, L.D.; Speaker, P.J. The Sentinel Role of Forensic Toxicology Laboratories to Identify and Act Upon Diverse Drug Threats by Addressing Toxicology and Economic Demands. Forensic Sci. Int. Synerg. 2022, 5, 100292. [Google Scholar] [CrossRef]
- Ropero Miller, J.D.; Speaker, P.J. The Hidden Costs of the Opioid Crisis and the Implications for Financial Management in the Public Sector. Forensic Sci. Int. Synerg. 2019, 1, 237–245. [Google Scholar] [CrossRef]
- Carr, J.; Doleac, J.L. The Geography, Incidence, and Underreporting of Gun Violence: New Evidence Using Shotspotter Data. In Incidence, and Underreporting of Gun Violence: New Evidence Using Shotspotter Data; SSRN: Rochester, NY, USA, 2016. [Google Scholar] [CrossRef]
- Flippin, M.R.; Katz, C.M.; King, W.R. Examining the Impact of a Crime Gun Intelligence Center. J. Forensic Sci. 2021, 67, 543–549. [Google Scholar] [CrossRef]
- Katz, C.M.; Flippin, M.; Huff, J.; King, W. Evaluation of the Phoenix Crime Gun Intelligence Center; Center for Violence Prevention & Community Safety, Arizona State University: Phoenix, AZ, USA, 2021; Available online: https://crimegunintelcenters.org/wp-content/uploads/2021/05/Evaluation-of-the-Phoenix-Crime-Gun-Intelligence-Center_Published-Version.pdf (accessed on 19 July 2023).
- Bitzer, S.; Miranda, M.D.; Bucht, R.E. Forensic advisors: The missing link. Wiley Interdis. Wiley Interdis. Rev. Forensic Sci. 2022, 4, e1444. [Google Scholar] [CrossRef]
- Garvey, T.; LaBerge, G.; Wartell, J. Forensic Intelligence Models: Assessment of Current Practices in the United States and Internationally; U.S. Department of Justice, National Institute of Justice: Washington, DC, USA, 2023. Available online: https://www.ojp.gov/pdffiles1/nij/305898.pdf (accessed on 15 June 2023).
- Giardiello, G.; Turchi, F. Developing a Judicial Cross-Check System for Case Searching and Correlation Using a Standard for the Evidence. Eur. Law Enforc. Res. Bull. 2022, 22, Nr-6. [Google Scholar]
- Gray, L. Problems in Forensics and How to Improve; West Texas A&M University: Canyon, TX, USA, 2022; Available online: https://wtamu-ir.tdl.org/items/f0034134-71bd-46dd-9292-6c63fa1b6cd5 (accessed on 29 June 2023).
- Heavey, A.L.; Turbett, G.R.; Houck, M.M.; Lewis, S.W. Toward a Common Language for Quality Issues in Forensic Science. Wiley Interdiscip. Rev. Forensic Sci. 2022, 4, e1452. [Google Scholar] [CrossRef]
- Kędzierska, G. Intelligence Gathering in Forensic Science 2022. Retrieved from Intelligence Gathering in Forensic Science. Available online: https://cris.mruni.eu/server/api/core/bitstreams/5f7805f9-e06b-49cc-a8ef-9c65740fe87d/content (accessed on 30 June 2023).
