# Towards Recognition of Scale Effects in a Solid Model of Lattices with Tensegrity-Inspired Microstructure

^{*}

*Solids*2021)

## Abstract

**:**

## 1. Introduction

## 2. Lattices with Tensegrity-Inspired Microstructure

## 3. Enhanced Solid Model—Size Effect

**q**[29,30,31,32]:

#### 3.1. 2D Hexagonal Tensegrity Module

#### 3.2. 3D 4-Strut Simplex Tensegrity Module

## 4. Conclusions and Future Work

- Substitute elasticity matrices coefficients depend on the cable to strut stiffness ratio as well as on the self-stress level.
- Coupling of the first and second gradient terms is identified.
- The scale effect can be observed.
- It is possible to determine the variability (sensitivity) of individual lattice or unit cell first gradient deformation states and to control them to a certain extent using geometric and self-stress parameters. They can be selected so that the second gradient coefficient is as small as possible, or even zero.
- The extended solid model can be used for evaluation of unusual mechanical properties of tensegrity lattices.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Skelton, R.E.; de Oliveira, M.C. Tensegrity Systems; Springer: New York, NY, USA, 2009. [Google Scholar]
- Motro, R. Tensegrity: Structural Systems for the Future; Kogan Page Science: London, UK, 2003. [Google Scholar]
- Wroldsen, A.S. Modelling and Control of Tensegrity Structures. Ph.D. Thesis, Department of Marine Technology, Norwegian University of Science and Technology, Trondheim, Norway, 2007; 208p. [Google Scholar]
- Calladine, C.R.; Pellegrino, S. First-order infinitesimal mechanisms. Int. J. Solids Struct.
**1991**, 27, 505–515. [Google Scholar] [CrossRef] - Gilewski, W.; Al Sabouni-Zawadzka, A. On possible applications of smart structures controlled by self-stress. Arch. Civ. Mech. Eng.
**2015**, 15, 469–478. [Google Scholar] [CrossRef] - Adam, B.; Smith, I.F.C. Self-diagnosis and self-repair of an active tensegrity structure. J. Struct. Eng.
**2007**, 133, 1752–1761. [Google Scholar] [CrossRef] - Al Sabouni-Zawadzka, A.; Gilewski, W. Inherent smartness of tensegrity structures—Structural elements applications. In Proceedings of the International Association for Shell and Spatial Structures (IASS), Amsterdam, The Netherlands, 17–20 August 2015. [Google Scholar]
- Al Sabouni-Zawadzka, A.; Gilewski, W. Inherent smartness of tensegrity structures. Appl. Sci.
**2018**, 8, 787. [Google Scholar] [CrossRef] [Green Version] - Obara, P.; Kłosowska, J.; Gilewski, W. Truth and myths about 2D tensegrity trusses. Appl. Sci.
**2019**, 9, 179. [Google Scholar] [CrossRef] [Green Version] - Gilewski, W.; Al Sabouni-Zawadzka, A. Equivalent mechanical properties of tensegrity truss structures with self-stress included. Eur. J. Mech. Solids
**2020**, 83, 103998. [Google Scholar] [CrossRef] - Fraternali, F.; Carpentieri, G.; Amendola, A.; Skelton, R.E.; Nesterenko, V.F. Multiscale tenability of solitary wave dynamics in tensegrity metamaterials. Appl. Phys. Lett.
