Efficient DNA Profiling Protocols for Disaster Victim Identification
Abstract
:1. Introduction
1.1. Compromised Human Remains
1.2. Disaster Victim Identification (DVI)
1.3. Efficient PM Protocols
1.4. Taphonomic Facility
1.5. SAim
2. Methods
2.1. Ethics & Governance
2.2. Donated Cadavers
2.2.1. Experimental Setup
2.2.2. Sample Collection
2.3. Surface Remains—DVI Exercise (14–17 Days PMI)
2.3.1. Experimental Setup
2.3.2. Sample Collection
2.3.3. Sample Preparation/Examination
2.4. Surface Remains—Two-Year PMI
2.4.1. Experimental Setup
2.4.2. Sample Collection
2.4.3. Sample Preparation/Examination
2.5. Surface Remains—Four-Year PMI
2.5.1. Experimental Setup
2.5.2. Sample Collection
2.5.3. Sample Preparation/Examination
2.6. Sub-Surface Remains
2.6.1. Experimental Setup
2.6.2. Grave Excavation
2.6.3. Sample Collection
2.6.4. Sample Preparation/Examination
2.7. Quantification and Genotyping
2.8. Data Analysis
3. Results
3.1. Surface Remains
3.1.1. 0–14 Day PMI
3.1.2. DVI Exercise (14–17 Days PMI)
3.1.3. Two-Year PMI
3.1.4. Four-Year PMI
3.2. Sub-Surface Remains
3.2.1. Sample Collection
3.2.2. DNA Testing
4. Discussion
4.1. Novelty and Practicality
4.2. Efficient DNA Approaches
4.2.1. Minimally Invasive Collection
4.2.2. Minimal Preparation
4.2.3. Minimal DNA Processing
4.2.4. Limitations
4.3. Comparison to Standard Laboratory Typing
4.4. Optimisation of PM Sample Types
4.4.1. Intra and Inter-Individual Differences
4.4.2. Future Studies
4.5. Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prinz, M.; Carracedo, A.; Mayr, W.; Morling, N.; Parsons, T.; Sajantila, A.; Scheithauer, R.; Schmitter, H.; Schneider, P.M. DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci. Int. Genet. 2007, 1, 3–12. [Google Scholar] [CrossRef]
- Andelinović, S.; Sutlović, D.; Ivkosić, I.E.; Skaro, V.; Ivkosić, A.; Paic, F.; Rezić, B.; Definis-Gojanović, M.; Primorac, D. Twelve-year experience in identification of skeletal remains from mass graves. Croat. Med. J. 2005, 46, 530–539. [Google Scholar] [PubMed]
- Milos, A.; Selmanović, A.; Smajlović, L.; Huel, R.; Katzmarzyk, C.; Rizvić, A.; Parsons, T.J. Success Rates of Nuclear Short Tandem Repeat Typing from Different Skeletal Elements. Croat. Med. J. 2007, 48, 486–493. [Google Scholar] [PubMed]
- Montelius, K.; Lindblom, B. DNA analysis in Disaster Victim Identification. Forensic Sci. Med. Pathol. 2012, 8, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Ziętkiewicz, E.; Witt, M.; Daca, P.; Zebracka-Gala, J.; Jarząb, M.G.B. Current genetic methodologies in the identification of disaster victims and in forensic analysis. J. Appl. Genet 2012, 53, 41–60. [Google Scholar] [CrossRef] [Green Version]
- Calacal, G.C.; Apaga, D.L.T.; Salvador, J.M.; Jimenez, J.A.D.; Lagat, L.J.; Villacorta, R.P.F.; Lim, M.C.F.; Fortun, R.D.; Datar, F.A.; De Ungria, M.C.A. Comparing different post-mortem human samples as DNA sources for downstream genotyping and identification. Forensic Sci. Int. Genet. 2015, 19, 212–220. [Google Scholar] [CrossRef]
- Manjunath, B.C.; Chandrashekar, B.R.; Maheshand, M.; Rani, R.M.V. DNA profiling and forensic dentistry--a review of the recent concepts and trends. J. Forensic Leg. Med. 2011, 18, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Watherston, J.; McNevin, D.; Gahan, M.; Bruce, D.; Ward, J. Current and emerging tools for the recovery of genetic information from post mortem samples: New directions for disaster victim identification. Forensic Sci. Int. Genet. 2018, 37, 270–282. [Google Scholar] [CrossRef]