- McAndrew, W.P.; Speaker, P.J.; Houck, M.M. Interpol Review of Forensic Management, 2019–2022. Forensic Sci. Int. Synerg. 2023, 6, 100301. [Google Scholar] [CrossRef]
- Morelato, M.; Cadola, L.; Bérubé, M.; Ribaux, O.; Baechler, S. Forensic Intelligence Teaching and Learning in Higher Education: An International Approach. Forensic Sci. Int. 2023, 344, 111575. [Google Scholar] [CrossRef]
- Morillas, A.V.; Suhling, K.; Frascione, N. Unlocking the Potential of Forensic Traces: Analytical Approaches to Generate Investigative Leads. Sci. Justice 2022, 62, 310–326. [Google Scholar] [CrossRef]
- Ribaux, O.; Baechler, S.; Rossy, Q. Forensic Intelligence and Traceology in Digitalised Environments: The Detection and Analysis of Crime Patterns to Inform Practice. In The Handbook of Security; Gill, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 81–100, Erratum in The Handbook of Security; Gill, M., Ed.; Palgrave Macmillan: Cham, Switzerland; 2022; pp. 81–100 [Google Scholar]
- Roy, S.; Ray, K.S. Role of Forensic Intelligence in Crime Analysis. Int. J. Law Mang. Hum. 2022, 5, 2250–2254. [Google Scholar]
- Tabona, O.; Maupong, T.M.; Ramokapane, K.M.; Semong, T. Intelligence Sharing in Big Data Forensics. Int. J. Electron. Secur. Digit. Forensics 2023, 15, 33–55. [Google Scholar] [CrossRef]
- Taylor, M.; Marsden, A. Integration of Geographic Profiling with Forensic Intelligence to Target Serial Crime. In The Crime Analyst’s Companion; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 141–161. [Google Scholar]
- Marshall, H.; Julian, R.; Howes, L.M. Forensic Science and Gendered Organizations: An Exploratory Study of Crime Scene Examiners. Aust. J. Forensic Sci. 2023, 55, 59–72. [Google Scholar] [CrossRef]
- Wickenheiser, R.A. Proactive crime scene response optimizes crime investigation. Forensic Sci. Int. Synerg. 2023, 6, 100325. [Google Scholar] [CrossRef]
- Abosede, A.O.; Abraham, E.O. Establishment of Criminal/Profile DNA Database and Use of Forensic Intelligence to Combat Nationwide Insecurity Issues in Nigeria. Bio-Research 2022, 20, 1513–1521. [Google Scholar] [CrossRef]
- Bardan, F.; Higgins, D.; Austin, J.J. A Custom Hybridisation Enrichment Forensic Intelligence Panel to Infer Biogeographic Ancestry, Hair and Eye Colour, and Y Chromosome Lineage. Genetics 2022, 63, 102822. [Google Scholar] [CrossRef]
- Diepenbroek, M.; Bayer, B.; Anslinger, K. Pushing the Boundaries: Forensic DNA Phenotyping Challenged by Single-Cell Sequencing. Genes 2021, 12, 1362. [Google Scholar] [CrossRef]
- Doleac, J. How DNA Databases Deter Crime 2021. Retrieved from Bloomberg. Available online: https://www.bloomberg.com/opinion/articles/2021-02-01/dna-databases-are-better-crime-deterrent-than-long-prison-time (accessed on 11 November 2022).
- Foster, N.R.; Martin, B.; Hoogewerff, J.; Aberle, M.G.; de Caritat, P.; Roffey, P.; Edwards, R.; Malik, A.; Thwaites, P.; Waycott, M.; et al. The Utility of Dust for Forensic Intelligence: Exploring Collection Methods and Detection Limits for Environmental DNA, Elemental and Mineralogical Analyses of Dust Samples. Forensic Sci. Int. 2023, 344, 111599. [Google Scholar] [CrossRef]
- Glynn, C.L. Bridging Disciplines to Form a New One: The Emergence of Forensic Genetic Genealogy. Genes 2022, 13, 1381. [Google Scholar] [CrossRef]
- Griffin, A.K. DNA on Drugs (part 2): An Extended Study into the Transfer and Persistence of DNA onto Illicit Drug Capsules Using Realistic Scenarios. Forensic Sci. Int. Genet. 2022, 60, 102740. [Google Scholar] [CrossRef] [PubMed]
- Guanglin, H.L.-H. Forensic investigative genetic genealogy and fine-scale structure of human populations. Front. Genet. 2023, 13, 1067865. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Chitra, R.; Bamini, A. Efficient Fingerprint Analysis and DNA Profiling from the Same Latent Evidence for the Forensic Applications. In Proceedings of the 2022 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, 10–11 December 2022; pp. 1–6. [Google Scholar]
- Lavergne, L.; Boivin, R.; Baechler, S.; Jeuniaux, P.; Fiola, K.; Séguin, D.; Lefebvre, J.F.; Milot, E. Determining the Impact of Unknown Individuals in Criminality Using Network Analysis of DNA Matches. Forensic Sci. Int. 2022, 331, 111142. [Google Scholar] [CrossRef] [PubMed]
- Oosthuizen, T.; Howes, L.M. The Development of Forensic DNA Analysis: New Debates on the Issue of Fundamental Human Rights. Forensic Sci. Int. Genet. 2022, 56, 102606. [Google Scholar] [CrossRef] [PubMed]
- Queirós, F. The (Re)invocation of Race in Forensic Genetics through Forensic DNA Phenotyping Technology. In Racism and Racial Surveillance: Modernity Matters; Khan, S., Can, N.A., Machado, H., Eds.; Routledge: New York, NY, USA, 2022; pp. 199–222. [Google Scholar]
- Ramsey, M. Persistence of Touch DNA for Forensic Analysis; U. S. Department of Justice, Office of Justice Programs: Washington, DC, USA, 2022. Available online: https://www.ojp.gov/pdffiles1/nij/grants/304991.pdf (accessed on 10 August 2023).