**2014**, 105, 201903. [Google Scholar] [CrossRef] [Green Version] - Fabbrocino, F.; Carpentieri, G.; Amendola, A.; Penna, R.; Fraternali, F. Accurate numerical methods for studying the nonlinear wave-dynamics of tensegrity metamaterials. Eccomas Procedia Compdyn
**2017**, 3911–3922. [Google Scholar] [CrossRef] [Green Version] - Amendola, A.; Krushynska, A.; Daraio, C.; Pugno, N.M.; Fraternali, F. Tuning frequency band gaps of tensegrity mass-spring chains with local and global prestress. Int. J. Solids Struct
**2018**, in press. [Google Scholar] [CrossRef] - Wang, Y.T.; Liu, X.N.; Zhu, R.; Hu, G.K. Wave propagation in tunable lightweight tensegrity metastructure. Sci. Rep.
**2018**, 8, 11482. [Google Scholar] [CrossRef] - De Tommasi, D.; Marano, G.C.; Puglisi, G.; Trentadue, F. Optimal complexity and fractal limits of self-similar tensegrities. Proc. R. Soc. A
**2016**, 471, 20150250. [Google Scholar] [CrossRef] [Green Version] - De Tommasi, D.; Marano, G.C.; Puglisi, G.; Trentadue, F. Morphological optimization of tensegrity-type metamaterials. Compos. Part B
**2017**, 115, 182–187. [Google Scholar] [CrossRef] - Modano, M.; Mascolo, I.; Fraternali, F.; Bieniek, Z. Numerical and analytical approaches to the self-equilibrium problem of class teta = 1 tensegrity metamaterials. Front. Mech.
**2018**, 5, 5. [Google Scholar] - Fraternali, F.; Carpentieri, G.; Amendola, A. On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms. J. Mech. Phys. Solids
**2015**, 74, 136–157. [Google Scholar] [CrossRef] [Green Version] - Rimoli, J.J.; Pal, R.K. Mechanical response of 3-dimensional tensegrity lattices. Compos. Part B
**2017**, 115, 30–42. [Google Scholar] [CrossRef] - Salahsoor, H.; Pal, R.K.; Rimoli, J.J. Material symmetry phase transitions in the three-dimensional tensegrity metamaterial. J. Mech. Phys. Solids
**2018**, 119, 382–399. [Google Scholar] [CrossRef] - Zhang, L.Y.; Li, S.X.; Zhu, S.X.; Zhang, B.Y.; Xu, G.K. Automatically assembled large-scale tensegrities by truncated regular polyhedral and prismatic elementary cells. Compos. Struct.
**2018**, 184, 30–40. [Google Scholar] [CrossRef] - Zhang, Q.; Zhang, D.; Dobah, Y.; Scarpa, F.; Fraternali, F.; Skelton, R.E. Tensegrity cell mechanical metamaterial with metal rubber. Appl. Phys. Lett.
**2018**, 113, 031906. [Google Scholar] [CrossRef] [Green Version] - Ma, Y.; Zhang, Q.; Dobah, J.; Scarpa, F.; Fraternali, F.; Skelton, R.E.; Zhang, D.; Hong, J. Meta-tensegrity: Design of a tensegrity prism with metal rubber. Compos. Struct.
**2018**, 206, 644–657. [Google Scholar] [CrossRef] [Green Version] - Al Sabouni-Zawadzka, A.; Gilewski, W. Smart metamaterial based on the simplex tensegrity pattern. Materials
**2018**, 11, 673. [Google Scholar] [CrossRef] [Green Version] - Milton, G.; Cherkaev, A.V. Which elasticity tensors are realizable? J. Eng. Mater. Technol.
**1995**, 117, 483–493. [Google Scholar] [CrossRef] - Kadic, M.; Buckmann, T.; Stenger, N.; Thiel, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett.
**2012**, 100, 191901. [Google Scholar] [CrossRef] [Green Version] - Al Sabouni-Zawadzka, A. Extreme mechanical properties of regular tensegrity unit cells in 3D lattice metamaterials. Materials
**2020**, 13, 4845. [Google Scholar] [CrossRef] [PubMed] - Al Sabouni-Zawadzka, A.; Gilewski, W. Soft and stiff simplex tensegrity lattices as extreme smart metamaterials. Materials
**2019**, 12, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bathe, K.J. Finite Element Procedures in Engineering Analysis; Prentice Hall: New York, NY, USA, 1996. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method. Vol. 1. The Basis; Elsevier Butterworth-Heinemann: London, UK, 2000. [Google Scholar]
- Lewiński, T. On algebraic equations of elastic trusses, frames and grillages. J. Theor. Appl. Mech.
