Skeletal Sex Estimation Methods Based on the Athens Collection
Abstract
:1. Introduction
2. The Athens Collection
3. Morphological Sex Estimation Methods
4. Metric Sex Estimation Methods
5. Geometric Morphometrics Methods
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Charisi, D.; Eliopoulos, C.; Vanna, V.; Koilias, C.G.; Manolis, S.K. Sexual dimorphism of the arm bones in a modern Greek population. J. Forensic Sci. 2010, 56, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, A.; Werdelin, L.; Tullberg, B.S.; Lindenfors, P. Stature and sexual stature dimorphism in Sweden, from the 10th to the end of the 20th century. Am. J. Hum. Biol. 2007, 19, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Safont, S.; Malgosa, A.; Subirà, M.E. Sex assessment on the basis of long bone circumference. Am. J. Phys. Anthropol. 2000, 113, 317–328. [Google Scholar] [CrossRef]
- Liu, P.-Y.; Qin, Y.-J.; Recker, R.R.; Deng, H.-W. Evidence for a major gene underlying bone size variation in the Chinese. Am. J. Hum. Biol. 2003, 16, 68–77. [Google Scholar] [CrossRef] [PubMed]
- İşcan, M.Y.; Loth, S.R.; King, C.A.; Shihai, D.; Yoshino, M. Sexual dimorphism in the humerus: A comparative analysis of Chinese, Japanese and Thais. Forensic Sci. Int. 1998, 98, 17–29. [Google Scholar] [CrossRef]
- Stini, W.A. Nutritional stress and growth: Sex difference in adaptive response. Am. J. Phys. Anthropol. 1969, 31, 417–426. [Google Scholar] [CrossRef]
- Stinson, S. Sex differences in environmental sensitivity during growth and development. Am. J. Phys. Anthropol. 1985, 28, 123–147. [Google Scholar] [CrossRef]
- Cowgill, L.W.; Hager, L.D. Variation in the development of postcranial robusticity: An example from çatalhöyük, Turkey. Int. J. Osteoarchaeol. 2007, 17, 235–252. [Google Scholar] [CrossRef]
- Ruff, C. Sexual dimorphism in human lower limb bone structure: Relationship to subsistence strategy and sexual division of Labor. J. Hum. Evol. 1987, 16, 391–416. [Google Scholar] [CrossRef]
- Carlson, K.J.; Grine, F.E.; Pearson, O.M. Robusticity and sexual dimorphism in the postcranium of modern hunter-gatherers from Australia. Am. J. Phys. Anthropol. 2007, 134, 9–23. [Google Scholar] [CrossRef]
- Holden, C.; Mace, R. Sexual dimorphism in stature and women’s work: A phylogenetic cross-cultural analysis. Am. J. Phys. Anthropol. 1999, 110, 27–45. [Google Scholar] [CrossRef]
- Barrier, I.L.O.; L’Abbé, E.N. Sex determination from the radius and ulna in a modern South African sample. Forensic Sci. Int. 2008, 179, 85.e1–85.e7. [Google Scholar] [CrossRef] [PubMed]
- Frutos, L.R. Metric determination of sex from the humerus in a Guatemalan forensic sample. Forensic Sci. Int. 2005, 147, 153–157. [Google Scholar] [CrossRef]
- Steyn, M.; İşcan, M.Y. Osteometric variation in the humerus: Sexual dimorphism in South Africans. Forensic Sci. Int. 1999, 106, 77–85. [Google Scholar] [CrossRef]
- Mays, S. The Archaeology of Human Bones; Routledge: London, UK, 1998. [Google Scholar]
- Stull, K.E.; L’Abbé, E.N.; Ousley, S.D. Subadult sex estimation from diaphyseal dimensions. Am. J. Phys. Anthropol. 2017, 163, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.A.B.; Humphrey, L.T. Voyaging into the third dimension: A perspective on virtual methods and their application to studies of juvenile sex estimation and the ontogeny of sexual dimorphism. Forensic Sci. Int. 2017, 278, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Acsádi, G.; Nemeskéri, J.; Balás, K. History of Human Life Span and Mortality; Akadémiai Kiadó: Budapest, Hungary, 1970. [Google Scholar]