- Rauf, S.; Austin, J.J.; Denice, H.; Khan, M.R. Unveiling Forensically Relevant Biogeographic, Phenotype and Y-chromosome SNP Variation in Pakistani Ethnic Groups Using a Customized Hybridisation Enrichment Forensic Intelligence Panel. PLoS ONE 2022, 17, e0264125. [Google Scholar] [CrossRef] [PubMed]
- Sarki, Z.M. Forensic Intelligence, Databases, and the Challenges of Forensic Investigations in the Nigeria Police Force: An Empirical Study. South. J. Soc. Sci. 2023, 1, 37–45. [Google Scholar]
- Taylor, D.; Abarno, D. Using Big Data from Probabilistic Genotyping to Solve Crime. Forensic Sci. Int. Genet. 2022, 57, 102631. [Google Scholar] [CrossRef]
- Templeton, J.E.; Taylor, D.; Handt, O.; Skuza, P.; Linacre, A. Direct PCR improves the recovery of DNA from various substrates. J. Forensic Sci. 2015, 60, 1558–1562. [Google Scholar] [CrossRef]
- U.S. Department of Justice National Institute of Justice. Persistence of Touch DNA for Analysis 2023. Available online: https://nij.ojp.gov/topics/articles/persistence-touch-dna-analysis (accessed on 10 August 2023).
- Urtiaga, G.O.; Domingues, W.B.; Komninou, E.R.; Martins, A.W.; Blödorn, E.B.; Dellagostin, E.N.; Woloski, R.D.S.; Pinto, L.S.; Brum, C.B.; Tovo-Rodrigues, L.; et al. DNA Microarray for Forensic Intelligence Purposes: High-density SNP Profiles Obtained Directly from Casework-like samples with and without a DNA Purification Step. Forensic Sci. Int. 2022, 332, 111181. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Feng, T. Using Blockchain to Ensure the Integrity of Digital Forensic Evidence in an IoT Environment. EAI Endorsed Trans. Creat. Technol. 2022, 9, e2. [Google Scholar] [CrossRef]
- Alnafrani, R.; Wijesekera, D. AIFIS: Artificial Intelligence (AI)-Based Forensic Investigative System. In Proceedings of the 2022 10th International Symposium on Digital Forensics and Security (ISDFS), Istanbul, Turkey, 6–7 June 2022; pp. 1–6. [Google Scholar]
- Idem, U.J.; Olarinde, E.S. Cybercrime and its Negative Effects on Youth’s Development, the Economy and Nigeria. In Proceedings of the 2023 International Conference On Cyber Management And Engineering (CyMaEn), Bangkok, Thailand, 26–27 January 2023; pp. 199–204. [Google Scholar]
- Kummer, N.; Delémont, O.; Voisard, R.; Weyermann, C. The Potential of Digital Technologies in Problem-based Forensic Learning Activities. Sci. Justice 2022, 62, 740–748. [Google Scholar] [CrossRef]
- Musa, N.S.; Mirza, N.M.; Ali, A. Current Trends in Internet of Things Forensics. In Proceedings of the 2022 International Arab Conference on Information Technology (ACIT), Abu Dhabi, United Arab Emirates, 22–24 November 2022; pp. 1–5. [Google Scholar]
- Punjabi, S.K.; Chaure, S. Forensic Intelligence-Combining Artificial Intelligence with Digital Forensics. In Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2022; pp. 1–5. [Google Scholar]
- Surange, G.; Khatri, P. Integrated Intelligent IOT Forensic Framework for Data Acquisition through Open-source Tools. Int. J. Inf. Technol. 2022, 14, 3011–3018. [Google Scholar] [CrossRef]
- Taiwo, A.; Claims, I. An Extended Digital Forensic Readiness and Maturity Model. Forensic Sci. Int. Digit. Investig. 2022, 40, 301348. [Google Scholar] [CrossRef]