- Schlenker, A.; Grimble, K.; Azim, A.; Owen, R.; Hartman, D. Toenails as an alternative source material for the extraction of DNA from decomposed human remains. Forensic Sci. Int. 2015, 258, 1–10. [Google Scholar] [CrossRef]
- Ferreira, S.T.; Garrido, R.G.; Paula, K.A.; Nogueira, R.C.; Oliveira, E.S.; Moraes, A.V. Cartilage and phalanges from hallux: Alternative sources of samples for DNA typing in disaster victim identification (DVI). A comparative study. Forensic Sci. Int. Genet. Suppl. Ser. 2013, 4, e366–e367. [Google Scholar] [CrossRef]
- Mundorff, A.; Davoren, J.M. Examination of DNA yield rates for different skeletal elements at increasing post mortem intervals. Forensic Sci. Int. Genet 2014, 8, 55–63. [Google Scholar] [CrossRef]
- Noji, E.K. The Public Health Consequences of Disasters. Prehospital Disaster Med. 2000, 15, 21–31. [Google Scholar] [CrossRef]
- Alonso, A.; Martin, P.; Albarrán, C.; Garcia, P.; De Simon, L.F.; Iturralde, M.J.; Fernández-Rodriguez, A.; Atienza, I.; Capilla, J.; García-Hirschfeld, J.; et al. Challenges of DNA profiling in mass disaster investigations. Croat. Med. J. 2005, 46, 540–548. [Google Scholar]
- Allouche, M.; Hamdoum, M.; Mangin, P.; Castella, V. Genetic identification of decomposed cadavers using nails as DNA source. Forensic Sci. Int. Genet. 2008, 3, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, A.; Moriyaand, F.; Hashimoto, Y. Effects of environmental conditions to which nails are exposed on DNA analysis of them. Leg. Med. 2003, 5, S194–S197. [Google Scholar] [CrossRef]
- Ottens, R.; Taylorand, D.; Linacre, A. DNA profiles from fingernails using direct PCR. Forensic Sci. Med. Pathol. 2015, 11, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, A.; Cucurachi, N.; Betti, F.; Capra, M.; Coco, S.; D’Avila, F.; Lorenzoni, R.; Lovisolo, A. Forensic DNA typing of human nails at various stages of decomposition. Int. Congr. Ser. 2006, 1288, 586–588. [Google Scholar] [CrossRef]
- Watherston, J.; Bruce, D.; Ward, J.; Gahan, M.E.; McNevin, D. Automating direct-to-PCR for disaster victim identification. Aust. J. Forensic Sci. 2019, 51, S39–S43. [Google Scholar] [CrossRef]
- Watherston, J.; Watson, J.; Bruce, D.; Ueland, M.; McNevinand, D.; Ward, J. An in-field evaluation of rapid DNA instruments for disaster victim identification. Int. J. Legal Med. 2021. under review. [Google Scholar]
- Butler, J.M.; Willis, S. Interpol review of forensic biology and forensic DNA typing 2016–2019. Forensic Sci. Int. 2020, 2, 352–367. [Google Scholar] [CrossRef]
- Gangano, S.; Elliott, K.; Anoruo, K.; Gass, J.; Buscaino, J.; Jovanovich, S.; Harris, D. DNA investigative lead development from blood and saliva samples in less than two hours using the RapidHIT™ Human DNA Identification System. Forensic Sci. Int. Genet. Suppl. Ser. 2013, 4, e43–e44. [Google Scholar] [CrossRef]
- Harrel, M.; Hughes-Stamm, S. A Powder-free DNA Extraction Workflow for Skeletal Samples. J. Forensic Sci. 2020, 65, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Duijs, F.; Sijen, T. A rapid and efficient method for DNA extraction from bone powder. Forensic Sci. Int. Rep. 2020, 2, 100099. [Google Scholar] [CrossRef]
- Sorensen, A.; Rahman, E.; Canela, C.; Gangitano, D.; Hughes-Stamm, S. Preservation and rapid purification of DNA from decomposing human tissue samples. Forensic Sci. Int. Genet. 2016, 25, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, A.; Berry, C.; Bruce, D.; Gahan, M.E.; Hughes, S.; McNevin, D. Direct-to-PCR tissue preservation for DNA profiling. Int. J. Leg. Med. 2015, 130, 607–613. [Google Scholar] [CrossRef] [PubMed]