- Meindl, R.S.; Lovejoy, C.O.; Mensforth, R.P.; Carlos, L.D. Accuracy and direction of error in the sexing of the skeleton: Implications for paleodemography. Am. J. Phys. Anthropol. 1985, 68, 79–85. [Google Scholar] [CrossRef]
- Buikstra, J.E.; Ubelaker, D.H. Standards for data collection from human skeletal remains. Ark. Archeol. Surv. 1994, 44, 272. [Google Scholar]
- Hanihara, K. Sex diagnosis of Japanese skulls and scapulae by. J. Anthropol. Soc. Nippon 1959, 67, 191–197. [Google Scholar] [CrossRef]
- Giles, E.; Elliot, O. Sex determination by discriminant function analysis of Crania. Am. J. Phys. Anthropol. 1963, 21, 53–68. [Google Scholar] [CrossRef]
- Giles, E. Sex determination by discriminant function analysis of the mandible. Am. J. Phys. Anthropol. 1964, 22, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Birkby, W.H. An evaluation of race and sex identification from cranial measurements. Am. J. Phys. Anthropol. 1966, 24, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Henke, W. Zur Methode der diskriminanzanalytischen Geschlechtsbestimmung am Schädel. Homo J. Comp. Hum. Biol. 1974, 24, 99–117. [Google Scholar]
- Slice, D.E. Geometric morphometrics. Annu. Rev. Anthropol. 2007, 36, 261–281. [Google Scholar] [CrossRef]
- Pike, S. The Wiener laboratory. Paleopathol. Assoc. Newslett 1997, 100, 8–9. [Google Scholar]
- Eliopoulos, C.; Lagia, A.; Manolis, S. A modern, documented human skeletal collection from Greece. HOMO 2007, 58, 221–228. [Google Scholar] [CrossRef]
- Nikita, E. Documented skeletal collections in Greece: Composition, research, and future prospects. Am. J. Phys. Anthropol. 2020, 174, 140–143. [Google Scholar] [CrossRef]
- Roberts, C.; Tsaliki, A.; Triantaphyllou, S.; Lagia, A.; Bourbou, C. Health and disease in Greece: Past, present and future. In Health in Antiquity; Routledge: London, UK, 2005; pp. 32–57. [Google Scholar]
- Eliopoulos, C. The Creation of a Documented Human Skeletal Reference Collection and the Application of Current Aging and Sexing Standards on a Greek Skeletal Population. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2006. [Google Scholar]
- Oikonomopoulou, E.-K.; Valakos, E.; Nikita, E. Population-specificity of sexual dimorphism in cranial and pelvic traits: Evaluation of existing and proposal of new functions for sex assessment in a Greek assemblage. Int. J. Leg. Med. 2017, 131, 1731–1738. [Google Scholar] [CrossRef]
- Ferembach, D.; Schwidetzky, I.; Stoukal, M. Recommendations for age and sex diagnoses of skeletons. J. Hum. Evol. 1980, 9, 517–549. [Google Scholar]
- Brickley, M.; McKinley, J.I. Guidelines to the Standards for Recording Human Remains; BABAO, Dept. of Archaeology, University of Southampton: Southampton, UK, 2004. [Google Scholar]
- Klales, A.R.; Ousley, S.D.; Vollner, J.M. A revised method of sexing the human innominate using Phenice’s nonmetric traits and statistical methods. Am. J. Phys. Anthropol. 2012, 149, 104–114. [Google Scholar] [CrossRef]