- Touloumis, K.; Michalitsi-Psarrou, A.; Georgiadou, A.; Askounis, D. A Tool for Assisting in the Forensic Investigation of Cyber-security Incidents. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 2630–2636. [Google Scholar]
- Weifeng, X.; Dianxiang, X. Visualizing and Reasoning about Presentable Digital Forensic Evidence with Knowledge Graphs. In Proceedings of the 2022 19th Annual International Conference on Privacy, Security & Trust (PST), Fredericton, NB, Canada, 22–24 August 2022; pp. 1–10. [Google Scholar]
- Devlin, C.; Chadwick, S.; Moret, S.; Baechler, S.; Raymond, J.; Morelato, M. The Potential of Using the Forensic Profiles of Australian Fraudulent Identity Documents to Assist Intelligence-led Policing. Aust. J. Forensic Sci. 2023, 55, 720–730. [Google Scholar] [CrossRef]
- Gannetion, L.; Wong, K.Y.; Lim, P.Y.; Chang, K.H.; Abdullah, A.F.L. An Exploratory Study on the Handwritten Allographic Features of Multi-ethnic Population with Different Educational Backgrounds. PLoS ONE 2022, 17, e0268756. [Google Scholar] [CrossRef] [PubMed]
- Moulin, S.L.; Weyermann, C.; Baechler, S. An Efficient Method to Detect Series of Fraudulent Identity Documents Based on digitised Forensic Data. Sci. Justice 2022, 62, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Altamimi, M.J.; Hachem, M. State-of-the-art analytical approaches for illicit drug profiling in forensic investigations. Molecules 2022, 27, 6602. [Google Scholar] [CrossRef]
- Awang, N.A.; Lee, K.; Teoh, W.K.; Kunalan, V.; Abdullah, A.F.; Chang, K.H. Physical and Chemical Discrimination of Methamphetamine Tablets for Forensic intelligence. Malay. J. Anal. Sci. 2021, 26, 130–151. [Google Scholar]
- Campos, E.G.; Martinis, E.C.; Martinis, B.S. Forensic Analysis of Illicit Drugs and Novel Psychoactive Substances in Wastewater. Braz. J. Anal. Chem. 2022, 34, 15–34. [Google Scholar] [CrossRef]
- Cormick, J.; Carter, J.F.; Currie, T.; Matheson, C.; Cresswell, S.L. Isotope Fractionation During the Synthesis of MDMA. HCl from Helional. Forensic Chem. 2022, 28, 100406. [Google Scholar] [CrossRef]
- Laposchan, S.; Kranenburg, R.F. Impurities, Adulterants and Cutting Agents in Cocaine as Potential Candidates for Retrospective Mining of GC-MS Data. Sci. Justice 2022, 62, 60–75. [Google Scholar] [CrossRef]
- Lauritzen, F. Intelligence-based Doping Control Planning Improves Testing Effectiveness—Perspectives from a National Anti-doping Organisation. Drug Test. Anal. 2022, 15, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Mail, R.; Teoh, W.K.; Kunalan, V.; Chang, K.H.; Abdullah, A.F. Quick Discrimination of Seized Erimin-5 Tablets by Attenuated Total Reflectance-Fourier Transform Infra-red Spectroscopy. Aust. J. Forensic Sci. 2022, 54, 745–756. [Google Scholar] [CrossRef]
- Meola, S.; Esseiva, P. What is the Future of Illicit Drug Profiling in Switzerland? Condemned to Disappear or Forgotten Treasure. Drug Test. Anal. 2022, 14, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Mörén, L.L. The Potential of Direct Analysis in Real Time as a Forensic Tool for Parfentanil Profiling. Forensic Chem. 2022, 31, 100449. [Google Scholar] [CrossRef]