- INTERPOL. Disaster Victim Identification Guide; INTERPOL: Lyon, France, 2018. [Google Scholar]
- Mundorff, A.Z.; Amory, S.; Huel, R.; Bilić, A.; Scottand, A.L.; Parsons, T.J. An economical and efficient method for postmortem DNA sampling in mass fatalities. Forensic Sci. Int. Genet 2018, 36, 167–175. [Google Scholar] [CrossRef] [PubMed]
- de Boer, H.H.; Maat, G.J.; Kadarmo, D.A.; Widodo, P.T.; Kloosterman, A.D.; Kal, A.J. DNA identification of human remains in Disaster Victim Identification (DVI): An efficient sampling method for muscle, bone, bone marrow and teeth. Forensic Sci. Int. 2018, 289, 253–259. [Google Scholar] [CrossRef]
- Steinlechner, M.; Parson, W.; Rabl, W.; Grubweiserand, P.; Scheithauer, R. Tsunami disaster: DNA typing of Sri Lanka victim samples and related AM matching procedures. Int. Congr. Ser. 2006, 1288, 741–743. [Google Scholar] [CrossRef]
- Allen-Hall, A.; McNevin, D. Human tissue preservation for disaster victim identification (DVI) in tropical climates. Forensic Sci. Int. Genet. 2012, 6, 653–657. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific. PrepFiler™ Forensic DNA Extraction Kit; Thermo Fisher Scientific: Waltham, MA, USA, 2008. [Google Scholar]
- McNevin, D. Preservation of and DNA Extraction from Muscle Tissue. In Forensic DNA Typing Protocols; Methods in Molecular Biology; Goodwin, W., Ed.; Humana Press: New York, NY, USA, 2016; Volume 1420, pp. 43–53. [Google Scholar] [CrossRef]
- Loreille, O.M.; Diegoli, T.M.; Irwin, J.A.; Coble, M.; Parsons, T.J. High efficiency DNA extraction from bone by total demineralization. Forensic Sci. Int. Genet. 2007, 1, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Applied BiosystemsTM. AutoMate Express™ Instrument User Guide; Rev. D; Thermo Fisher Scientific: Waltham, MA, USA, 2012. [Google Scholar]
- TECAN. HID EVOlutionTM—Extraction Application Manual; TECAN: Männedorf, Switzerland, 2008. [Google Scholar]
- Yang, D.Y.; Eng, B.; Waye, J.S.; Dudarand, J.C.; Saunders, S.R. Technical note: Improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 1998, 105, 539–543. [Google Scholar] [CrossRef]
- Huel, R.; Amory, S.; Bilić, A.; Vidović, S.; Jasaragićand, E.; Parsons, T.J. DNA extraction from aged skeletal samples for STR typing by capillary electrophoresis. Methods Mol. Biol. 2012, 830, 185–198. [Google Scholar] [PubMed]
- Edson, S.M. Extraction of DNA from Skeletonized Postcranial Remains: A Discussion of Protocols and Testing Modalities. J. Forensic Sci. 2019, 64, 1312–1323. [Google Scholar] [CrossRef]
- Seo, S.B.; Zhang, A.; Kim, H.Y.; Yi, J.A.; Lee, H.Y.; Shin, D.H.; Lee, S.D. Technical note: Efficiency of total demineralization and ion-exchange column for DNA extraction from bone. Am. J. Phys. Anthr. 2009, 141, 158–162. [Google Scholar] [CrossRef]
- Lee, H.Y.; Park, M.J.; Kim, N.Y.; Sim, J.E.; Yang, W.I.; Shin, K.-J. Simple and highly effective DNA extraction methods from old skeletal remains using silica columns. Forensic Sci. Int. Genet. 2010, 4, 275–280. [Google Scholar] [CrossRef]
- Applied Biosystems™. Quantifiler™ HP and Trio DNA Quantification Kits User Guide; Thermo Fisher Scientific: Waltham, MA, USA, 2017. [Google Scholar]
- Ward, J.; Watherston, J. Quantitative and qualitative assessment of DNA recovered from human skeletal remains. In Forensic Genetic Approaches for the Identification of Human Skeletal Remains: Challenges, Best Practices, and Emerging Technologies; Ambers, A., Ed.; Elsevier Academic Press: New York, NY, USA, in press.