- Walker, P.L. Sexing skulls using discriminant function analysis of visually assessed traits. Am. J. Phys. Anthropol. 2008, 136, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Nikita, E.; Nikitas, P. Sex estimation: A comparison of techniques based on binary logistic, probit and cumulative probit regression, linear and quadratic discriminant analysis, neural networks, and naïve Bayes classification using ordinal variables. Int. J. Leg. Med. 2019, 134, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Koukiasa, A.E.; Eliopoulos, C.; Manolis, S.K. Biometric sex estimation using the scapula and clavicle in a modern Greek population. Anthropol. Anz. 2017. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Saller, K. Lehrbuch der Anthropologie; Gustav Fischer Verlag: Stuttgart, Germany, 1959. [Google Scholar]
- Ricklan, D.E.; Tobias, P.V. Unusually low sexual dimorphism of endocranial capacity in a Zulu cranial series. Am. J. Phys. Anthropol. 1986, 71, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Manolis, S.K.; Eliopoulos, C.; Koilias, C.G.; Fox, S.C. Sex determination using metacarpal biometric data from the Athens Collection. Forensic Sci. Int. 2009, 193, 130.e1–130.e6. [Google Scholar] [CrossRef]
- Karakostis, F.A.; Zorba, E.; Moraitis, K. Sexual dimorphism of proximal hand phalanges. Int. J. Osteoarchaeol. 2013, 25, 733–742. [Google Scholar] [CrossRef]
- Anastopoulou, I.; Eliopoulos, C.; Valakos, E.D.; Manolis, S.K. Application of Purkait’s triangle method on a skeletal population from southern Europe. Forensic Sci. Int. 2014, 245, 203.e1–203.e4. [Google Scholar] [CrossRef]
- Purkait, R. Triangle identified at the proximal end of femur: A new sex determinant. Forensic Sci. Int. 2005, 147, 135–139. [Google Scholar] [CrossRef]
- Kiskira, C.; Eliopoulos, C.; Vanna, V.; Manolis, S.K. Biometric sex assessment from the femur and tibia in a modern Greek population. Leg. Med. 2022, 59, 102126. [Google Scholar] [CrossRef]
- Byers, S.; Akoshima, K.; Curran, B. Determination of adult stature from metatarsal length. Am. J. Phys. Anthropol. 1989, 79, 275–279. [Google Scholar] [CrossRef]
- Mountrakis, C.; Eliopoulos, C.; Koilias, C.G.; Manolis, S.K. Sex determination using metatarsal osteometrics from the Athens Collection. Forensic Sci. Int. 2010, 200, 178.e1–178.e7. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.L. Attribution of foot bones to sex and population groups. J. Forensic Sci. 1997, 42, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Peckmann, T.R.; Orr, K.; Meek, S.; Manolis, S.K. Sex determination from the calcaneus in a 20th century Greek population using discriminant function analysis. Sci. Justice 2015, 55, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Peckmann, T.R.; Orr, K.; Meek, S.; Manolis, S.K. Sex determination from the talus in a contemporary Greek population using discriminant function analysis. J. Forensic Leg. Med. 2015, 33, 14–19. [Google Scholar] [CrossRef]
- Bertsatos, A.; Garoufi, N.; Chovalopoulou, M.-E. Advancements in sex estimation using the diaphyseal cross-sectional geometric properties of the lower and upper limbs. Int. J. Leg. Med. 2020, 135, 1035–1046. [Google Scholar] [CrossRef]
- Garoufi, N.; Bertsatos, A.; Chovalopoulou, M.-E.; Villa, C. Forensic sex estimation using the vertebrae: An evaluation on two European populations. Int. J. Leg. Med. 2020, 134, 2307–2318. [Google Scholar] [CrossRef]