- Pinto, M.A.; Nicorena, K.F.; Machado, M.M.; Oliveira, L.F.; Paim, C.S.; Silva, F.E.; Malesuik, M.D. Tadalafil and Sildenafil Illicit Association: Stability-indicating HPLC Method, Photodegradation Kinetic and Toxicological Studies. Braz. J. Pharm. Sci. 2022, 58, e19491. [Google Scholar] [CrossRef]
- Popovic, A.; Morelato, M.; Baechler, S.; Grazia, A.D.; Tahtouh, M.; Roux, C.; Beavis, A. Understanding Australian Methylamphetamine Drug Markets through Relational, Temporal and Spatial Analyses. Drug Test. Anal. 2022, 14, 481–495. [Google Scholar] [CrossRef]
- Prego-Meleiro, P.; García-Ruiz, C.; Sanz-Pareja, M.; Esnoz, I.R.; Quintanilla, M.G.; Montalvo, G. Forensic Intelligence-led Prevention of Drug-facilitated Sexual Assaults. Forensic Sci. Int. 2022, 337, 111373. [Google Scholar] [CrossRef]
- Teoh, W.K.; Muslim, N.Z.M.; Chang, K.H.; Abdullah, A.F. Abuse of Xylazine by Human and its Emerging Problems: A Review from Forensic Perspective. Malays. J. Med. Health Sci. 2022, 18, 190–201. [Google Scholar]
- Tou, K.; Cawley, A.; Bowen, C.; Sornalingam, K.; Fu, S. Measurements of Hydrocortisone and Cortisone for Longitudinal Profiling of Equine Plasma by Liquid Chromatography–tandem Mass Spectrometry. Drug Test. Anal. 2022, 14, 943–952. [Google Scholar] [CrossRef]
- Wermelinger, M.; Coppey, F.; Gasté, L.; Esseiva, P. Exploring the Added Value of Portable Devices Such as Near Infrared Spectrometer in the Field of Illicit Drugs Analyses. Forensic Sci. Int. 2023, 348, 111605. [Google Scholar] [CrossRef]
- D’Uva, J. Chemical Characterisation and Source Attribution of Inorganic Nitrate-Based Homemade Explosives. Ph.D. Thesis, Curtin University, Perth, Australia, 2022. [Google Scholar]
- D’Uva, J.A.; DeTata, D.; Lewis, S.W. Source Determination of Homemade Ammonium Nitrate Using ATR-FTIR Spectroscopy, Trace Elemental Analysis and Chemometrics. Forensic Chem. 2022, 28, 100411. [Google Scholar] [CrossRef]
- Logrado, L.P.; Silva, M.N.; Laboissiere, J.C.; Braga, J.W. Profile of Explosives’s Use in ATMs/Cash Safes Robberies in Brazil. J. Forensic Sci. 2022, 67, 1441–1449. [Google Scholar] [CrossRef]
- Ommen, D.M. Characterization and Differentiation of Aluminum Powders Used in Improvised Explosive Devices. Part 2: Micromorphometric Method Refinement and Preliminary Statistical Analysis. J. Forensic Sci. 2022, 67, 505–515. [Google Scholar] [CrossRef]
- Hefetz, I.; Pasternak, Z.; Liptz, Y.; Bet-Yosef, M. Preliminary Investigation of the Ability of Fingerprint Examiners in Detection of Sib-Sib Relationships Based Upon Finger and Palm Prints Similarities. Forensic Sci. Int. 2022, 337, 111381. [Google Scholar] [CrossRef]
- Saguy, M.; Almog, J.; Cohn, D.; Champod, C. Proactive Forensic Science in Biometrics: Novel Materials for Fingerprint Spoofing. J. Forensic Sci. 2022, 67, 534–542. [Google Scholar] [CrossRef]
- Shadan, A.F.; Mahat, N.A.; Juahir, H.; Sukono, S. Uncovering the Fingerprints of Gasoline Residues: A Chromatographic and Chemometric Analyses of Burned Matrices in Malaysia for Forensic Intelligence; SSRN: Rochester, NY, USA; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4374083 (accessed on 15 June 2023)2023.