- Holt, A.; Wootton, S.C.; Mulero, J.J.; Brzoska, P.M.; Langit, E.; Green, R.L. Developmental validation of the Quantifiler® HP and Trio Kits for human DNA quantification in forensic samples. Forensic Sci. Int. Genet. 2016, 21, 145–157. [Google Scholar] [CrossRef]
- Vernarecci, S.; Ottaviani, E.; Agostino, A.; Mei, E.; Calandro, L.; Montagna, P. Quantifiler ® Trio Kit and forensic samples management: A matter of degradation. Forensic Sci. Int. Genet. 2015, 16, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Promega Corporation. Promega Corporation Technical Manual #TMD034—PowerPlex ® 21 System Technical Manual; Promega Corporation: Madison, WI, USA, 2012. [Google Scholar]
- Thermo Fisher Scientific. 3500/3500xL Genetic Analyzer User Guide—Data Collection Software v3.1.; Thermo Fisher Scientific: Waltham, MA, USA, 2018. [Google Scholar]
- Kitayama, T.; Ogawa, Y.; Fujii, K.; Nakahara, H.; Mizuno, N.; Sekiguchi, K.; Kasai, K.; Yurino, N.; Yokoi, T.; Fukuma, Y.; et al. Evaluation of a new experimental kit for the extraction of DNA from bones and teeth using a non-powder method. Leg. Med. 2010, 12, 84–89. [Google Scholar] [CrossRef]
- Harrel, M.; Mayes, C.; Gangitano, D.; Hughes, S. Evaluation Of A Powder-Free DNA Extraction Method For Skeletal Remains. J. Forensic Sci. 2018, 63, 1819–1823. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, H.; Cortellini, V.; Franceschetti, L.; Verzeletti, A. Large fragment demineralization: An alternative pretreatment for forensic DNA typing of bones. Int. J. Leg. Med. 2021, 135, 1417–1424. [Google Scholar] [CrossRef]
- Hasap, L.; Chotigeat, W.; Pradutkanchana, J.; Vongvatcharanon, U.; Kitpipit, T.; Thanakiatkrai, P. A novel, 4-h DNA extraction method for STR typing of casework bone samples. Int. J. Leg. Med. 2020, 134, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.Y.Y.; Tan, Y.P.; Ng, S.; Tay, A.S.; Phua, Y.H.; Tan, W.J.; Ong, T.Y.R.; Chua, L.M.; Syn, C.K.C. A preliminary evaluation study of new generation multiplex STR kits comprising of the CODIS core loci and the European Standard Set loci. J. Forensic Leg. Med. 2017, 52, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.W.; Liand, C.; Ip, S.C.Y. A selection guide for the new generation 6-dye DNA profiling systems. Forensic Sci. Int. Genet 2017, 30, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Elwick, K.; Mayesand, C.; Hughes-Stamm, S. Comparative sensitivity and inhibitor tolerance of GlobalFiler® PCR Amplification and Investigator® 24plex QS kits for challenging samples. Leg. Med. 2018, 32, 31–36. [Google Scholar] [CrossRef]
- INTERPOL Tsunami Evaluation Working Group. The DVI Response to the South East Asian Tsunami between December 2004 and February 2006; INTERPOL: Lyon, France, 2010. [Google Scholar]
- Goodwin, W.H. The use of forensic DNA analysis in humanitarian forensic action: The development of a set of international standards. Forensic Sci. Int. 2017, 278, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Ward, J. Best practice recommendations for the establishment of a national DNA identification program for missing persons: A global perspective. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e43–e45. [Google Scholar] [CrossRef]
- Bright, J.-A.; Allen, C.; Fountain, S.; Gray, K.; Grover, D.; Neville, S.; Poy, A.L.; Taylor, D.; Turbett, G.; Wilson-Wilde, L. Australian population data for the twenty Promega PowerPlex 21 short tandem repeat loci. Aust. J. Forensic Sci. 2014, 46, 442–446. [Google Scholar] [CrossRef]
- Cline, R.E.; Laurentand, N.M.; Foran, D.R. The fingernails of Mary Sullivan: Developing reliable methods for selectively isolating endogenous and exogenous DNA from evidence. J. Forensic Sci. 2003, 48, 328–333. [Google Scholar] [CrossRef] [Green Version]
Donor No. | Sex | Age | Deposition | PMI |
---|---|---|---|---|
19-01 | Male | 87 | Surface | 0–14 days |
20-02 * | Female | 94 | Surface | 14–17 days |