- Chovalopoulou, M.-E.; Bertsatos, A. Estimating sex of modern greeks based on the foramen Magnum region. J. Anthropol. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Chovalopoulou, M.E.; Bertsatos, A.; Manolis, S.K. Landmark based sex discrimination on the crania of archaeological Greek population. A comparative study based on the cranial sexual dimorphism of a modern Greek population. Mediterr. Archaeol. Archaeom. 2017, 17, 37–46. [Google Scholar]
- İşcan, M.Y.; Kedici, P.S. Sexual variation in bucco-lingual dimensions in Turkish dentition. Forensic Sci. Int. 2003, 137, 160–164. [Google Scholar] [CrossRef]
- Ateş, M.; Karaman, F.; Işcan, M.Y.; Erdem, T.L. Sexual differences in Turkish dentition. Leg. Med. 2006, 8, 288–292. [Google Scholar] [CrossRef]
- Acharya, A.B.; Mainali, S. Univariate sex dimorphism in the Nepalese dentition and the use of discriminant functions in gender assessment. Forensic Sci. Int. 2007, 173, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.; Acharya, A.B. Odontometric sex assessment in Indians. Forensic Sci. Int. 2009, 192, 129.e1–129.e5. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Bernardo, M.; Pestana, D.; Santos, J.C.; Mendonça, M.C. Contribution of teeth in human forensic identification—discriminant function sexing odontometrical techniques in Portuguese population. J. Forensic Leg. Med. 2010, 17, 105–110. [Google Scholar] [CrossRef]
- Zorba, E.; Moraitis, K.; Manolis, S.K. Sexual dimorphism in permanent teeth of modern greeks. Forensic Sci. Int. 2011, 210, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Zorba, E.; Moraitis, K.; Eliopoulos, C.; Spiliopoulou, C. Sex determination in modern greeks using diagonal measurements of molar teeth. Forensic Sci. Int. 2012, 217, 19–26. [Google Scholar] [CrossRef]
- Zorba, E.; Spiliopoulou, C.; Moraitis, K. Evaluation of the accuracy of different molar teeth measurements in assessing sex. Forensic Sci. Med. Pathol. 2013, 9, 13–23. [Google Scholar] [CrossRef]
- Zorba, E.; Vanna, V.; Moraitis, K. Sexual dimorphism of root length on a Greek population sample. HOMO 2014, 65, 143–154. [Google Scholar] [CrossRef]
- Cardoso HF, V. Sample-specific (universal) metric approaches for determining the sex of immature human skeletal remains using permanent tooth dimensions. J. Archaeol. Sci. 2008, 35, 158–168. [Google Scholar] [CrossRef]
- Adams, D.C.; Rohlf, F.J.; Slice, D.E. Geometric morphometrics: Ten Years of progress following the ‘revolution’. Ital. J. Zool. 2004, 71, 5–16. [Google Scholar] [CrossRef]
- Chovalopoulou, M.-E.; Valakos, E.D.; Manolis, S.K. Sex determination by three-dimensional geometric morphometrics of the palate and cranial base. Anthropol. Anz. 2013, 70, 407–425. [Google Scholar] [CrossRef]
- Chovalopoulou, M.-E.; Valakos, E.D.; Manolis, S.K. Sex determination by three-dimensional geometric morphometrics of the vault and midsagittal curve of the neurocranium in a modern Greek population sample. HOMO 2016, 67, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Chovalopoulou, M.-E.; Valakos, E.D.; Manolis, S.K. Sex determination by three-dimensional geometric morphometrics of craniofacial form. Anthropol. Anz. 2016, 73, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Bertsatos, A.; Papageorgopoulou, C.; Valakos, E.; Chovalopoulou, M.-E. Investigating the sex-related geometric variation of the human cranium. Int. J. Leg. Med. 2018, 132, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Bertsatos, A.; Christaki, A.; Chovalopoulou, M.-E. Testing the reliability of 3D-id software in sex and ancestry estimation with a modern Greek sample. Forensic Sci. Int. 2019, 297, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Nikita, E.; Michopoulou, E. A quantitative approach for sex estimation based on cranial morphology. Am. J. Phys. Anthropol. 2017, 165, 507–517. [Google Scholar] [CrossRef]