- Huff, J.; Freemon, K.; Katz, C.M. A Mixed-Methods Evaluation of the Phoenix Crime Gun Liaison Program: Leveraging Patrol Officers for Investigations. Justice Eval. J. 2023, 24, 1–24. [Google Scholar] [CrossRef]
- Pavlovich, S. Same Source Profiling of 3D Printed Firearms Using Deposition Striae: A Discussion. Aust. J. Forensic Sci. 2024, 56, 96–104. [Google Scholar] [CrossRef]
- Pavlovich, S.; Garrison, K. An exploratory study of topographical signatures within 3D fused deposition modelling using Polylactic Acid (PLA) filament. Forensic Sci. Int. 2023, 349, 111740. [Google Scholar] [CrossRef]
- Stoiloff, S.; Delgado, Y.; Hernandez, G. Using Forensic Intelligence Analysts to Drive Gun Crime Investigations 2021. Retrieved from Notes from the Field, National Institute of Justice. Available online: https://nij.ojp.gov/topics/articles/using-forensic-intelligence-analysts-drive-gun-crime-investigations#using-data-to-connect-gun-crime-cases (accessed on 15 June 2023).
- Charles, S.; Jonckheere, A. The Use and Understanding of Forensic Reports by Judicial Actors—The Field of Gunshot Residue Expertise as an Example. Forensic Sci. Int. 2022, 335, 111312. [Google Scholar] [CrossRef] [PubMed]
- Minzière, V.R.; Gassner, A.-L.; Gallidabino, M.; Roux, C.; Weyermann, C. The Relevance of Gunshot Residues in Forensic Science. Wiley Interdiscip. Rev. Forensic Sci. 2023, 5, e1472. [Google Scholar] [CrossRef]
- Daniel, O.; Levi, A.; Pertsev, R.; Issan, Y.; Pasternak, Z.; Cohen, A. The Next Step—A Semi-automatic Coding and Comparison System for Forensic Footwear Impressions. Forensic Sci. Int. 2022, 337, 111378. [Google Scholar] [CrossRef] [PubMed]
- Pertsev, R.; Levi, A.; Daniel, O. Using Footwear Impressions to Link Crime Scenes. J. Forensic Identif. 2023, 73, 14–19. [Google Scholar]
- Reel, S.; Harris, R.; Reidy, S.; Chambers, J. The Application of TreadMatch Scans to Aid the Process of Footwear Mark Comparison. Sci. Justice 2022, 62, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Gupta, S. Implementation of Integrated Forensic Database India—A Need of the Hour. J. Forensic Med. Toxicol. 2022, 39, 1–3. [Google Scholar] [CrossRef]
- Soria, M.L. The improvements in forensic toxicology and its role in the forensic process (I). Span. J. Leg. Med. 2023, 49, 107–117. [Google Scholar] [CrossRef]
- Airlie, M.; Robertson, J.; Ma, W.; Airlie, D.; Brooks, E. A Novel Application of Deep Learning to Forensic Hair Analysis Methodology. Aust. J. Forensic Sci. 2022, 1–12. [Google Scholar] [CrossRef]
- Baechler, S.; Morelato, M.; Ribaux, O.; Beavis, A.; Tahtouh, M.; Kirkbride, K.P.; Esseiva, P.; Margot, P.; Roux, C. Forensic Intelligence Framework. Part II: Study of the Main Generic Building Blocks and Challenges through the Examples of Illicit Drugs and False Identity Documents Monitoring. Forensic Sci. Int. 2015, 250, 44–52. [Google Scholar] [CrossRef]
- Anderson, J.M.; Matthies, C.F.; Greathouse, S.M.; Chari, A.V. The Unrealized Promise of Forensic Science 2018. RAND Justice, Infrastructure, and Environment/Justice Policy Working Paper. Available online: https://www.rand.org/pubs/external_publications/EP68695.html (accessed on 10 April 2023).