**2001**, 39, 307–322. [Google Scholar] - Pełczyński, J.; Gilewski, W. Algebraic formulation for moderately thick elastic frames, beams, trusses, and grillages within Timoshenko theory. Math. Probl. Eng.
**2019**, 7545473. [Google Scholar] [CrossRef] - Pełczyński, J.; Gilewski, W. An extension of algebraic equations of elastic trusses with self-equilibrated system of forces. In Proceedings of the ECCM6, Proceedings of the ECFD7, Glasgow, UK, 11–15 June 2018; R. Owen, R., de Borst, R., Reese, J., Pearce, C., Eds.; CIMNE: Barcelona, Spain, 2018; pp. 4343–4348. [Google Scholar]
- Kasprzak, A.; Gilewski, W. 3D continuum model of tensegrity modules with the effect of self0stress. In Proceedings of the WCCM XI, ECCM V, Barcelona, Spain, 20–25 July 2014. [Google Scholar]
- Pal, R.K.; Ruzzene, M.; Rimoli, J. A continuum model for nonlinear lattices under large deformations. Int. J. Solids Struct.
**2016**, 96, 300–319. [Google Scholar] [CrossRef] - Pal, R.K.; Rimoli, J.; Ruzzene, M. Effect of large deformation pre-loads on the wave properties of hexagonal lattice. Smart Mat. Struct.
**2016**, 25, 054010. [Google Scholar] [CrossRef] - Green, A.E.; Zerna, W. Theoretical Elasticity; Oxford University Press: Oxford, UK, 1968. [Google Scholar]
- Chadwick, P.; Vianello, M.; Cowin, S. A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids
**2001**, 49, 2471–2492. [Google Scholar] [CrossRef] - Mindlin, R.D. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal.
**1964**, 16, 51–78. [Google Scholar] [CrossRef] - Mindlin, R.D. Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct.
**1965**, 1, 417–438. [Google Scholar] [CrossRef] - Eringen, A.C. Microcontinuum field theories I: Foundations of Solids; Springer: New York, NY, USA, 1999. [Google Scholar]
- Polyzos, D.; Fotadis, D.I. Derivation of Mindlin’s first and sedond strain gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct.
**2012**, 49, 470–480. [Google Scholar] [CrossRef] [Green Version] - Askes, H.; Aifantis, E.C. Gradient elasticity in statics and dynamics: An overview of formulation, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct.
**2011**, 48, 1962–1990. [Google Scholar] [CrossRef] - Forest, S.; Sab, K. Stress gradient continuum theory. Mech. Res. Comm.
**2012**, 40, 16–25. [Google Scholar] [CrossRef] - Pellegrino, S. Structural computations with the singular value decomposition of the equilibrium matrix. Int. J. Solids Struct.
**1993**, 30, 3029–3035. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gilewski, W.; Sabouni-Zawadzka, A.A.
Towards Recognition of Scale Effects in a Solid Model of Lattices with Tensegrity-Inspired Microstructure. *Solids* **2021**, *2*, 50-59.
https://doi.org/10.3390/solids2010002

**AMA Style**

Gilewski W, Sabouni-Zawadzka AA.
Towards Recognition of Scale Effects in a Solid Model of Lattices with Tensegrity-Inspired Microstructure. *Solids*. 2021; 2(1):50-59.
https://doi.org/10.3390/solids2010002

**Chicago/Turabian Style**

Gilewski, Wojciech, and Anna Al Sabouni-Zawadzka.
2021. "Towards Recognition of Scale Effects in a Solid Model of Lattices with Tensegrity-Inspired Microstructure" *Solids* 2, no. 1: 50-59.
https://doi.org/10.3390/solids2010002