- Bertsatos, A.; Chovalopoulou, M.-E.; Brůžek, J.; Bejdová, Š. Advanced procedures for skull sex estimation using sexually dimorphic morphometric features. Int. J. Leg. Med. 2020, 134, 1927–1937. [Google Scholar] [CrossRef]
- Bertsatos, A.; Athanasopoulou, K.; Chovalopoulou, M.-E. Estimating sex using discriminant analysis of mandibular measurements from a modern Greek sample. Egypt. J. Forensic Sci. 2019, 9, 25. [Google Scholar] [CrossRef]
- Spradley, M.K.; Jantz, R.L. Sex estimation in forensic anthropology: Skull versus postcranial elements. J. Forensic Sci. 2011, 56, 289–296. [Google Scholar] [CrossRef]
- Kranioti, E.F. Identification of Sex Based on Digital Radiographs of the Skeleton. Ph.D. Thesis, University of Crete, Crete, Greece, 2009. [Google Scholar]
Age Interval | Males | Females | Total |
---|---|---|---|
0–9 | 1 | 9 | 10 |
10–19 | 6 | 1 | 7 |
20–29 | 15 | 7 | 22 |
30–39 | 13 | 9 | 22 |
40–49 | 18 | 15 | 33 |
50–59 | 16 | 17 | 33 |
60–69 | 24 | 15 | 39 |
70–79 | 16 | 18 | 34 |
80–89 | 15 | 16 | 31 |
90–99 | 4 | 2 | 6 |
Total | 128 | 109 | 237 |
Method | Researchers | Year | Skeletal Element | Highest Accuracy |
---|---|---|---|---|
Morphological | Oikonomopoulou et al. | 2017 | Pelvis | 98.95% |
Metric | Eliopoulos | 2006 | Humerus/femur | >75% |
Manolis et al. | 2009 | Metacarpals | 89.7% | |
Mountrakis et al. | 2010 | Metatarsals | 90.1% | |
Zorba et al. | 2011/2012/2013/2014 | Teeth | 93% | |
Charisi et al. | 2011 | Humerus/ulna/radius | >90% | |
Anastasopoulou et al. | 2014 | Femur | 78.3% | |
Peckmann et al. | 2015 | Calcaneus/talus | 90%/96.5% | |
Chovalopoulou and Bertsatos | 2017 | Foramen magnum/occipital condyles | 74% | |
Chovalopoulou et al. | 2017 | Cranium | >70% | |
Koukiasa et al. | 2017 | Scapula/clavicle | 91.4% | |
Bertsatos et al. | 2020 | Humerus | 97.3% | |
Garoufi et al. | 2020 | Vertebrae | Almost 90% | |
Kiskira et al. | 2022 | Femur/tibia | 93.4% | |
Geometric Morphometrics | Chovalopoulou et al. | 2013 | Cranium | 83.1% |
Nikita and Michopoulou | 2018 | Cranium | 94.6% | |
Bertsatos et al. | 2019 | Mandible | 85.7% | |
Bertsatos et al. | 2018/2020 | Cranium | 96.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chovalopoulou, M.-E.; Valakos, E.; Nikita, E. Skeletal Sex Estimation Methods Based on the Athens Collection. Forensic Sci. 2022, 2, 715-724. https://doi.org/10.3390/forensicsci2040053
Chovalopoulou M-E, Valakos E, Nikita E. Skeletal Sex Estimation Methods Based on the Athens Collection. Forensic Sciences. 2022; 2(4):715-724. https://doi.org/10.3390/forensicsci2040053
Chicago/Turabian StyleChovalopoulou, Maria-Eleni, Efstratios Valakos, and Efthymia Nikita. 2022. "Skeletal Sex Estimation Methods Based on the Athens Collection" Forensic Sciences 2, no. 4: 715-724. https://doi.org/10.3390/forensicsci2040053
APA StyleChovalopoulou, M. -E., Valakos, E., & Nikita, E. (2022). Skeletal Sex Estimation Methods Based on the Athens Collection. Forensic Sciences, 2(4), 715-724. https://doi.org/10.3390/forensicsci2040053