- Ribaux, O.; Margot, P. Inference Structures for Crime Analysis and Intelligence: The Example of Burglary Using Forensic Science Data. Forensic Sci. Int. 1999, 100, 193–210. [Google Scholar] [CrossRef]
- Ribaux, O.; Margot, P. Case Based Reasoning in Criminal Intelligence Using Forensic Case Data. Sci. Justice 2003, 43, 135–143. [Google Scholar] [CrossRef]
- Ribaux, O.; Crispino, F.; Delémont, O.; Roux, C. The Progressive Opening of Forensic Science toward Criminological Concerns. Secur. J. 2016, 29, 543–560. [Google Scholar] [CrossRef]
- Ribaux, O.; Girod, A.; Walsh, S.; Margot, P.; Mizrahi, S.; Clivaz, V. Forensic Intelligence and Crime Analysis. Law Probab. Risk 2003, 2, 47–60. [Google Scholar] [CrossRef]
- Strom, K.J.; Hickman, M.J. Unanalyzed Evidence in Law-enforcement Agencies: A National Examination of Forensic Processing in Police Departments. Criminol. Public Policy 2010, 9, 381–404. [Google Scholar] [CrossRef]
- Newman, J.; Dawley, D.; Speaker, P.J. Strategic Management of Forensic Laboratory Resources: From Project FORESIGHT Metrics to the Development of Action Plans. Forensic Sci. Policy Manag. Int. J. 2011, 2, 164–174. [Google Scholar] [CrossRef]
- Speaker, P.J. Key Performance Indicators and Managerial Analysis for Forensic Laboratories. Forensic Sci. Policy Manag. 2009, 1, 32–42. [Google Scholar] [CrossRef]
- Doleac, J. The Effects of DNA Databases on Crime. Am. Econ. J. Appl. Econ. 2017, 9, 165–201. [Google Scholar] [CrossRef]
- Lussier, P.; Bouchard, M.; Beauregard, E. Patterns of Criminal Achievement in Sexual Offending: Unravelling the “Successful” Sexual Offender. J. Crim. Justice 2011, 39, 433–444. [Google Scholar] [CrossRef]
- DeLisi, M.; Kosloski, A.; Sween, M.; Hachmeister, E.; Moore, M.; Drury, A. Murder by Numbers: Monetary Costs Imposed by a Sample of Homicide Offenders. J. Forensic Psychiatry Psychol. 2010, 21, 501–513. [Google Scholar] [CrossRef]
- U.S. Sentencing Commission. Recidivism Among Federal Firearms Offenders 2019; United States Sentencing Commission: Washington, DC, USA. Available online: https://www.ussc.gov/research/research-reports/recidivism-among-federal-firearms-offenders (accessed on 10 April 2023).