20-03 * | Female | 88 | Surface | 14–17 days |
18-14 | Female | 75 | Surface | ~2 years |
16-03 | Male | 76 | Surface | ~4 years |
18-16 | Male | 68 | Sub-surface | ~1 & 2 years |
18-17 | Female | 51 | Sub-surface | ~1 & 2 years |
Day | Fingers on Right Hand | Fingers on Left Hand | Toes on Right Foot | Toes on Left Foot |
---|---|---|---|---|
0 | 1st | 5th | 5th | 1st |
2 | 2nd | 4th | 4th | 2nd |
6 | 3rd | 3rd | 3rd | 3rd |
10 | 4th | 2nd | 2nd | 4th |
14 | 5th | 1st | 1st | 5th |
Protocol 1 | Protocol 2 | Protocol 3 | Protocol 4 | Protocol 5 | Protocol 6 | Protocol 7 | ||
---|---|---|---|---|---|---|---|---|
Standard PrepFiler [31] | Rapid PrepFiler | Leaching Preservative | Total Demineralisation | Rapid Bone | Whole Demineralisation | Rapid Femur | ||
Preparation | Cleaning | Nil | Nil | Nil | Physical, Chemical, UV | Crude chemical | Crude chemical | Nil |
Sampling | Sampled from digit | Nil | Nil | Cryogenic milling | Whole/crushed # | Whole/crushed # | Femur drilling | |
Lysis | PrepFiler [31] | PrepFiler [31] | DESS [32] | 0.5M EDTA, n-Lauroyl-sarcosine, Proteinase K [33] | PrepFiler [31] | 0.5M EDTA, n-Lauroyl-sarcosine, Proteinase K [33] | PrepFiler [31] | |
Incubation | 2 h | 2 h | ≥24 h | Overnight | 15 min/2 h | Overnight | 15 min/2 h | |
Extraction | AutoMate [34] | AutoMate [34] | Automated [35] | Silica-based clean-up [36] | AutoMate [34] | Silica-based clean-up [36] | AutoMate [34] | |
Sample types | Nail clipping | ✓ | ||||||
Nail bed | ✓ | |||||||
Whole nail | ✓ | |||||||
Tissue | ✓ | |||||||
Distal phalanges | ✓ | ✓ | ✓ | ✓ | ||||
Whole toe | ✓ | ✓ | ||||||
Femur | ✓ | |||||||
Remains | Surface | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Sub-surface | ✓ | ✓ | ✓ | |||||
Post mortem interval | 0–14 days | 0–14, 17 * days | 6 days | 2 years | 1, 2, 4 years | 1, 2 years | 1, 2 years |
Sample | Donor | ||||
---|---|---|---|---|---|
18-16 | 18-17 | 18-16 | 18-17 | ||
Year 1 (Left) | Year 2 (Right) | Year 1 (Left) | Year 2 (Right) | ||
Distal phalanges (hand) | 1st | ✓ | ✓ | ✓ | |
2nd | ✓ | ✓ | ✓ | ||
3rd | ✓ | ✓ | |||
4th | ✓ | ✓ | ✓ | ||
5th | ✓ | ✓ | |||
Distal phalanges (foot) | 1st | ✓ | ✓ * | ✓ * | ✓ |
2nd | ✓ | ✓ * | ✓ * | ||
3rd | ✓ * | ✓ * | |||
4th | ✓ * | ✓ * | |||
5th | ✓ * | ✓ * | |||
Femur | ✓ ^ | ✓ # | ✓ | ✓ |
Deposition Site | PMI | Sample Type | Protocol in Table 3 | Cleaning/Preparation | DNA Extraction Protocol | Genotyping Protocol |
---|---|---|---|---|---|---|
Surface | ≤2.5 weeks | Nail clipping | 1 | Nil | Nil | Fully-automated |
Digit | 3 | DESS | Nil | Fully-automated | ||
Surface | ≤4 years | Distal phalanges (preferably from the foot) | 5 | Crude chemical—Whole bone | 15 min PrepFiler™ Lysis Buffer | Fully-automated |
Sub-surface | ≤1 year | Distal phalanges | 5 | Crude chemical—Whole bone | 15 min PrepFiler™ Lysis Buffer | Fully-automated |
Sub-surface | ≥1 year | Femur drillings | 7 | Nil | 15 min PrepFiler™ Lysis Buffer | Fully-automated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watherston, J.; Watson, J.; Bruce, D.; Ward, J.; McNevin, D. Efficient DNA Profiling Protocols for Disaster Victim Identification. Forensic Sci. 2021, 1, 148-170. https://doi.org/10.3390/forensicsci1030014
Watherston J, Watson J, Bruce D, Ward J, McNevin D. Efficient DNA Profiling Protocols for Disaster Victim Identification. Forensic Sciences. 2021; 1(3):148-170. https://doi.org/10.3390/forensicsci1030014
Chicago/Turabian StyleWatherston, Jeremy, Jessica Watson, David Bruce, Jodie Ward, and Dennis McNevin. 2021. "Efficient DNA Profiling Protocols for Disaster Victim Identification" Forensic Sciences 1, no. 3: 148-170. https://doi.org/10.3390/forensicsci1030014
APA StyleWatherston, J., Watson, J., Bruce, D., Ward, J., & McNevin, D. (2021). Efficient DNA Profiling Protocols for Disaster Victim Identification. Forensic Sciences, 1(3), 148-170. https://doi.org/10.3390/forensicsci1030014