- Aldy, J.E.; Viscusi, W.K. Adjusting the Value of a Statistical Life for Age and Cohort Effects. Rev. Econ. Stat. 2008, 90, 573–581. [Google Scholar] [CrossRef]
- Wang, Z.; MacMillan, K.; Powell, M.; Wein, L.M. A cost-effectiveness analysis of the number of samples to collect and test from a sexual assault. Proc. Natl. Acad. Sci. USA 2020, 117, 13421–13427. [Google Scholar] [CrossRef]
P (DNA hit) | 0.316 |
X | X |
P (DNA hit leads to conviction) | 0.037 |
X | X |
Sexual assaults averted | 26.22 |
X | X |
Sexual assault victim cost and indirect costs | USD 435,412 |
Expected costs avoided | USD 133,671.00 |
divided by | / |
Cost of DNA testing | USD 1641 |
Dollar returns per dollar spent | USD 81 |
Area of Investigation | 25th Percentile | Median | 75th Percentile |
---|---|---|---|
Blood Alcohol | 7.94 | 4.55 | 2.97 |
Crime Scene Investigation | 0.66 | 0.25 | 0.13 |
Digital Evidence | 0.65 | 0.37 | 0.19 |
DNA Casework | 0.87 | 0.67 | 0.43 |
DNA Database | 21.37 | 12.70 | 7.49 |
Document Examination | 0.17 | 0.14 | 0.09 |
Drugs—Controlled Substances | 3.47 | 2.46 | 1.99 |
Evidence Screening and Processing | 1.66 | 1.05 | 0.86 |
Explosives | 0.10 | 0.06 | 0.04 |
Fingerprints | 1.27 | 0.93 | 0.68 |
Fingerprints Database (including IAFIS) | 4.43 | 1.88 | 1.06 |
Fire Analysis | 0.51 | 0.33 | 0.20 |
Firearms and Ballistics | 0.70 | 0.42 | 0.28 |
Firearms Database (including NIBIN) | 12.34 | 4.48 | 1.64 |
Forensic Pathology | 0.50 | 0.48 | 0.44 |
Gun Shot Residue (GSR) | 0.43 | 0.29 | 0.21 |
Marks and Impressions | 0.17 | 0.14 | 0.11 |
Serology/Biology | 1.19 | 0.85 | 0.51 |
Toxicology Antemortem (excluding BAC) | 1.70 | 1.25 | 1.00 |
Toxicology Postmortem (excluding BAC) | 1.57 | 1.11 | 0.98 |
Trace Evidence | 0.23 | 0.17 | 0.10 |
Source [14] |
Area of Investigation | 25th Percentile | Median | 75th Percentile |
---|---|---|---|
Blood Alcohol | 318.81 | 605.36 | 983.42 |
Crime Scene Investigation | 15.69 | 45.55 | 75.67 |
Digital Evidence | 26.25 | 42.65 | 87.53 |
DNA Casework | 78.25 | 101.01 | 133.59 |
DNA Database | 1204.89 | 2515.66 | 3702.91 |
Document Examination | 16.46 | 21.02 | 26.55 |
Drugs—Controlled Substances | 300.34 | 360.45 | 481.53 |
Evidence Screening and Processing | 105.55 | 144.89 | 174.09 |
Explosives | 5.57 | 7.65 | 11.22 |
Fingerprints | 94.36 | 133.04 | 162.24 |
Fingerprints Database (including IAFIS) | 216.73 | 327.22 | 549.55 |
Fire analysis | 26.39 | 43.40 | 70.42 |
Firearms and Ballistics | 45.00 | 63.83 | 112.37 |
Firearms Database (including NIBIN) | 336.68 | 684.45 | 1092.16 |
Forensic Pathology | 104.40 | 155.46 | 207.06 |
Gun Shot Residue (GSR) | 26.50 | 34.15 | 57.80 |
Marks and Impressions | 14.15 | 19.07 | 27.22 |
Serology/Biology | 58.49 | 112.67 | 144.92 |
Toxicology Antemortem (excluding BAC) | 139.86 | 185.54 | 266.83 |
Toxicology Postmortem (excluding BAC) | 138.41 | 169.06 | 202.56 |
Trace Evidence | 29.76 | 33.70 | 38.50 |
Source [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speaker, P.J. Intelligence and the Value of Forensic Science. Forensic Sci. 2024, 4, 184-200. https://doi.org/10.3390/forensicsci4010011
Speaker PJ. Intelligence and the Value of Forensic Science. Forensic Sciences. 2024; 4(1):184-200. https://doi.org/10.3390/forensicsci4010011
Chicago/Turabian StyleSpeaker, Paul J. 2024. "Intelligence and the Value of Forensic Science" Forensic Sciences 4, no. 1: 184-200. https://doi.org/10.3390/forensicsci4010011
APA StyleSpeaker, P. J. (2024). Intelligence and the Value of Forensic Science. Forensic Sciences, 4(1), 184-200. https://doi.org/10.3390/forensicsci4010011